DOI QR코드

DOI QR Code

UNIT TANGENT SPHERE BUNDLES OF LOCALLY SYMMETRIC SPACES

  • Received : 2020.10.08
  • Accepted : 2020.11.17
  • Published : 2020.12.25

Abstract

We give characterizations of locally symmetric spaces M via the structural operator $h={\frac{1}{2}{\mathcal{L}}_{\xi}{\phi}}$ or the characteristic Jacobi operator ℓ = R(·, ξ)ξ on the unit tangent sphere bundles T1M.

Keywords

Acknowledgement

S.H. Chun was supported by research fund from chosun university, 2017.

References

  1. J. Berndt and L. Vanhecke, Two natural generalizations of locally symmetric spaces, Diffential Geom. Appl. 2 (1992), 57-80. https://doi.org/10.1016/0926-2245(92)90009-C
  2. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progr. Math. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  3. E. Boeckx, J. T. Cho and S. H. Chun, Flow-invariant structures on unit tangent sphere bundles, Publ. Math. Debrecen 70 (2007), 167-178.
  4. E. Boeckx, D.Perrone and L.Vanhecke, Unit tangent sphere bundles and two-point homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79-95. https://doi.org/10.1023/A:1004629423529
  5. E. Boeckx and L.Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427-448.
  6. E. Cartan, Geometry of Riemannian spaces, Math. Sci. Press, Brooklyn, Mass., 1983.
  7. J. T. Cho and S. H. Chun, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99-113.
  8. J. T. Cho and S. H. Chun, The unit tangent sphere bundle of a complex space form, J. Korean Math. Soc. 41 (2004), 1035-1047. https://doi.org/10.4134/JKMS.2004.41.6.1035
  9. J. T. Cho and S. H. Chun, Reeb flow invariant unit tangent sphere bundles, Honam Math. J. 36(4) (2014), 805-812. https://doi.org/10.5831/HMJ.2014.36.4.805
  10. J. T. Cho and S. H. Chun, Pseudo-symmetry on unit tangent sphere bundles, Honam Math. J. 38(2) (2016), 375-384. https://doi.org/10.5831/HMJ.2016.38.2.375
  11. J. T. Cho and S. H. Chun, Unit tangent sphere bundles of two-point homogeneous spaces, Honam Math. J. 41(3) (2019), 609-617. https://doi.org/10.5831/hmj.2019.41.3.609
  12. P. Gilkey, A. Swann and L. Vanhecke, Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator, Quart. J. Math. Oxford 46 (1995), 299-320. https://doi.org/10.1093/qmath/46.3.299
  13. D. Perrone, Torsion tensor and critical metrics on contact (2n + 1)-manifolds, Monatsh. Math. 114 (1992), 245-259. https://doi.org/10.1007/BF01299383
  14. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958), 338-354. https://doi.org/10.2748/tmj/1178244668
  15. S. Tachibana and M. Okumura, On the almost complex structure of tangent bundles of Riemannian manifolds, Tohoku Math. J. 14 (1962), 156-161. https://doi.org/10.2748/tmj/1178244170
  16. Y. Tashiro, On contact structures of unit tangent sphere bundles, Tohoku Math. J. 21 (1969), 117-143. https://doi.org/10.2748/tmj/1178243040