Browse > Article
http://dx.doi.org/10.5831/HMJ.2019.41.3.609

UNIT TANGENT SPHERE BUNDLES OF TWO-POINT HOMOGENEOUS SPACES  

Cho, Jong Taek (Department of Mathematics, Chonnam National University)
Chun, Sun Hyang (Department of Mathematics, Chosun University)
Publication Information
Honam Mathematical Journal / v.41, no.3, 2019 , pp. 609-617 More about this Journal
Abstract
We characterize two-point homogeneous spaces M by means of the structural operator $h={\frac{1}{2}}{\mathcal{L}}_{\xi}{\phi}$ or the characteristic Jacobi operator ${\ell}=R({\cdot},{\xi}){\xi}$ on the unit tangent sphere bundles $T_1M$.
Keywords
unit tangent sphere bundle; two-point homogeneous space; contact metric structure;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric spaces, Diffential Geom. Appl. 2 (1992), 57-80.   DOI
2 D. E. Blair, Critical associated metrics on contact manifolds III, J. Austral. Math. Soc. 50 (1991), 189-196.   DOI
3 D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
4 E. Boeckx, J. T. Cho and S. H. Chun, Flow-invariant structures on unit tangent sphere bundles, Publ. Math. Debrecen 70 (2007), 167-178.
5 E. Boeckx, D.Perrone and L.Vanhecke, Unit tangent sphere bundles and two-point homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79-95.   DOI
6 E. Boeckx and L.Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.
7 E. Cartan, Geometry of Riemannian spaces, Math. Sci. Press, Brooklyn, Mass., 1983.
8 J. T. Cho and S. H. Chun, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99-113.
9 J. T. Cho and S. H. Chun, The unit tangent sphere bundle of a complex space form, J. Korean Math. Soc. 41 (2004), 1035-1047.   DOI
10 J. T. Cho and S. H. Chun, Reeb flow invariant unit tangent sphere bundles, Honam Math. J. 36(4) (2014), 805-812.   DOI
11 J. T. Cho and S. H. Chun, Pseudo-symmetry on unit tangent sphere bundles, Honam Math. J. 38(2) (2016), 375-384.   DOI
12 P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.
13 P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320.   DOI
14 O. Kowalski, Curvature of the induced Riemannian metric of the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
15 D. Perrone, Torsion tensor and critical metrics on contact (2n + 1)-manifolds, Monatsh. Math. 114 (1992), 245-259.   DOI
16 D. Perrone, Tangent sphere bundles satisfying ${\nabla}_{\xi}{\tau}$ = 0, J. Geom. 49 (1994), 178-188.   DOI
17 Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143.   DOI
18 K. Yano and S. Ishihara, Tangent and cotangent bundles M. Dekker Inc., 1973.