• 제목/요약/키워드: $L_1$-metric

검색결과 129건 처리시간 0.023초

$L^p$ 공간의 가분성에 관한 연구

  • 김만호
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제21권3호
    • /
    • pp.7-11
    • /
    • 1983
  • A measurable function f defined on a measurable subset A of the real line R is called pth power summable on A if │f│$^{p}$ is integrable on A and the set of all pth power summable functions on A is denoted by L$^{p}$ (A). For each member f in L$^{p}$ (A), we define ∥f∥$_{p}$ =(equation omitted) For real numbers p and q where (equation omitted) and (equation omitted), we discuss the Holder's inequality ∥fg∥$_1$<∥f∥$_{p}$ ∥g∥$_{q}$ , f$\in$L$^{p}$ (A), g$\in$L$^{q}$ (A) and the Minkowski inequality ∥+g∥$_{p}$ <∥f∥$_{p}$ +∥g∥$_{p}$ , f,g$\in$L$^{p}$ (A). In this paper also discuss that L$_{p}$ (A) becomes a metric space with the metric $\rho$ : L$^{p}$ (A) $\times$L$^{p}$ (A) longrightarrow R where $\rho$(f,g)=∥f-g∥$_{p}$ , f,g$\in$L$^{p}$ (A). Then, in this paper prove the Riesz-Fischer theorem, i.e., the space L$^{p}$ (A) is complete and that the space L$^{p}$ (A) is separable.

  • PDF

A NOTE ON M-IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Kim, Beom-Sool
    • 대한수학회보
    • /
    • 제35권4호
    • /
    • pp.683-687
    • /
    • 1998
  • Suppose X is a subspace of $(\sum_{n=1} ^{\infty} X_n)_{c_0}$, dim $X_n<{\infty}$, which has the metric compact approximation property. It is proved that if Y is a Banach space of cotype q for some $2{\leq}1<{\infty}$ then K(X,Y) is an M-ideal in L(X,Y).

  • PDF

Computing the Dominating-Free Set by Two Point Sets in the Plane

  • Kim, Soo-Hwan
    • Journal of information and communication convergence engineering
    • /
    • 제9권1호
    • /
    • pp.105-109
    • /
    • 2011
  • In this paper, we study the dominating-free sest which is defined as follows: k points called servers and n points called clients in the plane are given. For a point p in the plane is said to be dominated by a client c if for every server s, the distance between s and p is greater than the distance between s and c. The dominating-free set is the set of points in the plane which aren't dominated by any client. We present an O(nklogk+$n^2k$) time algorithm for computing the dominating-free set under the $L_1$-metric. Specially, we present an O(nlogn) time algorithm for the problem when k=2. The algorithm uses some variables and 1-dimensional arrays as its principle data structures, so it is easy to implement and runs fast.

MONOTONE GENERALIZED CONTRACTIONS IN ORDERED METRIC SPACES

  • Alam, Aftab;Imdad, Mohammad
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.61-81
    • /
    • 2016
  • In this paper, we prove some existence and uniqueness results on coincidence points for g-monotone mappings satisfying linear as well as generalized nonlinear contractivity conditions in ordered metric spaces. Our results generalize and extend two classical and well known results due to Ran and Reurings (Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443) and Nieto and $Rodr{\acute{i}}guez$-$L{\acute{o}}pez$ (Acta Math. Sin. 23 (2007), no. 12, 2205-2212) besides similar other ones. Finally, as an application of one of our newly proved results, we establish the existence and uniqueness of solution of a first order periodic boundary value problem.

Metric and Spectral Geometric Means on Symmetric Cones

  • Lee, Hosoo;Lim, Yongdo
    • Kyungpook Mathematical Journal
    • /
    • 제47권1호
    • /
    • pp.133-150
    • /
    • 2007
  • In a development of efficient primal-dual interior-points algorithms for self-scaled convex programming problems, one of the important properties of such cones is the existence and uniqueness of "scaling points". In this paper through the identification of scaling points with the notion of "(metric) geometric means" on symmetric cones, we extend several well-known matrix inequalities (the classical L$\ddot{o}$wner-Heinz inequality, Ando inequality, Jensen inequality, Furuta inequality) to symmetric cones. We also develop a theory of spectral geometric means on symmetric cones which has recently appeared in matrix theory and in the linear monotone complementarity problem for domains associated to symmetric cones. We derive Nesterov-Todd inequality using the spectral property of spectral geometric means on symmetric cones.

  • PDF

선형계획에 있어서의 정책적 목표설정문제

  • 오창환
    • Journal of the Korean Statistical Society
    • /
    • 제1권1호
    • /
    • pp.25-37
    • /
    • 1973
  • 선형계획의 실제적문제에 있어서는 장기적인 전망을 반영시켜 그 계획에 어떤 자극을 주기 위하여 달성불가능한 정책적목표를 설정할 수도 있고 혹은 그 계획이 어떤 기준을 수행하고 있는가 또는 그러한 목표가 계획에 도입될 때 계획은 어떻게 변경될 것인가를 판단하기 위해서 달성가능한 정책적목표를 설정할 수가 있다. 이것을 해석기하학적으로 표현하면 "선형계획에 있어서 정책적목표는 일반적으로 실행가능집합 (convex set)의 어떤 단점으로부터의 $l_1$ metric($l_1$ 거리공간)으로 해석할 수가 있다.가 있다.

  • PDF

평면상의 점들에 대한 조각적 이차 다항식 곡선 맞추기 (Fitting a Piecewise-quadratic Polynomial Curve to Points in the Plane)

  • 김재훈
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권1호
    • /
    • pp.21-25
    • /
    • 2009
  • 본 논문에서 우리는 평면상에 점들이 주어지는 경우에, 조각적 이차 다항식 곡선으로 맞추는 문제를 다룬다. 곡선은 이차 다항식 선분들로 이루어지고, 하나의 선분은 두 점 사이를 연결한다. 하지만 이 곡선은 점들의 부분집합만을 지나고, 지나지 못하는 점들에 대해서는 $L^{\infty}$거리로 에러를 측정한다. 이 문제에 대해서 우리는 두 가지 최적화 문제를 생각한다. 첫째로 허용 가능한 에러의 범위가 주어지고, 곡선 선분의 개수를 줄이는 문제이고, 둘째로 선분의 개수가 주어지고, 에러를 줄이는 문제이다. 주어진 점들의 개수 n에 대해서, 우리는 첫번째 문제에 대한 $O(n^2)$ 알고리즘과 두번째 문제에 대한 $O(n^3)$ 알고리즘을 제안한다.

L2 HARMONIC FORMS ON GRADIENT SHRINKING RICCI SOLITONS

  • Yun, Gabjin
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1189-1208
    • /
    • 2017
  • In this paper, we study vanishing properties for $L^2$ harmonic 1-forms on a gradient shrinking Ricci soliton. We prove that if (M, g, f) is a complete oriented noncompact gradient shrinking Ricci soliton with potential function f, then there are no non-trivial $L^2$ harmonic 1-forms which are orthogonal to df. Second, we show that if the scalar curvature of the metric g is greater than or equal to (n - 2)/2, then there are no non-trivial $L^2$ harmonic 1-forms on (M, g). We also show that any multiplication of the total differential df by a function cannot be an $L^2$ harmonic 1-form unless it is trivial. Finally, we derive various integral properties involving the potential function f and $L^2$ harmonic 1-forms, and handle their applications.