DOI QR코드

DOI QR Code

EQUATIONS AX = Y AND Ax = y IN ALGL

  • Published : 2006.03.01

Abstract

Let L be a subspace lattice on a Hilbert space H and X and Y be operators acting on a Hilbert space H. Let P be the projection onto $\frac\;{R(X)}$, where RX is the range of X. If PE = EP for each $E\;\in\;L$, then there exists an operator A in AlgL such that AX = Y if and only if $$sup\{{\parallel}E^{\bot}Yf{\parallel}/{\parallel}E^{\bot}Xf{\parallel}\;:\;f{\in}H,\; E{\in}L}=K\;<\;\infty$$ Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}A{\parallel} = K.$ Let x and y be vectors in H and let $P_x$ be the projection onto the singlely generated space by x. If $P_xE = EP_x$ for each $E\inL$, then the assertion that there exists an operator A in AlgL such that Ax = y is equivalent to the condition $$K_0\;:\;=\;sup\{{\parallel}E^{\bot}y{\parallel}/{\parallel}E^{\bot}x\;:\;E{\in}L}=<\;\infty$$ Moreover, we may choose an operator A such that ${\parallel}A{\parallel} = K_0$ whose norm is $K_0$ under this case.

Keywords

References

  1. M. Anoussis, E. Katsoulis, R. L. Moore, and T. T. Trent, Interpolation problems for ideals in nest algebras, Math. Proc. Camb. Phil. Soc. 111 (1992), no. 1, 151-160
  2. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415
  3. A. Hopenwasser, The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 29 (1980), no. 1, 121-126 https://doi.org/10.1512/iumj.1980.29.29009
  4. A. Hopenwasser, Hilbert-Schmidt interpolation in CSL-algebras, Illinois J. Math. 33 (1989), no. 4, 657-672
  5. Y. S. Jo and J. H. Kang, Interpolation problems in AlgL, J. Appl. Math. comput. 18 (2005), 513-524
  6. Y. S. Jo, J. H. Kang, and K. S. Kim, On operator interpolation problems, J. Korean Math. Soc. 41 (2004), no. 3, 423-433 https://doi.org/10.4134/JKMS.2004.41.3.423
  7. R. Kadison, Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276
  8. E. Katsoulis, R. L. Moore, and T. T. Trent, Interpolation in nest algebras and applications to operator Corona theorems, J. Operator Theory 29 (1993), no. 1, 115-123
  9. E. C. Lance, Some properties of nest algebras, Proc. London Math. Soc. (3) 19 (1969), 45-68
  10. R. Moore and T. T. Trent, Linear equations in subspaces of operators, Proc. Amer. Math. Soc. 128 (2000), no. 3, 781-788
  11. R. Moore and T. T. Trent, Interpolation in in°ated Hilbert spaces, Proc. Amer. Math. Soc. 127 (1999), no. 2, 499-507
  12. N. Munch, Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), no. 2, 407-418 https://doi.org/10.1016/0022-247X(89)90074-7

Cited by

  1. SPHERICAL NEWTON DISTANCE FOR OSCILLATORY INTEGRALS WITH HOMOGENEOUS PHASE FUNCTIONS vol.33, pp.1, 2011, https://doi.org/10.5831/HMJ.2011.33.1.001
  2. NORMAL INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$ vol.30, pp.2, 2008, https://doi.org/10.5831/HMJ.2008.30.2.329
  3. POSITIVE INTERPOLATION ON Ax = y AND AX = Y IN ALG$\mathcal{L}$ vol.31, pp.2, 2009, https://doi.org/10.5831/HMJ.2009.31.2.259
  4. UNITARY INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG𝓛 vol.36, pp.4, 2014, https://doi.org/10.5831/HMJ.2014.36.4.907
  5. COMPACT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALG$\mathcal{L}$ vol.32, pp.2, 2010, https://doi.org/10.5831/HMJ.2010.32.2.255
  6. INTERPOLATION PROBLEMS FOR OPERATORS WITH CORANK IN ALG L vol.34, pp.3, 2012, https://doi.org/10.5831/HMJ.2012.34.3.409
  7. INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ vol.33, pp.1, 2011, https://doi.org/10.5831/HMJ.2011.33.1.115
  8. SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL vol.29, pp.1, 2007, https://doi.org/10.5831/HMJ.2007.29.1.055
  9. UNITARY INTERPOLATION ON AX = Y IN ALG$\mathcal{L}$ vol.31, pp.3, 2009, https://doi.org/10.5831/HMJ.2009.31.3.421
  10. A NOTE ON QUASI-TOPOLOGICAL SPACES vol.33, pp.1, 2011, https://doi.org/10.5831/HMJ.2011.33.1.011