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ON A LIMIT CLASS OF
LORENTZ OPERATOR IDEALS

Hi Ja Song

Abstract. We give an extensive presentation of results about the
behaviour of the approximation operator ideals L∞,q in connection
with the Lorentz operator ideals Lp,q.

1. Introduction

Schatten-von Neumann operator ideals

Sp,q = {T ∈ L(H) : (
∞∑

n=1

[n1/p−1/qsn(T )]q)1/q < ∞},

0 < p < ∞, 0 < q ≤ ∞, where sn(T ) is the n-th singular number of
the operator T acting on a Hilbert space H, have played an important
role as the historical starting point of the theory of operators.

In order to treat certain problems of perturbation theory and invari-
ant subspaces, V. Macaev [6] introduced the operator ideals S∞,1 =
{T ∈ L(H) :

∑∞
n=1 n−1sn(T ) < ∞}. Later on, the operator ideals

S∞,q = {T ∈ L(H) : (
∑∞

n=1 n−1sn(T )q)1/q < ∞}, 0 < q < ∞, ap-
peared naturally in the work of V. Peller [7] on the averaging projection
onto the set of Hankel matrices.

It is well-known that approximation numbers coincide with singu-
lar numbers for operators acting between Hilbert spaces. So we can
extend the operator ideals described above to the class of all Banach
spaces by setting for 0 < p < ∞ and 0 < q ≤ ∞ ,Lp,q = {T ∈ L :
(
∑∞

n=1[n
1/p−1/qan(T )]q)1/q < ∞}, and for 0 < q < ∞ ,L∞,q = {T ∈
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L : (
∑∞

n=1 n−1an(T )q)1/q < ∞}. Here an(T ) is the n-th approximation
number of the operator T acting between Banach spaces.

Based on the theory of Lorentz operator ideals Lp,q, many strik-
ing results on eigenvalue distributions of abstract operators on Banach
spaces were established and successfully applied to various types of in-
tegral operators. Some important properties of Lorentz operator ideals
Lp,q follow from the fact that they can be regarded as approximation
spaces.

F. Cobos and I. Resina [4] established some results about the op-
erator ideals L∞,q. It turned out that the general theory of Lorentz
operator ideals Lp,q does not cover the limiting case of operator ideals
L∞,q by taking p = ∞.

In this paper we survey geometric structures of the operator ideals
L∞,q.

We first give a representation theorem for operators belonging to
the operator ideals L∞,q in terms of finite rank operators. By virtue
of this result we obtain a multiplication formula.

Next we deal with the stability under tensor products of the operator
ideals L∞,q. And then we describe the behaviour under interpolation
of the operator ideals L∞,q.

Finally we investigate the relationship between the operator ideals
L∞,q and entropy operator ideals L(e)

∞,q generated by entropy numbers.

2. Definitions and Notation

We present some of the definitions and notation to be used. Through-
out this paper E and F denote Banach spaces.

If x = (xi) is a bounded sequence then we put sn(x) = inf{σ ≥
0 : card(i : |xi| ≥ σ) < n}. (

sn(x)
)

is called the non-increasing
rearrangement of x. Let 0 < p < ∞ and 0 < q ≤ ∞. Then the
Lorentz sequence space `p,q consists of all sequences x = (xi) having a
finite quasi-norm

‖x|`p,q‖ =

{ ( ∑∞
n=1 [n1/p−1/q sn(x)]q

)1/q if 0 < q < ∞,

supn [n1/psn(x)] if q = ∞.

Notation. (1) L(E, F ) denotes the set of all bounded linear operators
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from E into F .
(2) F(E, F ) denotes the set of all finite rank operators

from E into F .
(3) K(E, F ) denotes the set of all compact operators from

E into F .
(4) The closed unit ball of E is denoted by BE .

The n-th approximation number of T ∈ L(E,F ) is defined by

an(T ) = inf{‖T − L‖ : L ∈ F(E,F ), rank(L) < n}.
An operator T ∈ L(E, F ) is said to be of approximation type `p,q if

(an(T )) ∈ `p,q. The Lorentz operator ideal Lp,q(E, F ) consists of these
operators. For T ∈ Lp,q(E, F ), we define ‖T |Lp,q‖ = ‖(an(T ))|`p,q‖.

For 0 < q < ∞, the approximation operator ideal L∞,q(E, F ) is
the set of all operators T ∈ L(E, F ) which have a finite quasi-norm
‖T |L∞,q‖ = (

∑∞
n=1 n−1an(T )q)1/q.

Let (αn) and (βn) be non-negative real-valued sequences. Then
αn ≺ βn means that αn ≤ C βn for n = 1, 2, · · · , where the constant
C > 0 may depend on various parameters but not on the index n. We
write αn ∼ βn if αn ≺ βn and βn ≺ αn.

By a cross norm τ we mean a norm which is simultaneously defined
on all algebraic tensor products E⊗F such that τ(x⊗y) = ‖x‖E ‖y‖F

for x ∈ E and y ∈ F . We denote the space E ⊗ F equipped with τ by
E ⊗τ F and its completion by E⊗̂τF .

The algebraic tensor product of the operators S ∈ L(E,F ) and
T ∈ L(E0, F0) is the linear operator S⊗T from E⊗E0 into F ⊗F0 de-
fined uniquely by S⊗T (

∑n
i=1 xi⊗yi) =

∑n
i=1 Sxi⊗Tyi, x1, · · · , xn ∈

E, y1, · · · , yn ∈ E0. A cross-norm is called a tensor norm provided
that for all such maps the following holds : τ(

∑n
i=1 Sxi ⊗ Tyi) ≤

‖S‖‖T‖ τ(
∑n

i=1 xi⊗yi). In this case S⊗T admits a unique τ -continuous
extension acting from E⊗̂τE0 into F ⊗̂τF0 which is denoted by S⊗̂τT .

An operator ideal U is said to be stable with respect to a tensor norm
τ if S ∈ U(E, F ) and T ∈ U(E0, F0) imply S⊗̂τT ∈ U(E⊗̂τE0, F ⊗̂τF0).

Let (E0, E1) be a couple of quasi-Banach spaces. We consider the
functional K(t, x, E0, E1) = K(t, x) = inf{‖x0‖E0

+ t ‖x1‖E1
: x0 ∈

E0, x1 ∈ E1, x = x0 + x1} on E0 + E1. If 0 < θ < 1 and 0 < q ≤ ∞
then the real interpolation space (E0, E1)θ,q consists of all elements
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x ∈ E0 + E1 which have a finite quasi-norm

‖x‖(E0,E1)θ,q
= ‖x‖θ,q =

{ (∫∞
0

[t−θK(t, x)]q dt
t

) 1
q if 0 < q < ∞,

supt [t−θK(t, x)] if q = ∞.

Let 0 < q < ∞. We denote by L∞∞,q(E, F ) the set of all op-
erators T ∈ L(E, F ) which have a finite quasi-norm ‖T | L∞∞,q‖ =
inf

(
supn≥0 [2n/q‖Tn‖ ]

)
, where the infimum is taken over all represen-

tations T =
∑∞

n=0 Tn with rank Tn ≤ 2(2n) and supn≥0[2n/q‖Tn‖] < ∞.
For every operator T ∈ L(E, F ) the n-th outer entropy number

en(T ) is defined to be the infimum of all σ ≥ 0 such that there are
elements y1, · · · , yq ∈ F with q ≤ 2n−1 and T (BE) ⊆ ∪q

i=1{yi + σBF }.
For 0 < q < ∞, the space L(e)

∞,q(E, F ) is defined to consist of all
operators T ∈ L(E,F ) which have a finite quasi-norm ‖T | L(e)

∞,q‖ =(∑∞
n=1 n−1en(T )q

)1/q.
An operator ideal U is surjective if for every surjection Q ∈ L(E0, E)

and every operator T ∈ L(E,F ) it follows from TQ ∈ U(E0, F ) that
T ∈ U(E,F ).

The surjective hull Us of an operator ideal U is the smallest surjec-
tive operator ideal containing U . In case of a quasi-Banach operator
ideal U the surjective hull Us of U becomes a quasi-Banach operator
ideal if it is endowed with the quasi-norm

‖T : E → F | Us‖ = inf{‖S| U‖ : T (BE) ⊆ S(BG), where S ∈ U(G,F )}.

Let U be any quasi-Banach operator ideal. The n-th generalized
entropy number of T ∈ US(E, F ) is defined by

en(T |U) = inf{‖S|U‖ : T (BE) ⊆ ∪q
i=1[yi + S(BG)],

where y1, · · · , yq ∈ F with q ≤ 2n−1 and S ∈ U(G,F )}.

Let U be an operator ideal. A sequence (yn) in F is called U-
convergent to zero if there is an operator S ∈ U(G,F ) with the follow-
ing property : Given ε > 0 there exists a natural number nε such that
yn ∈ ε · S(BG) for all n > nε.
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Let U be an operator ideal. A subset M of F is called U -compact if
M ⊆ {y ∈ F : y =

∑∞
i=1 λiyi,

∑∞
i=1 |λi| ≤ 1}, where (yi) is a sequence

in F which is U -convergent to zero.
Let U be an operator ideal. An operator T ∈ US(E, F ) is called

U -compact if for each bounded subset U of E, T (U) is U-compact in
F . The set of these operators is denoted by U (e)

c0 .
A quasi-Banach operator ideal U is approximative if F(E, F ) is

dense in every component U(E,F ).
Let U be any quasi-Banach operator ideal. The n-th generalized

approximation number of T ∈ U(E, F ) is defined by

an(T | U) = inf{‖T − L | U‖ : L ∈ F(E, F ), rank(L) < n}.

An operator T ∈ U(E, F ) with limn→∞ an(T |U) = 0 is said to be
U -approximable. The collection of all U-approximable operators is
denoted by U (a)

c0 .
Given a family of Banach spaces En with n ∈ N, the direct sum

[`2, En] consists of all sequences (xn)∞n=1 such that xn ∈ En, n ∈ N,
and

∑∞
n=1 ‖xn‖2En

< ∞.

3. Results

We begin by showing that the lexicographical order of the scale of
Lorentz operator ideals Lp,q can be transferred to the limiting case
p = ∞.

Proposition 1. L∞,p ⊂ L∞,q for 0 < p < q < ∞.

Proof. We select T ∈ L∞,p. An appeal to the monotonicity of ap-
proximation numbers reveals that

‖T |L∞,q‖ ≤ [
∞∑

n=1

(an(T )(log n)1/p)q−pan(T )pn−1]1/q

≤ [ sup
n≥1

{an(T )(
n∑

k=1

k−1)1/p}](q−p)/q [
∞∑

n=1

an(T )pn−1]1/q

≤ (
∞∑

k=1

ak(T )pk−1)1/p·(q−p)/q‖T |L∞,p‖p/q = ‖T |L∞,p‖.
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This gives us the desired inclusion. ¤

F. Cobos and I. Resina [4] showed that the representation theorem
for Lorentz operator ideals Lp,q fails to be true in the limiting case
p = ∞. The following lemma enables us to establish the representation
theorem for the operator ideals L∞,q.
From now on, we write νn instead of 2(2n), n = 0, 1, 2, · · · .

Lemma 1. Let 0 < q < ∞. If T ∈ L(E,F ) then
∑∞

n=1 an(T )qn−1 ∼
a1(T )q +

∑∞
n=0 2naνn(T )q.

Proof. We deduce from the monotonicity of approximation numbers
that

∞∑
n=1

an(T )qn−1 = a1(T )q +
∞∑

k=0

νk+1−1∑
n=νk

n−1an(T )q

≤ a1(T )q +
∞∑

k=0

(
νk+1−1∑
n=νk

n−1)aνk
(T )q ≤ C(a1(T )q +

∞∑

k=0

2kaνk
(T )q).

On the one hand, we have

a1(T )q +
∞∑

n=0

2naνn(T )q ≤ C0(a1(T )q + a2(T )q +
∞∑

k=0

2kaνk+1(T )q)

≤ C1(a1(T )q + a2(T )q +
∞∑

k=0

(
νk+1∑

n=νk+1

n−1)aνk+1(T )q)

≤ C2

∞∑
n=1

an(T )qn−1.

This completes the proof. ¤

Theorem 1. Let 0 < q < ∞. An operator T ∈ L(E, F ) belongs to
L∞,q(E, F ) if and only if there exists a sequence (Tn)∞n=0 ⊂ F(E, F )
with rank(Tn) ≤ 2(2n) such that T =

∑∞
n=0 Tn converges in the op-

erator norm and
∑∞

n=0 2n‖Tn‖q < ∞. Moreover, ‖T |L∞,q‖rep =
inf{[∑∞

n=0 2n‖Tn‖q]1/q}, where the infimum is taken over all possible
representations, defines an equivalent quasi-norm on L∞,q.
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Proof. If T ∈ L∞,q(E, F ) then we choose Ln ∈ F(E, F ) such that
‖T − Ln‖ ≤ 2aνn(T ) and rank(Ln) < 2(2n) = νn for n = 0, 1, 2, · · · .
Define T0 = 0, T1 = L0 and Tn = Ln−1 − Ln−2 for n = 2, 3, · · · .
Then we have rank(Tn) ≤ rank(Ln−1) + rank(Ln−2) < νn−1 + νn−2 <
νn, ‖T1‖ ≤ ‖T − L0‖ + ‖T‖ ≤ 2a2(T ) + a1(T ) ≤ 3a1(T ), and ‖Tn‖ ≤
‖Ln−1 − T‖ + ‖T − Ln−2‖ ≤ 4aνn−2(T ), n = 2, 3, · · · . Since (an(T ))
converges to zero, it follows that T = limk Lk =

∑∞
k=0 Tk.

We invoke lemma 1 to infer that

∞∑
n=0

2n‖Tn‖q ≤ 2 · 3qa1(T )q +
∞∑

n=0

2(n+2)4qaνn(T )q

≤ C0(a1(T )q +
∞∑

n=0

2naνn(T )q) ≤ C1

∞∑
n=1

an(T )qn−1.

Additionally, it turns out that ‖T |L∞,q‖rep ≤ C
1/q
1 ‖T |L∞,q‖.

We now verify the sufficiency of the given condition. To this end,
assume that T ∈ L(E, F ) admits a representation with the properties
stated above. Then we have rank(

∑n−1
k=0 Tk) ≤ ∑n−1

k=0 νk < νn, n =
1, 2, · · · . Therefore aνn(T ) ≤ ‖T − ∑n−1

k=0 Tk‖ ≤ ∑∞
k=n ‖Tk‖, n =

1, 2, · · · , and aν0(T ) ≤ a1(T ) = ‖T‖ ≤ ∑∞
k=0 ‖Tk‖.

Fix p and λ such that 0 < p < min(1, q) and 0 < λ < 1/q. Define s by
1/p = 1/s + 1/q. We apply Hölder’s inequality to get that

aνn(T ) ≤
∞∑

k=n

‖Tk‖ ≤ (
∞∑

k=n

‖Tk‖p)1/p

≤ (
∞∑

k=n

2−λks)1/s(
∞∑

k=n

2λkq‖Tk‖q)1/q ≤ Ko2−λn(
∞∑

k=n

2λkq‖Tk‖q)1/q.
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Combining this estimate with lemma 1 we obtain

[
∞∑

n=1

an(T )qn−1]1/q ≤ K1[a1(T )q +
∞∑

n=0

2naνn
(T )q]1/q

≤ K1[a1(T )q + Kq
0

∞∑
n=0

2n(1−λq)(
∞∑

k=n

2λkq‖Tk‖q)]1/q

= K1[a1(T )q + Kq
0

∞∑

k=0

(
k∑

n=0

2n(1−λq))2λkq‖Tk‖q]1/q

≤ K2[a1(T )q +
∞∑

k=0

2k‖Tk‖q]1/q.

This proves that T ∈ L∞,q(E, F ) and ‖T |L∞,q‖ ≤ K‖T |L∞,q‖rep. ¤

In the next theorem we see that the multiplication formula for
Lorentz operator ideals Lp,q remains true for the limiting case p = ∞.

Theorem 2. If 0 < q0, q1 < ∞ and 1/q = 1/q0 + 1/q1 then L∞,q0 ◦
L∞,q1 = L∞,q.

Proof. Let T ∈ L∞,q1(E, F ) and S ∈ L∞,q0(F,G). Applying Hölder’s
inequality and the multiplicativity of approximation numbers, we de-
rive

‖ST |L∞,q‖ = (
∞∑

n=1

an(ST )qn−1)1/q ≤ C(
∞∑

n=1

a2n−1(ST )qn−1)1/q

≤ C(
∞∑

n=1

[n−1/q0an(s)n−1/q1an(T )]q)1/q

≤ C(
∞∑

n=1

an(S)q0n−1)1/q0(
∞∑

n=1

an(T )q1n−1)1/q1 .

Hence ST ∈ L∞,q(E, G). This yields that L∞,q0 ◦ L∞,q1 ⊆ L∞,q.
To verify the reverse inclusion, take R ∈ L∞,q(E, G). We consider

a representation R =
∑∞

k=0 Rk such that Rk ∈ F(E, G), rank(Lk) ≤
2(2k) = νk, and

∑∞
k=0 2k‖Rk‖q < ∞. Choose factorizations Rk =
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SkTk with Tk ∈ L(E,Fk), Sk ∈ L(Fk, G), ‖Tk‖ = ‖Rk‖q/q1 , ‖Sk‖ =
‖Rk‖q/q0 and dim(Fk) ≤ νk. We take F to be the `2 direct sum
[`2, Fk] of countably many copies of Fk. Let Jk ∈ L(Fk, F ) and Qk ∈
L(F, Fk) denote the canonical injections and surjections, respectively.
Notice that rank(Sk Qk) ≤ νk,

∑∞
k=0 2k‖Sk Qk‖q0 ≤ ∑∞

k=0 2k‖Rk‖q,
and rank(Jk Tk) ≤ νk,

∑∞
k=0 2k‖Jk Tk‖q1 ≤ ∑∞

k=0 2k‖Rk‖q. We take
account of theorem 1 to conclude that S =

∑∞
k=0 SkQk ∈ L∞,q0(F, G)

and T =
∑∞

k=0 JkTk ∈ L∞,q1(E, F ). As a result R = ST ∈ L∞,q0 ◦
L∞,q1(E, G). This implies that L∞,q ⊆ L∞,q0 ◦ L∞,q1 . ¤

A. Pietsch [10] and H. König [5] showed that Lorentz operator ideals
Lp,q fail to be tensor-stable. However, the theorem given below shows
that the operator ideals L∞,q are stable with respect to tensor norms.

Theorem 3. Let 0 < q < ∞. If S ∈ L∞,q(E, F ) and T ∈
L∞,q(E0, F0) then S⊗̂τT ∈ L∞,q(E⊗̂τE0, F ⊗̂τF0) for any tensor norm
τ .

Proof. Given any ε > 0, we pick S0 ∈ F(E,F ) and T0 ∈ F(E0, F0)
such that rank(S0) < 2n and ‖S−S0‖ < a2n(S)+ε, rank(T0) < 2n and
‖T − T0‖ < a2n(T ) + ε. Since rank(S0⊗̂τT0) = rank(S0) · rank(T0) <
22n, we get

a22n(S⊗̂τT ) ≤ ‖S⊗̂τT − S0⊗̂τT0‖ = ‖(S − S0)⊗̂τT + S0⊗̂τ (T − T0)‖
≤ ‖S − S0‖‖T‖+ ‖S0‖‖T − T0‖
≤ (a2n(S) + ε)‖T‖+ (a2n(S) + ε + ‖S‖)(a2n(T ) + ε)

≤ (a2n(S) + ε)‖T‖+ (2‖S‖+ ε)(a2n(T ) + ε).

Passing with ε to zero we obtain a22n(S⊗̂τT ) ≤ 2[a2n(S)‖T‖+‖S‖a2n(T )].
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This enables us to obtain the following estimate

‖S⊗̂τT |L∞,q‖ = [
∞∑

n=1

an(S⊗̂τT )qn−1]1/q ≤ [
∞∑

n=0

a2n(S⊗̂τT )q]1/q

≤ 2
1
q [

∞∑
n=0

a22n(S⊗̂τT )q]
1
q ≤ 2

1
q · 2 [

∞∑
n=0

(a2n(S)‖T‖+ ‖S‖a2n(T ))q]
1
q

≤ 2
1
q +1 max{1, 2

1
q−1} [(

∞∑
n=0

a2n(S)q)
1
q ‖T‖+ ‖S‖(

∞∑
n=0

a2n(T )q)
1
q ]

≤ C(
∞∑

n=0

an(S)qn−1)
1
q · (

∞∑
n=0

an(T )qn−1)
1
q = C‖S|L∞,q‖ · ‖T |L∞,q‖.

Thus we have S⊗̂τT ∈ L∞,q(E⊗̂τE0, F ⊗̂τF0). ¤

Now we describe how the scale of operator ideals L∞,q behaves under
interpolation.

Theorem 4. Let 0 < q0, q1 < ∞ and 0 < θ < 1. If 1/q = (1 −
θ)/q0 + θ/q1 then (L∞,q0L∞,q1)θ,q = L∞,q. The quasi-norms on both
sides are equivalent.

Proof. We divide the proof into two steps.

Step 1. The first step is to verify the following formula : L∞,q =
(L,L∞∞,p)θ,q for 0 < p < ∞, 0 < θ < 1 and 1/q = θ/p.

Let us take T ∈ L∞,q(E, F ). For n = 0, 1, 2, · · · , we can find Ln ∈
F(E,F ) such that ‖T − Ln‖ ≤ 2aνn(T ) and rank(Ln) < νn. Define
T0 = 0, T1 = L0 and Tn = Ln−1 −Ln−2 for n = 2, 3 · · · . Then we have
T =

∑∞
k=0 Tk with ‖T1‖ ≤ 3a1(T ), ‖Tn‖ ≤ 4aνn−2(T ), n = 2, 3 · · · ,

and ‖T −∑n
k=0 Tk‖ ≤ 2aνn−1(T ), n = 1, 2 · · · . Fix ρ and λ such that

0 < ρ < min(1, q) and 1/q < λ < 1/p. Define s by 1/ρ = 1/s + 1/q.
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We make use of Hölder’s inequality to derive that

K(2−n/p, T ) ≤ ‖T −
n+1∑

k=0

Tk‖+ 2−n/p‖
n+1∑

k=0

Tk|L∞∞,p‖

≤ 2aνn(T ) + 2−n/p(
n+1∑

k=0

2kρ/p‖Tk‖ρ)1/ρ

≤ C0[aνn
(T ) + 2−n/p(a1(T )ρ +

n∑

k=0

2k(1/p−λ)ρ2kλρaνk
(T )ρ)1/ρ]

≤ C0[aνn(T ) + 2−n/p(1 +
n∑

k=0

2k( 1
p−λ)s)

1
s (a1(T )q +

n∑

k=0

2kλqaνk
(T )q)

1
q ]

≤ C1[aνn(T ) + 2−nλ(a1(T )q +
n∑

k=0

2kλqaνk
(T )q)

1
q ].

Using this inequality, together with lemma 3.1.3 of [1] and lemma 1,
we get

‖T‖θ,q = (
∫ ∞

0

[τ−θK(τ, t)]q
dτ

τ
)1/q

≤ C2(
∞∑

n=0

[2nθ/pK(2−n/p, T )]q)1/q = C2(
∞∑

n=0

2nK(2−n/p, T )q)1/q

≤ C3(
∞∑

n=0

2naνn(T )q +
∞∑

n=0

2n(1−λq)[a1(T )q +
n∑

k=0

2kλqaνk
(T )q])1/q

≤ C4(
∞∑

n=0

2naνn(T )q + a1(T )q +
∞∑

k=0

2kλqaνk
(T )q

∞∑

n=k

2n(1−λq))1/q

≤ C5(a1(T )q +
∞∑

n=0

2naνn(T )q)1/q ≤ C6(
∞∑

n=1

an(T )qn−1)1/q.

Hence T ∈ (L(E, F ),L∞∞,p(E, F ))θ,q. This proves that

L∞,q ⊆ (L,L∞∞,p)θ,q

.
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To show that we have equality, take T ∈ (L(E,F ),L∞∞,p(E, F ))θ,q.
Let T = T0 + T1, where T0 ∈ L(E, F ) and T1 ∈ L∞∞,p(E, F ). We
consider a representation T1 =

∑∞
n=0 Ln such that rank(Ln) ≤ νn and

supn≥0{2n/p‖Ln‖} ≤ 2‖T1|L∞∞,p‖. Since rank(
∑n−1

k=0 Lk) ≤ ∑n−1
k=0 νk <

νn, for any ρ > 0 small enough, we have

aνn(T1) ≤ ‖T1 −
n−1∑

k=0

Lk‖ = ‖
∞∑

k=n

Lk‖ ≤ (
∞∑

k=n

2−kρ/p2kρ/p‖Lk‖ρ)1/ρ

≤ C02−n/p sup
k≥0

{2k/p‖Lk‖} ≤ 2C02−n/p‖T1|L∞∞,p‖.

Therefore from the additivity of approximation numbers it follows that

aνn(T ) ≤ a1(T0) + aνn(T1) ≤ C1(‖T0‖+ 2−n/p‖T1|L∞∞,p‖)

and thus aνn(T ) ≤ C1K(2−n/p, T ).
While, for any ρ > 0 small enough, we obtain

a1(T1) = ‖T1‖ ≤ (
∞∑

k=0

2−kρ/p2kρ/p‖Lk‖ρ)1/ρ

≤ C2 sup
k≥0

{2k/p‖Lk‖} ≤ 2C2‖T1|L∞∞,p‖.

It takes another appeal to the additivity of approximation numbers to
yield that

a1(T ) ≤ a1(T0) + a1(T1) = ‖T0‖+ a1(T1) ≤ C3(‖T0‖+ ‖T1|L∞∞,p‖)
and so a1(T ) ≤ C3 K(1, T ).
Applying lemma 3.1.3 of [1] and lemma 1 again, we have

(
∞∑

n=1

an(T )qn−1)1/q ≤ C4(a1(T )q +
∞∑

n=0

2naνn(T )q)1/q

≤ C5(K(1, T )q +
∞∑

n=0

[2n/qK(2−n/p, T )]q)1/q

≤ C6(
∞∑

n=0

[2nθ/pK(2−n/p, T )]q)1/q ≤ C7(
∫ ∞

0

[τ−θK(τ, T )]q
dτ

τ
)1/q.
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Hence T ∈ L∞,q(E, F ). This proves that (L,L∞∞,p)θ,q ⊆ L∞,q.
Step 2. We improve the result of the preceding step by the reiteration
property. Choose p such that 0 < p < min(q0, q1). Define θ0 and θ1 by
1/q0 = θ0/p and 1/q1 = θ1/p, respectively. Step 1 allows us to obtain
that L∞,q0 = (L,L∞∞,p)θ0,q0 and L∞,q1 = (L,L∞∞,p)θ1,q1 . Theorem
3.11.5 of [1] and Step 1 inform us that

(L∞,q0 ,L∞,q1)θ,q =
(
(L,L∞∞,p)θ0,q0 , (L,L∞∞,p)θ1,q1

)
θ,q

= (L,L∞∞,p)p/q,q = L∞,q

because p/q = (1− θ)p/q0 + θp/q1 = (1 − θ)θ0 + θθ1. This ends the
proof. ¤

We pass to the discussion of the link between the operator ideals
L∞,q and L(e)

∞,q.

Theorem 5. Let 0 < q < ∞. Then L∞,q ⊆ L(e)
∞,q.

Proof. We assume that T ∈ L∞,q(E,F ). A result due to B.Carl [2]
guarantees the existence of a constant C0 such that

sup
1≤k≤n

k1/qek(T ) ≤ C0 sup
1≤k≤n

k1/qak(T ), n = 1, 2 · · · .

Thus

n en(T )q ≤ Cq
0 sup

1≤k≤n
kak(T )q ≤ Cq

0

n∑

j=1

aj(T )q, n = 1, 2, · · · .

This leads us to have that

‖T |L(e)
∞,q‖ = [

∞∑
n=1

n−1en(T )q]1/q ≤ C0[
∞∑

n=1

n−2(
n∑

k=1

ak(T )q)]1/q

= C0[
∞∑

k=1

(
∞∑

n=k

n−2)ak(T )q]1/q ≤ C1[
∞∑

k=1

k−1ak(T )q]1/q.

Hence T ∈ L(e)
∞,q(E, F ). This yields the desired inclusion. ¤

Finally we strengthen the above inclusion. For this purpose we need
the following preliminary results. As an immediate consequence of the
representation theorem we obtain the next result.
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Proposition 2. If 0 < q < ∞ then the operator ideal L∞,q is
approximative.

Proof. Let us take any T ∈ L∞,q(E, F ). We consider any represen-
tation T =

∑∞
k=0 Tk such that rank(Tk) ≤ νk and

∑∞
k=0 2k‖Tk‖q < ∞.

Given ε > 0, we choose a natural number n0 with (
∑∞

k=n0
2k‖Tk‖q)1/q ≤

ε. We call on theorem 1 to obtain that

‖T −
n∑

k=0

Tk|L∞,q‖ ≤ C ‖T −
n∑

k=0

Tk|L∞,q‖rep ≤ Cε for n ≥ n0.

This completes the proof. ¤

We derive the useful characterization of the ideal of U-compact op-
erators.

Proposition 3. Let U be a quasi-Banach operator ideal. Then

U (e)
c0 = (U (a)

c0 )s.

Proof. Let T ∈ U(E, F ). Given ε > 0, we can find L ∈ F(E, F )
such that rank(L) < m and ‖T − L|U‖ < am(T |U) + ε. It takes an
appeal to the additivity of the generalized entropy numbers to see that

e(m−1)2+1(T |U) ≤ κ [‖T − L|Us‖+ e(m−1)2+1(L|U)]

≤ κ [‖T−L|U‖+e(m−1)2+1(L|U)] < κ [am(T |U)+e(m−1)2+1(L|U)+ε].

Take the canonical factorization L = L̃Q, where Q ∈ L(E,E/kerL)
denotes the canonical surjection and L̃ ∈ L(E/kerL,F ) is the operator
induced by L. We put E0 = E/kerL. The multiplicativity of the
generalized entropy numbers ensures that e(m−1)2+1(L|U) ≤ ‖L̃|Us‖ ·
e(m−1)2+1(Q). The surjectivity of the ideal quasi-norm ‖ · |Us‖ makes
that ‖L̃|Us‖ = ‖L̃Q|Us‖ ≤ ‖L|U‖. Also the surjectivity of the entropy
numbers permits us to have that e(m−1)2+1(IE0) = e(m−1)2+1(IE0Q) =
e(m−1)2+1(Q). Since dim(E0) < m, it follows from theorem 12.1.10
and proposition 12.1.13 of [8] that e(m−1)2+1(IE0) ≤ 4/2m−1. Whence
e(m−1)2+1(L|U) ≤ ‖L|U‖ · 4/2m−1. Note that

‖L|U‖ ≤ κ[‖L−T |U‖+‖T |U‖] < κ[am(T |U)+‖T |U‖+ε] ≤ κ[2‖T |U‖+ε].
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Combining the preceding inequalities, we obtain

e(m−1)2+1(T |U) ≤ κ [am(T |U) + 8κ/2m−1‖T |U‖+ ε(1 + 4κ/2m−1)].

Let ε tend to zero to get

(∗) e(m−1)2+1(T |U) ≤ κ [am(T |U) + 8κ/2m−1‖T |U‖].

Now we assume that T ∈ U (a)
c0 (E, F ). Then it follows from (∗) and

limm→∞ am(T |U) = 0 that limm→∞ e(m−1)2+1(T |U) = 0 and hence
T ∈ U (e)

c0 (E,F ). This assures us that U (a)
c0 ⊆ U (e)

c0 . The surjectivity of
the operator ideal U (e)

c0 tells us that (U (a)
c0 )s ⊆ U (e)

c0 .
To obtain the converse inclusion, we select T ∈ U (e)

c0 (E,F ). Then
the U-compactness of T (BE) alerts us to the fact that T (BE) ⊆ {y ∈
F : y =

∑∞
i=1 λiyi,

∑∞
i=1 |λi| ≤ 1} = M , where (yi) is a sequence

in F which is U-convergent to zero. Furthermore, we have yi = Szi,
where S ∈ U(G,F ) and (zi) is a sequence in G converging to zero.
This sequence permits us to define an operator R : `1 → G via
R(λi) =

∑∞
i=1 λizi for all (λi) ∈ `1. It is obvious that SR(B`1) = M .

We consider the operator Rn : `n
1 → G which is given by Rn(λi) =∑n

i=1 λizi for all (λi)n
i=1 ∈ `n

1 . It follows from ‖S(R − Rn)|U‖ ≤
‖S|U‖‖R−Rn‖ ≤ ‖S|U‖ supi>n ‖zi‖ that limn→∞ ‖SR−SRn|U‖ = 0.
Consequently SR ∈ U (a)

c0 (`1, F ). As T (BE) ⊆ SR(B`1) = M , we have
T ∈ (U (a)

c0 )s(E, F ). This gives that U (e)
c0 ⊆ (U (a)

c0 )s. ¤

Using the specific properties of the ideal of compact operators we
draw the factorization formula for the ideal of U-compact operators.

Proposition 4. Let U be a quasi-Banach operator ideal. Then

U (e)
c0 = Us ◦K or U (e)

c0 = U (e)
c0 ◦K, respectively.

Proof. Let T ∈ K(E, F ) and S ∈ Us(F, G). Then T (BE) is a pre-
compact subset of F and so S(T (BE)) is U-compact. This means that
ST ∈ U (e)

c0 (E, G). Hence we have Us ◦K ⊆ U (e)
c0 .

We now assume that R ∈ U (e)
c0 (E,G). Since R(BE) is U-compact,

we invoke the fact that R(BE) ⊆ {z ∈ G : z =
∑∞

i=1 λizi,
∑∞

i=1 |λi| ≤
1} = N ,where (zi) is a sequence in G which is U-convergent to zero.
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Moreover, we have zi = Syi, where S ∈ U(F, G) and (yi) is a sequence
in F converging to zero. we construct a sequence (ρi) of real numbers
such that ρi ≥ 1, limi ρi = ∞ and limi ρiyi = 0. We set ui = ρiyi,
i = 1, 2, · · · . Let M = {y ∈ F : y =

∑∞
i=1 λiui,

∑∞
i=1 |λi| ≤ 1}.

Then M is a precompact subset of F and thus S(M) is an U-compact
subset of G. Define G0 = {z ∈ G : z = τw, where w ∈ S(M)}, where
G0 is equipped with the norm ‖z‖G0 = inf{τ > 0 : z = τw, where w ∈
S(M)}. Then G0 is a Banach space. Notice that R(BE) ⊆ N ⊆ S(M).
This guarantees the factorization of R = R1R0 through a Banach space
G0, where R0 ∈ L(E, G0) is an operator which is given by R0x = Rx
for all x ∈ E and R1 ∈ L(G0, G) is the identity map. Since zi =
Syi = 1

ρi
Sui and Sui ∈ S(M), it follows that ‖zi‖G0 ≤ 1

ρi
and so

limi ‖zi‖G0 = 0. Accordingly N is a precompact subset of G0 and
hence R(BE) is precompact as well. This forces that R0 ∈ K(E, G0).
Observe that R1(BG0) ⊂ (1 + ε)S(M) and S(M) is an U-compact
subset of G. This indicates that R1 ∈ U (e)

c0 (G0, G). Therefore R =
R1R0 ∈ U (e)

c0 ◦ K(E,G). Combining the first inclusion we arrive at
Us ◦ K ⊆ U (e)

c0 ⊆ U (e)
c0 ◦ K. As a consequence U (e)

c0 = Us ◦ K or
U (e)

c0 = U (e)
c0 ◦K, respectively. ¤

We are now in a position to improve theorem 5.

Theorem 6. Let 0 < q < ∞. Then L∞,q ⊆ L(e)
∞,q ◦K.

Proof. We use theorem 5 and the surjectivity of the operator ideal
L(e)
∞,q to see that (L∞,q)s ⊆ L(e)

∞,q. Thanks to propositions 2,3 and 4,
we obtain (L∞,q)s = ((L∞,q)

(a)
c0 )s = (L∞,q)

(e)
c0 = (L∞,q)s ◦ K. As a

result we have L∞,q ⊆ (L∞,q)s ⊆ L(e)
∞,q ◦K. ¤
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