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MONOTONE GENERALIZED CONTRACTIONS IN

ORDERED METRIC SPACES

Aftab Alam and Mohammad Imdad

Abstract. In this paper, we prove some existence and uniqueness results
on coincidence points for g-monotone mappings satisfying linear as well
as generalized nonlinear contractivity conditions in ordered metric spaces.
Our results generalize and extend two classical and well known results due
to Ran and Reurings (Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435–
1443) and Nieto and Rodŕıguez-López (Acta Math. Sin. 23 (2007), no.
12, 2205–2212) besides similar other ones. Finally, as an application of
one of our newly proved results, we establish the existence and uniqueness

of solution of a first order periodic boundary value problem.

1. Introduction

The abstract monotone iterative techniques and corresponding fixed point
results on ordered sets are natural as well as general enough to cover a variety
of situations. There exists an extensive literature on this theme, but keeping
in view the requirements of this presentation, we merely refer to ([4], [6], [9],
[10], [11], [13], [14], [18], [25], [26], [38], [39], [40]). In recent years, a multitude
of fixed point theorems have been proved in ordered metric spaces wherein the
involved contraction conditions are merely assumed to hold on elements which
are comparable in the underlying partial ordering. Thus, in this context, the
usual contraction condition is considerably weakened but at the expense of
monotonicity of the involved mapping. The techniques involved in the proofs
of such results is the combination of ideas used in the proof of contraction
principle together with the one involved in monotone iterative technique. This
trend was essentially initiated by Turinici [39]. Later, Ran and Reurings [35]
proved a slightly more natural version of the corresponding fixed point theorem
of Turinici (cf. [39]) for continuous monotone mappings with some applications
to matrix equations, which runs as follows.
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Theorem 1.1 (Ran and Reurings [35]). Let (X,�) be an ordered set equipped

with a metric d and f a self-mapping on X. Suppose that the following condi-

tions hold:
(i) (X, d) is complete,

(ii) f is monotone,

(iii) f is continuous,

(iv) there exists x0 ∈ X such that x0 � f(x0) or x0 � f(x0),
(v) there exists α ∈ [0, 1) such that d(fx, fy) ≤ αd(x, y) ∀ x, y ∈ X with

x � y,
(vi) every pair of elements of X has a lower bound as well as an upper bound.

Then f has a unique fixed point.

Thereafter, Nieto and Rodŕıguez-López [32] slightly modified the assump-
tions (iii) and (vi) of Ran and Reurings’ fixed point theorem and also given
some applications to ordinary differential equations.

Theorem 1.2 (Nieto and Rodŕıguez-López [32]). Let (X,�) be an ordered set

equipped with a metric d and f a self-mapping on X. Suppose that the following

conditions hold:
(i) (X, d) is complete,

(ii) f is monotone,

(iii) either f is continuous or X satisfies the following property:

If {xn} is a sequence in X such that xn
d−→ x whose consecutive terms are

comparable, then there exists a subsequence {xnk
} of {xn} such that every term

is comparable to the limit x,
(iv) there exists x0 ∈ X such that x0 � f(x0) or x0 � f(x0),
(v) there exists α ∈ [0, 1) such that d(fx, fy) ≤ αd(x, y) ∀ x, y ∈ X with

x � y,
(vi) every pair of elements of X has a lower bound or an upper bound.

Then f has a unique fixed point.

In this continuation, Nieto and Rodŕıguez-López [31] proved some variants
of Theorem 1.2 for increasing mappings, which has been generalized by many
authors (e.g. [1], [2], [3], [5], [8], [12], [16], [17], [19], [20], [30], [33], [34], [41])
in the recent years. Most recently, Alam et al. [2] extended foregoing results
to generalized ϕ-contractions.

The aim of this paper is to extend the core results of Ran and Reurings [35]
(i.e., Theorem 1.1) and Nieto and Rodŕıguez-López [32] (i.e., Theorem 1.2) to
a pair of mappings f and g defined on ordered metric space X whenever f is
either g-monotone linear contraction or g-monotone nonlinear contraction in
two different ways namely: X is complete or alternately any subspace Y of X
satisfying f(X) ⊆ Y ⊆ g(X) is complete. This paper is a continuation of our
earlier work carried out in [2].



MONOTONE GENERALIZED CONTRACTIONS IN ORDERED METRIC SPACES 63

2. Preliminaries

In this section, to make our exposition self-contained, we recall some basic
definitions, relevant notions and auxiliary results. Throughout this paper, N
stands for the set of natural numbers, while N0 for the set of whole numbers
(i.e., N0 = N ∪ {0}).
Definition 2.1 ([28]). A set X together with a partial order � (often denoted
by (X,�)) is called an ordered set. In this context, we write x � y instead of
y � x. Two elements x and y in an ordered set (X,�) are said to be comparable
if either x � y or y � x and we denote it as x ≺≻ y.

Clearly, the relation ≺≻ is reflexive and symmetric, but not transitive in
general.

Definition 2.2 ([33]). A triplet (X, d,�) is called an ordered metric space if
(X, d) is a metric space and (X,�) is an ordered set.

Definition 2.3 ([12]). Let (X,�) be an ordered set and f and g two self-
mappings defined on X . We say that f is g-increasing (resp. g-decreasing) if
for any x, y ∈ X g(x) � g(y) ⇒ f(x) � f(y) (resp.; f(x) � f(y)). In all, f is
called g-monotone if f is either g-increasing or g-decreasing.

Notice that under the restriction g = I, the identity mapping on X, the
notions of g-increasing, g-decreasing and g-monotone mappings reduce to in-
creasing, decreasing and monotone mappings respectively.

Proposition 2.1 ([2]). Let (X,�) be an ordered set and f and g two self-

mappings defined on X. If f is g-monotone and g(x) = g(y), then f(x) = f(y).

Definition 2.4 ([22, 24]). Let X be a nonempty set and f and g two self-
mappings on X . Then

(i) an element x ∈ X is called a coincidence point of f and g if

g(x) = f(x),

(ii) if x ∈ X is a coincidence point of f and g, then x ∈ X with x = g(x) =
f(x), is called a point of coincidence of f and g,

(iii) if x ∈ X is a coincidence point of f and g such that x = g(x) = f(x),
then x is called a common fixed point of f and g,

(iv) the pair (f, g) is said to be commuting if

g(fx) = f(gx) ∀ x ∈ X and

(v) the pair (f, g) is said to be weakly compatible or coincidentally com-
muting if f and g commute at their coincidence points, i.e.,

g(fx) = f(gx) whenever g(x) = f(x).

Definition 2.5 ([23, 37]). Let (X, d) be a metric space and f and g two self-
mappings on X . Then
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(i) the pair (f, g) is said to be weakly commuting if

d(gfx, fgx) ≤ d(gx, fx) ∀ x ∈ X and

(ii) the pair (f, g) is said to be compatible if

lim
n→∞

d(gfxn, fgxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

g(xn) = lim
n→∞

f(xn).

It is clear that, in a metric space, commutativity ⇒ weak commutativity
⇒ compatibility ⇒ weak compatibility but reverse implications are not true in
general.

Definition 2.6 ([36]). Let (X, d) be a metric space, f and g two self-mappings
on X and x ∈ X . We say that f is g-continuous at x if for all sequences
{xn} ⊂ X ,

g(xn)
d−→ g(x) ⇒ f(xn)

d−→ f(x).

Moreover, f is called g-continuous if it is g-continuous at each point of X .

Notice that with g = I (the identity mapping on X) Definition 2.6 reduces
to the definition of continuity.

Now, we formulate the variants of bounded sequences and monotone se-
quences with respect to relation ≺≻.

Definition 2.7. Let (X,�) be an ordered set and {xn} a sequence in X . Then

(i) {xn} is said to be termwise bounded if there is an element z ∈ X such
that each term of {xn} is comparable with z, i.e.,

xn ≺≻ z ∀ n ∈ N0

so that z is a c-bound of {xn} and
(ii) {xn} is said to be termwise monotone if consecutive terms of {xn} are

comparable, i.e.,

xn ≺≻ xn+1 ∀ n ∈ N0.

Clearly all bounded above as well as bounded below sequences are termwise
bounded and all monotone sequences are termwise monotone.

Let (X, d,�) be an ordered metric space and {xn} a sequence in X . If {xn}
is termwise monotone and xn

d−→ x, then we denote it symbolically by xn l x.
Next, we formulate the following notion using certain property utilized by

Nieto and Rodŕıguez-López [32] (see assumption (iii) in Theorem 1.2).

Definition 2.8. Let (X, d,�) be an ordered metric space. We say that (X, d,
� ) has TCC (termwise monotone-convergence-c-bound) property if every term-
wise monotone convergent sequence {xn} in X has a subsequence, which is
termwise bounded by the limit (of the sequence) as a c-bound, i.e.,

xn l x ⇒ ∃ a subsequence {xnk
} of {xn} with xnk

≺≻ x ∀ k ∈ N0.
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Definition 2.9. Let (X, d,�) be an ordered metric space and g a self-mapping
on X. We say that (X, d,�) has g-TCC property if every termwise monotone
convergent sequence {xn} in X has a subsequence, whose g-image is termwise
bounded by g-image of limit (of the sequence) as a c-bound, i.e.,

xn l x ⇒ ∃ a subsequence {xnk
} of {xn} with g(xnk

) ≺≻ g(x) ∀ k ∈ N0.

Notice that under the restriction g = I, the identity mapping on X, Definition
2.9 reduces to Definition 2.8.

Definition 2.10. An ordered set (X,�) is called sequentially chainable if range
of every termwise monotone sequence in X remains a totally ordered subset of
X .

Proposition 2.2. The following are equivalent:
(i) (X,�) is sequentially chainable,

(ii) ≺≻ is transitive on range of every termwise monotone sequence in X,

(iii) for every termwise monotone sequence {xn} in X,

xn ≺≻ xm ∀ n,m ∈ N0.

The following family of control functions is essentially due to Boyd and Wong

[7].

Ψ =
{
ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and

ϕ is right-upper semicontinuous
}
.

Mukherjea [29] introduced the following family of control functions:

Θ =
{
ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and ϕ is right continuous

}
.

The following family of control functions found in literature is more natural.

ℑ =
{
ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and ϕ is continuous

}
.

The following family of control functions is due to Lakshmikantham and Ćirić

[27].

Φ =
{
ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and

lim
r→t+

ϕ(r) < t for each t > 0
}
.

The following family of control functions is indicated in Boyd and Wong [7] but
was later used in Jotic [21].

Ω =
{
ϕ : [0,∞) → [0,∞) : ϕ(t) < t for each t > 0 and

lim sup
r→t+

ϕ(r) < t for each t > 0
}
.
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Proposition 2.3 ([2]). The class Ω enlarges the classes Ψ, Θ, ℑ and Φ under

the following inclusion relation:

ℑ ⊂ Θ ⊂ Ψ ⊂ Ω and ℑ ⊂ Θ ⊂ Φ ⊂ Ω.

The following known results are useful in the proof of our main results.

Lemma 2.1 ([2]). Let ϕ ∈ Ω. If {an} ⊂ (0,∞) is a sequence such that

an+1 ≤ ϕ(an) ∀ n ∈ N0, then lim
n→∞

an = 0.

Lemma 2.2 ([20]). Let (X, d) be a metric space and {xn} a sequence in X
such that limn→∞ d(xn, xn+1) = 0. If {xn} is not a Cauchy sequence, then

there exist ǫ > 0 and two subsequences {xnk
} and {xmk

} of {xn} such that

(i) nk > mk ≥ k,
(ii) d(xmk

, xnk
) ≥ ǫ,

(iii) d(xmk
, xnk−1) < ǫ,

(iv) the following four sequences tend to ǫ when k → ∞:

d(xmk
, xnk

), d(xmk+1, xnk
), d(xmk

, xnk+1), d(xmk+1, xnk+1).

Lemma 2.3 ([15]). Let X be a nonempty set and g a self-mapping on X. Then

there exists a subset E ⊆ X such that g(E) = g(X) and g : E → X is one-one.

3. Results on coincidence points

Firstly, we prove a coincidence point theorem under generalized ϕ-contract-
ivity condition as follows.

Theorem 3.1. Let (X, d,�) be an ordered metric space and f and g two self-

mappings on X. Suppose that the following conditions hold:
(a) f(X) ⊆ g(X),
(b) f is g-monotone,

(c) there exists x0 ∈ X such that g(x0) ≺≻ f(x0),
(d) there exists ϕ ∈ Ω such that d(fx, fy) ≤ ϕ(d(gx, gy)) ∀ x, y ∈ X with

g(x) ≺≻ g(y),
(e) (e1) (X, d) is complete,

(e2) (f, g) is compatible pair,

(e3) g is continuous,

(e4) either f is continuous or (X, d,�) has g-TCC property,

or alternately

(e′) (e′1) there exists a subset Y of X such that f(X) ⊆ Y ⊆ g(X) and

(Y, d) is complete,

(e′2) either f is g-continuous or f and g are continuous or (Y, d,�) has
TCC property,

(f) (fX,�) is sequentially chainable.

Then f and g have a coincidence point.

Proof. In view of assumption (c) if g(x0) = f(x0), then x0 is a coincidence
point of f and g and hence we are through. Otherwise, if g(x0) 6= f(x0),
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then owing to assumption (a) (i.e., f(X) ⊆ g(X)), we can choose x1 ∈ X
such that g(x1) = f(x0). As f(X) ⊆ g(X), we can choose x2 ∈ X such that
g(x2) = f(x1). Continuing this process, we define a sequence {xn} ⊂ X of
joint iterates such that

(1) g(xn+1) = f(xn) ∀ n ∈ N0.

Now, we show that {gxn} is a termwise monotone sequence, i.e.,

(2) g(xn) ≺≻ g(xn+1) ∀ n ∈ N0.

To prove (2), we distinguish four cases (owing to conditions (b) and (c):
(i) f is g-increasing and g(x0) � f(x0),
(ii) f is g-increasing and g(x0) � f(x0),
(iii) f is g-decreasing and g(x0) � f(x0),
(iv) f is g-decreasing and g(x0) � f(x0).
In cases (i) and (ii), we conclude that {gxn} is respectively increasing and

decreasing sequence (for proof see lines of the main results of [2]).
In case (iii), using (1) (with n = 0), we have g(x0) � f(x0) = g(x1). Hence,

on using assumption (b) and (1), we get g(x1) = f(x0) � f(x1) = g(x2).
Further, on using assumption (b) and (1), we get g(x2) = f(x1) � f(x2) =
g(x3). Continuing this procedure inductively, we obtain

g(x0) � g(x1), g(x1) � g(x2), g(x2) � g(x3), . . . .

In the similar manner, in case (iv), we obtain

g(x0) � g(x1), g(x1) � g(x2), g(x2) � g(x3), . . . .

Therefore, in all the cases, (2) holds for all n ∈ N0.
If g(xn0) = g(xn0+1) for some n0 ∈ N, then using (1), we have g(xn0) =

f(xn0), i.e., xn0 is a coincidence point of f and g so that we are through. On
the other hand, if g(xn) 6= g(xn+1) for each n ∈ N0, we define a sequence
{dn}∞n=0 ⊂ (0,∞), where

(3) dn := d(gxn, gxn+1).

On using (1), (2), (3) and assumption (d), we obtain

dn+1 = d(gxn+1, gxn+2)

= d(fxn, fxn+1)

≤ ϕ(d(gxn, gxn+1))

= ϕ(dn)

so that

dn+1 ≤ ϕ(dn).

Hence by Lemma 2.1, we obtain

(4) lim
n→∞

dn = lim
n→∞

d(gxn, gxn+1) = 0.
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Now, in view of (4) and Lemma 2.2, there exist ǫ > 0 and two subsequences
{gxnk

} and {gxmk
} of {gxn} such that nk > mk ≥ k, d(gxmk

, gxnk
) ≥

ǫ, d(gxmk
, gxnk−1) < ǫ and

lim
k→∞

d(gxmk
, gxnk

) = lim
k→∞

d(gxmk+1, gxnk
)

= lim
k→∞

d(gxmk
, gxnk+1)

= lim
k→∞

d(gxmk+1, gxnk+1) = ǫ.(5)

Denote rk := d(gxmk
, gxnk

). By (1), we have {gxn} ⊂ f(X). Due to (f),
(2) and Proposition 2.2, we have g(xmk

) ≺≻ g(xnk
). Hence, on using (1) and

assumption (d), we obtain

d(gxmk+1, gxnk+1) = d(fxmk
, fxnk

)

≤ ϕ(d(gxmk
, gxnk

)).

= ϕ(rk)

so that

(6) d(gxmk+1, gxnk+1) ≤ ϕ(rk).

On taking limit superior as k → ∞ in (6) and using (5) and the definition of
Ω, we have

ǫ = lim sup
k→∞

d(gxmk+1, gxnk+1) ≤ lim sup
k→∞

ϕ(rk) = lim sup
rk→ǫ+

ϕ(rk) < ǫ,

which is a contradiction. Therefore {gxn} is a Cauchy sequence. Now, we use
assumptions (e) or (e′) to accomplish the proof.

Firstly, assume that (e) holds. By assumption (e1) (i.e., the completeness
of X), there exists z ∈ X such that

(7) lim
n→∞

g(xn) = z.

On using (1) and (7), we obtain

(8) lim
n→∞

f(xn) = lim
n→∞

g(xn+1) = z.

In view of assumption (e3) (i.e., continuity of g) in (7) and (8), we have

(9) lim
n→∞

g(gxn) = g( lim
n→∞

gxn) = g(z),

(10) lim
n→∞

g(fxn) = g( lim
n→∞

fxn) = g(z).

As limn→∞ f(xn) = limn→∞ g(xn) = z (due to (7) and (8)), on using assump-
tion (e2) (i.e., compatibility of f and g), we obtain

(11) lim
n→∞

d(gfxn, fgxn) = 0.
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Now, we show that z is a coincidence point of f and g. To accomplish this, we
use assumption (e4). Suppose that f is continuous. On using (7) and continuity
of f , we obtain

(12) lim
n→∞

f(gxn) = f( lim
n→∞

gxn) = f(z).

On using (10), (11), (12) and continuity of d, we obtain

d(gz, fz) = d( lim
n→∞

gfxn, lim
n→∞

fgxn)

= lim
n→∞

d(gfxn, fgxn) = 0

so that

g(z) = f(z).

Thus z ∈ X is a coincidence point of f and g and hence we are through.
Alternately, suppose that (X, d,�) has g-TCC property. As g(xn) l z (due

to (2) and (7)), ∃ a subsequence {ynk
} of {gxn} such that

g(ynk
) ≺≻ g(z) ∀ k ∈ N0.

Now {gxn} ⊂ g(X) and {ynk
} ⊂ {gxn}, ∃{xnk

} ⊂ X such that ynk
= g(xnk

)

(13) =⇒ g(gxnk
) ≺≻ g(z) ∀ k ∈ N0.

Since g(xnk
)

d−→ z, so equations (7)-(12) also hold for {xnk
} instead of {xn}.

On using (13) and assumption (d), we obtain

d(fgxnk
, fz) ≤ ϕ(d(ggxnk

, gz)) ∀ k ∈ N0.

Now, we asserts that

(14) d(fgxnk
, fz) ≤ d(ggxnk

, gz) ∀ k ∈ N.

On account of two different possibilities arising here, we consider a partition
{N0,N+} of N, i.e., N0 ∪N+ = N and N0 ∩ N+ = ∅ verifying that

(i) d(ggxnk
, gz) = 0 ∀ k ∈ N0,

(ii) d(ggxnk
, gz) > 0 ∀ k ∈ N+.

In case (i), on using Proposition 2.1, we get d(fgxnk
, fz) = 0 ∀ k ∈ N0 and

hence (14) holds for all k ∈ N0. In case (ii), owing to the definition of Ω, we
have d(fgxnk

, fz) ≤ ϕ(d(ggxnk
, gz)) < d(ggxnk

, gz) ∀ k ∈ N+ and hence (14)
holds for all k ∈ N+. Thus (14) holds for all k ∈ N.

On using triangular inequality, (9), (10), (11) and (14), we get

d(gz, fz) ≤ d(gz, gfxnk
) + d(gfxnk

, fgxnk
) + d(fgxnk

, fz)

≤ d(gz, gfxnk
) + d(gfxnk

, fgxnk
) + d(ggxnk

, gz)

→ 0 as k → ∞
so that

g(z) = f(z).

Thus z ∈ X is a coincidence point of f and g and hence we are through.
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Now, assume that (e′) holds. Then the assumption f(X) ⊆ Y and complete-

ness of Y ensure the existence of y ∈ Y such that f(xn)
d−→ y. Again owing to

assumption Y ⊆ g(X), we can find u ∈ X such that y = g(u). Hence, on using
(1), we get

(15) lim
n→∞

g(xn) = lim
n→∞

f(xn) = g(u).

Now, we show that u is a coincidence point of f and g. To accomplish this, we
use assumption (e′2). Firstly, suppose that f is g-continuous, then using (15),
we get

(16) lim
n→∞

f(xn) = f(u).

On using (15) and (16), we get

g(u) = f(u).

Secondly, suppose that f and g are continuous. Owing to Lemma 2.3, there
exists a subset E ⊆ X such that g(E) = g(X) and g : E → X is one-one.
Without loss of generality, we are able to choose E ⊆ X such that u ∈ E. Now,
define T : g(E) → g(X) by

(17) T (ge) = f(e) ∀ g(e) ∈ g(E) where e ∈ E.

As g : E → X is one-one and f(X) ⊆ g(X), T is well defined. Again, as f
and g are continuous, it follows that T is continuous. Since {xn} ⊂ X and
g(E) = g(X), there exists {en} ⊂ E such that g(xn) = g(en) ∀ n ∈ N0. On
using Proposition 2.1, we get f(xn) = f(en) ∀ n ∈ N0. Therefore, in view of
(1) and (15), we get

(18) lim
n→∞

g(en) = lim
n→∞

f(en) = g(u).

On using (17), (18) and continuity of T , we get

f(u) = T (gu) = T ( lim
n→∞

gen) = lim
n→∞

T (gen) = lim
n→∞

f(en) = g(u).

Thus u ∈ X is a coincidence point of f and g and hence we are through.
Finally, suppose that (Y, d,�) has TCC property. As g(xn) l g(u) (due to

(2) and (15)), ∃ a subsequence {gxnk
} of {gxn} such that

(19) g(xnk
) ≺≻ g(u) ∀ k ∈ N0.

On using (1), (19) and assumption (d), we obtain

d(gxnk+1, fu) = d(fxnk
, fu) ≤ ϕ(d(gxnk

, gu)) ∀ k ∈ N0.

We asserts that

(20) d(gxnk+1, fu) ≤ d(gxnk
, gu) ∀ k ∈ N.

On account of two different possibilities arising here, we consider a partition
{N0,N+} of N, i.e., N0 ∪N+ = N and N0 ∩ N+ = ∅ verifying that

(i) d(gxnk
, gu) = 0 ∀ k ∈ N0,

(ii) d(gxnk
, gu) > 0 ∀ k ∈ N+.
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In case (i) holds, on using Proposition 2.1, we get d(fxnk
, fu) = 0 ∀ k ∈

N0, which implies that d(gxnk+1, fu) = 0 ∀ k ∈ N0 and hence (20) holds
for all k ∈ N0. If case (ii) holds, then owing to the definition of Ω, we have
d(gxnk+1, fu) ≤ ϕ(d(gxnk

, gu)) < d(gxnk
, gu) ∀ k ∈ N+ and hence (20) holds

for all k ∈ N+. Thus (20) holds for all k ∈ N.
On using (15), (20) and continuity of d, we get

d(gu, fu) = d( lim
k→∞

gxnk+1, fu)

= lim
k→∞

d(gxnk+1, fu)

≤ lim
k→∞

d(gxnk
, gu) = 0

so that

g(u) = f(u).

Hence u ∈ X is a coincidence point of f and g. This completes the proof. �

Remark 3.1. In view of Proposition 2.3, Theorem 3.1 remains true if we replace
the class Ω by anyone of the classes Ψ, Θ, ℑ and Φ.

If we set ϕ(t) = αt (with α ∈ [0, 1)) in Theorem 3.1 and remove the assump-
tion (f), then we obtain the following coincidence theorem for α-contraction.

Theorem 3.2. Let (X, d,�) be an ordered metric space and f and g two self-

mappings on X. Suppose that the following conditions hold:
(a) f(X) ⊆ g(X),
(b) f is g-monotone,

(c) there exists x0 ∈ X such that g(x0) ≺≻ f(x0),
(d) there exists α ∈ [0, 1) such that d(fx, fy) ≤ αd(gx, gy) ∀ x, y ∈ X with

g(x) ≺≻ g(y),
(e) (e1) (X, d) is complete,

(e2) (f, g) is compatible pair,

(e3) g is continuous,

(e4) either f is continuous or (X, d,�) has g-TCC property,

or alternately

(e′) (e′1) there exists a subset Y of X such that f(X) ⊆ Y ⊆ g(X) and

(Y, d) is complete,

(e′2) either f is g-continuous or f and g are continuous or (Y, d,�) has
TCC property.

Then f and g have a coincidence point.

Proof. We use the same structure as in the proof of Theorem 3.1. By following
its lines, we derive

d(gxn+1, gxn+2) = d(fxn, fxn+1) ≤ αd(gxn, gxn+1) ∀ n ∈ N0,

it follows that,

d(gxn, gxn+1) ≤ αnd(gx0, gx1) ∀ n ∈ N0.
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By classical techniques, it can be easily shown that {gxn} is a Cauchy sequence.
Here it is noticed that there is no need to use the assumption (f) mentioned in
Theorem 3.1, because we do not need to apply the contractivity condition to
d(gxmk

, gxnk
). Finally, we accomplish the proof by using (e) and (e′) same as

in the proof of Theorem 3.1. �

Corollary 3.1. Theorem 3.1 (also Theorem 3.2) remains true if we replace

(e′1) by one of the following conditions besides retaining the rest of the hypo-

theses:
(e′1)′ (X, d) is complete and one of f and g is onto,

(e′1)′′ (X, d) is complete and has a closed subspace Y with f(X) ⊆ Y ⊆
g(X).

Proof. If (e′1)′ holds, then either f(X) = X or g(X) = X so that either f(X)
or g(X) is complete and hence assumption (e′) is applicable.

If (e′1)′′ holds, then Y is complete and hence assumption (e′) is applicable.
As commutativity ⇒ weak commutativity ⇒ compatibility for a pair of

mappings, therefore the following consequence of Theorem 3.1 (also of Theorem
3.2) trivially holds. �

Corollary 3.2. Theorem 3.1 (also Theorem 3.2) remains true if we replace

condition (e2) by one of the following conditions besides retaining the rest of

the hypotheses:
(e2)′ (f, g) is commuting pair,

(e2)′′ (f, g) is weakly commuting pair.

In the following lines, we present the results regarding the uniqueness of a
point of coincidence and common fixed point corresponding to Theorems 3.1
and 3.2.

Theorem 3.3. In addition to the hypotheses (a)-(d) along with (e′) and (f) of
Theorem 3.1 (also of Theorem 3.2), suppose that the following condition holds:

(u0) every pair of elements of f(X) has a lower bound or an upper bound in

g(X).
Then f and g have a unique point of coincidence.

Remark 3.2. In Theorem 3.3, we can replace (u0) by the following condition:
(u′0) for every x, y ∈ X , ∃ z ∈ X such that f(x) ≺≻ g(z) and f(y) ≺≻ g(z).
Indeed (u0) and (u′0) are equivalent. The implication (u0) ⇒ (u′0) is trivial.

Conversely, if (u′0) holds, then we have the following possibilities:

(i) f(x) � g(z) and f(y) � g(z) so that g(z) ∈ g(X) is an upper bound of
{fx, fy},

(ii) g(z) � f(x) and g(z) � f(y) so that g(z) ∈ g(X) is a lower bound of
{fx, fy},

(iii) f(x) � g(z) � f(y) so that f(y) ∈ g(X) is an upper bound of {fx, fy},
(iv) f(y) � g(z) � f(x) so that f(x) ∈ g(X) is an upper bound of {fx, fy},

and hence (u0) holds. Thus (u0) ⇔ (u′0).
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Theorem 3.4. In addition to the hypotheses of Theorem 3.3, suppose that the

following condition holds:
(u1) one of f and g is one-one.

Then f and g have a unique coincidence point.

Theorem 3.5. In addition to the hypotheses of Theorem 3.3, suppose that the

following condition holds:
(u2) (f, g) is weakly compatible pair.

Then f and g have a unique common fixed point.

Theorem 3.6. In addition to the hypotheses (a)-(e) along with (f) of Theorem
3.1 (similarly Theorem 3.2), if the condition (u0) (of Theorem 3.3) holds, then
f and g have a unique common fixed point.

We skip the proofs of Theorems 3.3-3.6 as these are similar to the proofs of
Theorems 5-8 of [2].

4. Corresponding fixed point theorems

By particularizing g = I, the identity mapping on X , in Theorems 3.2 and
3.1 (together with Theorems 3.3-3.6), we respectively derive the following fixed
point theorems.

Theorem 4.1. Let (X, d,�) be an ordered metric space and f a self-mapping

on X. Suppose that the following conditions hold:
(i) there exists a subset Y of X such that f(X) ⊆ Y and (Y, d) is complete,

(ii) f is monotone,

(iii) either f is continuous or (Y, d,�) has TCC property,

(iv) there exists x0 ∈ X such that x0 ≺≻ f(x0),
(v) there exists α ∈ [0, 1) such that d(fx, fy) ≤ αd(x, y) ∀ x, y ∈ X with

x ≺≻ y.
Then f has a fixed point. Moreover, if in addition the following also holds:

(vi) every pair of elements of f(X) has a lower bound or an upper bound,

then f has a unique fixed point.

Remark 4.1. Notice that Theorem 4.1 improves Theorem 1.1 (i.e., the main
result of Ran and Reurings [35]) and Theorem 1.2 (i.e., the main result of Nieto
and Rodŕıguez-López [32]) in the following respects:

• In the context of hypothesis (i), the completeness of X is not necessary.
Alternately, it can be replaced by the completeness of Y , where f(X) ⊆ Y ⊆ X .

• In the context of hypothesis (vi), the requirement of a lower bound or an
upper bound is not required on whole of X but it suffices to take the same
merely on the subset f(X).

• The assumption (vi) is unnecessary for the existence part and it is merely
utilized to establish the uniqueness of fixed point.

Theorem 4.2. Let (X, d,�) be an ordered metric space and f a self-mapping

on X. Suppose that the following conditions hold:
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(i) there exists a subset Y of X such that f(X) ⊆ Y and (Y, d) is complete,

(ii) f is monotone,

(iii) either f is continuous or (Y, d,�) has TCC property,

(iv) there exists x0 ∈ X such that x0 ≺≻ f(x0),
(v) there exists ϕ ∈ Ω such that d(fx, fy) ≤ ϕ(d(x, y)) ∀ x, y ∈ X with

x ≺≻ y,
(vi) (fX,�) is sequentially chainable.

Then f has a fixed point. Moreover, if in addition the following also holds:
(vii) every pair of elements of f(X) has a lower bound or an upper bound,

then f has a unique fixed point.

Remark 4.2. Indeed, Theorem 4.2 is an extension of Theorem 4.1 (and hence
that of Theorems 1.1 and 1.2) to Boyd-Wong type nonlinear contractions. Here,
it can be observed that this extension is not straight forward due to additional
requirement: “(fX,�) is sequentially chainable”. But on restricting to linear
contractions (from nonlinear contractions), we deduce well-known fixed point
theorems of Ran and Reurings and Nieto and Rodŕıguez-López (i.e., Theorems
1.1 and 1.2).

5. Examples

In this section, we furnish some examples establishing the genuineness of our
main results.

Example 5.1. Consider X = [0,∞) equipped with usual metric d and usual
partial order �. Then (X, d) is a complete metric space. Define a mapping
f : X → X by f(x) = x

x+1 ∀ x ∈ X. Then f is increasing. Define ϕ : [0,∞) →
[0,∞) by ϕ(t) = t

1+t ∀ t ∈ [0,∞), then ϕ ∈ Ω. Now, for all x, y ∈ X with
x � y, we have

d(fx, fy) =
x

x+ 1
− y

y + 1
=

x− y

1 + x+ y + xy

≤ x− y

1 + (x− y)
=

d(x, y)

1 + d(x, y)
= ϕ(d(x, y))

so that f and ϕ satisfy assumption (v) of Theorem 4.1. Observe that all the
other conditions of Theorem 4.1 are also satisfied. Therefore, f has a unique
fixed point (namely: x = 0).

Notice that f is not a linear contraction. To substantiate this, choose x = 0
and y = ǫ, where ǫ is arbitrarily small but positive. If we take a constant α
such that d(fx, fy) ≤ αd(x, y), then α ≥ 1

1+ǫ , which amounts to say that α ≥ 1

so that α 6∈ [0, 1). Henceforth, f is not a linear contraction. Thus, Example
5.1 establishes the utility of Theorem 4.1 over well known fixed point theorems
of Ran and Reurings and Nieto and Rodŕıguez-López (i.e., Theorems 1.1 and
1.2).
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Example 5.2. Consider X = R equipped with usual metric and usual partial
order. Define f, g : X → X by f(x) = 5 and g(x) = x2 − 4 ∀ x ∈ X. Then f is
g-monotone. Let ϕ ∈ Ω be arbitrary. Now, for x, y ∈ X with g(x) � g(y), we
have

d(fx, fy) = |5− 5| = 0 ≤ ϕ(|x2 − y2|) = ϕ(d(gx, gy)).

Thus f , g and ϕ satisfy the assumption (d) of Theorem 3.1. Also, the pair
(f, g) is not compatible and hence (e) does not hold. But the subspace g(X) =
[−4,∞) is complete and f and g are continuous, i.e., all the conditions men-
tioned in (e′) are satisfied. Hence by Theorem 3.1, f and g have a coincidence
point in X . Further, in this example (u0) holds and henceforth, in view of The-
orem 3.3, f and g have a unique point of coincidence (namely: x = 5). Notice
that neither f nor g is one-one, i.e., (u1) does not hold and hence, we can not
apply Theorem 3.4, which guarantees the uniqueness of coincidence point. Ob-
serve that there are two coincidence points (namely: x = 3 and x = −3). Also,
the pair (f, g) is not weakly compatible, i.e., (u2) does not hold and hence,
we can not apply Theorem 3.5, which ensures the uniqueness of common fixed
point. Notice that there is no common fixed point of f and g.

Example 5.3. Let X = R. On X , consider usual metric d and partial order
� defined by x � y ⇔ x ≤ y and xy ≥ 0. Then (X, d) is a complete metric

space. Define f, g : X → X by f(x) = x2

3 and g(x) = −x2 ∀ x ∈ X. Then f is

g-decreasing. Define ϕ : [0,∞) → [0,∞) by ϕ(t) = 2t
3 ∀ t ∈ [0,∞), then ϕ ∈ Ω.

Now, for x, y ∈ X with g(x) � g(y), we have

d(fx, fy)=

∣∣∣∣
x2

3
− y2

3

∣∣∣∣=
1

3

∣∣x2 − y2
∣∣ = 1

3
d(gx, gy) <

2

3
d(gx, gy) = ϕ(d(gx, gy)).

Therefore, f , g and ϕ satisfy assumption (d) of Theorem 3.1. By a routine
calculation, one can also verify all the conditions mentioned in (e) (of Theorem
3.1). Thus, all the conditions of Theorem 3.1 are satisfied and f and g have a
coincidence point in X . Moreover, the condition (u0) also holds and therefore,
in view of Theorem 3.6, f and g have a unique common fixed point (namely:
x = 0).

6. Application

In this section, as an application of Theorem 4.2, we prove an existence
and uniqueness of solution of the following first order periodic boundary value
problem which is essentially inspired by [32].

(21)

{
u′(t) = f(t, u(t)), t ∈ I = [0, T ]

u(0) = u(T ),

where T > 0 and f : I × R → R is a continuous function.
Let C(I) denote the space of all continuous functions defined on I. Now, we

need to recall the following definitions:
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Definition 6.1 ([32]). A function α ∈ C1(I) is called a lower solution of (21),
if {

α′(t) ≤ f(t, α(t)), t ∈ I

α(0) ≤ α(T ).

Definition 6.2 ([32]). A function α ∈ C1(I) is called an upper solution of (21),
if {

α′(t) ≥ f(t, α(t)), t ∈ I

α(0) ≥ α(T ).

Let F denote the family of functions φ : [0,∞] → [0,∞] satisfying the
following conditions:

(i) φ is continuous and increasing,
(ii) φ(t) < t for each t > 0.
Typical examples of F are φ(t) = αt, 0 ≤ α < 1, φ(t) = t

1+t and φ(t) =

ln(1 + t). Also, clearly F ⊂ Ω.
Now, we prove the following result regarding the existence and uniqueness

of the solution of the periodic boundary value problem described by (21) in the
presence of a lower solution or an upper solution.

Theorem 6.1. In addition to the problem described by (21), suppose that there

exist λ > 0 and φ ∈ F such that for all x, y ∈ R with x ≤ y

(22) −λφ(y − x) ≤ f(t, y) + λy − [f(t, x) + λx] ≤ 0.

Then the existence of a lower solution or an upper solution of problem (21)
ensures the existence and uniqueness of the solution of the periodic boundary

value problem described by (21).

Proof. The problem (21) can be rewritten as:

(23)

{
u′(t) + λu(t) = f(t, u(t)) + λu(t) ∀ t ∈ I

u(0) = u(T ).

Notice that the problem (23) is equivalent to the integral equation

(24) u(t) =

∫ T

0

G(t, ξ)[f(ξ, u(ξ)) + λu(ξ)]dξ,

where the Green function G(t, ξ) is given by

G(t, ξ) =

{
eλ(T+ξ−t)

eλT −1
0 ≤ ξ < t ≤ T

eλ(ξ−t)

eλT−1 0 ≤ t < ξ ≤ T.

Define a function A : C(I) → C(I) by

(Au)(t) =

∫ T

0

G(t, ξ)[f(ξ, u(ξ)) + λu(ξ)]dξ ∀ t ∈ I.
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Evidently, if u ∈ C(I) is a fixed point of A, then u ∈ C1(I) is a solution of (24)
and hence of (21).

On C(I), define a metric d given by:

d(u, v) = sup
t∈I

|u(t)− v(t)| ∀ u, v ∈ C(I).

Also, on C(I), define a partial order � given by:

u, v ∈ C(I);u � v ⇐⇒ u(t) ≤ v(t) ∀ t ∈ I.

Now, we check that all the conditions of Theorem 4.2 are satisfied for Y =
X = C(I).

(i) Clearly, (C(I), d) is a complete metric space.
(ii) Take u, v ∈ C(I) such that u � v, then by (22), we obtain

(25) f(t, u(t)) + λu(t) ≥ f(t, v(t)) + λv(t) ∀ t ∈ I.

On using (24), (25) and the fact that G(t, ξ) > 0 for (t, ξ) ∈ I × I, we get

(Au)(t) =

∫ T

0

G(t, ξ)[f(ξ, u(ξ)) + λu(ξ)]dξ

≥
∫ T

0

G(t, ξ)[f(ξ, v(ξ)) + λv(ξ)]dξ

= (Av)(t) ∀ t ∈ I,

which implies that A(u) � A(v) so that A is decreasing.
(iii) Take a sequence {un} ⊂ C(I) such that un l u ∈ C(I). Then for each

t ∈ I, {un(t)} is a sequence in R converging to u(t). Hence, {un(t)} has a
monotone subsequence {unk

(t)}. Therefore, for all k ∈ N0 and for all t ∈ I, we
have

unk
(t) ≤ u(t) if {unk

(t)} is increasing

unk
(t) ≥ u(t) if {unk

(t)} is decreasing,

which implies that unk
≺≻ u ∀ k ∈ N0 so that (C(I), d,�) has TCC property.

(iv) Let α ∈ C1(I) be a lower solution of (21), then we have

α′(t) + λα(t) ≤ f(t, α(t)) + λα(t) ∀ t ∈ I.

Multiplying on both the sides by eλt, we get

(α(t)eλt)′ ≤ [f(t, α(t)) + λα(t)]eλt ∀ t ∈ I,

which implies that

(26) α(t)eλt ≤ α(0) +

∫ t

0

[f(ξ, α(ξ)) + λα(ξ)]eλξdξ ∀ t ∈ I.

As α(0) ≤ α(T ), we get

α(0)eλT ≤ α(T )eλT ≤ α(0) +

∫ T

0

[f(ξ, α(ξ)) + λα(ξ)]eλξdξ
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so that

(27) α(0) ≤
∫ T

0

eλξ

eλT − 1
[f(ξ, α(ξ)) + λα(ξ)]dξ.

On using (26) and (27), we obtain

α(t)eλt ≤
∫ T

0

eλξ

eλT − 1
[f(ξ, α(ξ))+λα(ξ)]dξ +

∫ t

0

eλξ[f(ξ, α(ξ))+λα(ξ)]dξ

=

∫ t

0

eλ(T+ξ)

eλT − 1
[f(ξ, α(ξ))+λα(ξ)]dξ +

∫ T

t

eλξ

eλT − 1
[f(ξ, α(ξ))+λα(ξ)]dξ

so that

α(t) ≤
∫ t

0

eλ(T+ξ−t)

eλT − 1
[f(ξ, α(ξ))+λα(ξ)]dξ +

∫ T

t

eλ(ξ−t)

eλT − 1
[f(ξ, α(ξ))+λα(ξ)]dξ

=

∫ T

0

G(t, ξ)[f(ξ, α(ξ))+λα(ξ)]dξ

= (Aα)(t)

for all t ∈ I, which implies that α � A(α). Otherwise, if α ∈ C1(I) is an upper
solution of (21), then in the similar manner, we get α � A(α). Hence, in both
the cases, we have α ≺≻ A(α), for some lower or upper solution α.

(v) Take u, v ∈ C(I) such that u � v, we have

d(Au,Av) = sup
t∈I

|(Au)(t) − (Av)(t)| = sup
t∈I

(
(Au)(t)− (Av)(t)

)

≤ sup
t∈I

∫ T

0

G(t, ξ)[f(ξ, u(ξ)) + λu(ξ)− f(ξ, v(ξ)) − λv(ξ)]dξ

≤ sup
t∈I

∫ T

0

G(t, ξ)λφ(v(ξ) − u(ξ))dξ.(28)

Given that φ is increasing on [0,∞) and u � v, which implies that φ(v(ξ) −
u(ξ)) ≤ φ(d(u, v)). Hence, (28) reduces to

d(Au,Av) ≤ λφ(d(u, v)) sup
t∈I

∫ T

0

G(t, ξ)dξ

= λφ(d(u, v)) sup
t∈I

1

eλT − 1

([ 1
λ
eλ(T+ξ−t)

]t
0
+
[ 1
λ
eλ(ξ−t)

]T
t

)

= λφ(d(u, v))
1

λ(eλT − 1)
(eλT − 1)

= φ(d(u, v)),

so that

d(Au,Av) ≤ φ(d(u, v)) ∀ u, v ∈ C(I) such that u � v,

where φ ∈ F ⊂ Ω.
(vi) It is easy to check that (AC(I),�) is sequentially chainable.
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Hence, the conditions (i)-(vi) of Theorem 4.2 are satisfied for Y = X = C(I)
consequently A has a fixed point.

Choose arbitrary u, v ∈ C(I), then w := max{Au,Av} ∈ C(I), which yields
that w is an upper bound of {Au,Av}. Thus, by Theorem 4.2, A has a unique
fixed point, which is, indeed, a unique solution of problem (21). �
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