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Abstract— In this paper, we study the dominating-free 

set which is defined as follows: k points called servers 

and n points called clients in the plane are given. For a 

point p in the plane is said to be dominated by a client c 

if for every server s, the distance between s and p is 

greater than the distance between s and c. The 

dominating-free set is the set of points in the plane 

which aren’t dominated by any client. We present an  

O(nklogk+n
2
k) time algorithm for computing the 

dominating-free set under the L1-metric. Specially, we 

present an O(nlogn) time algorithm for the problem when 

k=2. The algorithm uses some variables and 1-dimensional 

arrays as its principle data structures, so it is easy to 

implement and runs fast. 

 

Index Terms—Dominating-free set, Geometric algorithm, 

L1-metric, Orthogonal convex polygon. 

 

 
I. INTRODUCTION 

 

There are diverse domination properties considered in 

research area such as graph theory, game theory, and 

databases. Specially, the skyline query problem can be 

found in a wide spectrum of optimization applications [1, 

2, 3, 4, 5, 6]. Given a set of points D, a skyline query 

finds the skyline points from D, such that every point on 

the skyline is not „dominated‟ by any other point in D, i.e., 

if a point p is on the skyline, there exists no data point q in 

D such that q is pair-wise smaller than p for the values in 

all dimensions. In spatial skyline query problem, the 

distance between two points is defined using the 

conventional Euclidean distance(L2-metric)[3, 4] or 

Manhattan distance(L1-metric)[6]. 

In this paper, we study a variation of the spatial 

skyline query problem which requires a geometric 

algorithm is defined as follows: k points called servers 

and n points called clients in the plane are given. For a 

point p in the plane is said to be dominated by a client c 

if for every server s, the distance between s and p is 

greater than the distance between s and c. The 

dominating-free set is the set of points in the plane 

which aren‟t dominated by any client. Consider the 

following example to easily understand a dominating-

free set in the plane. 

There is a big city where the road network consists of 

horizontal roads and vertical roads. The distance between 

two locations of the city is computed using L1-metric. 

There are k apartments and n restaurants. If someone 

wants to open a new restaurant, he would regard a 

location p as a bad location if for an existing restaurant r, 

there is no apartment which is closer to p than r. Hence, 

he will consider not bad locations as candidates of a new 

restaurant. 

Fig. 1 shows an example of the region R called a 

proper dominating-free set which is composed with not 

bad locations in the city. A black circle represents an 

apartment and a white circle represents an existing 

restaurant. A polygon which is surrounded with solid lines 

is called a dominating-free set, and R is the region 

obtained by deleting the boundary and the dotted line 

segment from the polygon. 

 

 
 

Fig. 1. An example of the proper dominating-free set. 

 
The rest of this paper is organized as follows. In 

Section 2, some definitions and properties are 

described, and a simple algorithm of computing a 

dominating-free set is given. In Section 3, we present 

an efficient algorithm for two-server problem, i.e., 

computing the dominating-free set in case that the 

cardinality of a server set is two. Finally, Section 4 

concludes the paper. 

 

 
II. DEFINITIONS AND PRELIMINARIES 

 

The distance between two points p and q in the plane 

under the L1-metric is denoted by dist(p, q). For example, 

when p = (5, 9), q = (7, 3), dist(p, q) = |5-7| + |9-3| = 8. 

Given two distinct points p and q, a diamond whose 
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center is p and the L1-distnace between p and a point of it 

is less than or equal to dist(p, q) is denoted by D(p, q). 

Let a client set C = {c0, c1, ... , cn-1} be a point set with n 

distinct points in the plane and a server set S = {s0, s1, ... , 

sk-1} be a point set with k distinct points.  

 

The proper dominating-free set by two point sets C and 

S is formally defined as follows. 

 

Def. 1: A point set Q is called the proper dominating-

free set by two point sets C and S if for every point q  Q, 

there exists a pair (s, c) of a server s and a client c such 

that dist(s, q) < dist(s, c).  

 

For a point q’ which doesn‟t lie on the proper 

dominating-free set by C and S, there exists a client c such 

that dist(s0, q’)  dist(s0, c), dist(s1, q’)  dist(s1, c), … , 

and dist(sk-1, q’)  dist(sk-1, c). A proper dominating-free 

set is an open set of points and its interior may have zero 

or more holes(points or line segments)(see Fig. 1). In 

order to produce a point set as a simple polygon, a 

dominating-free set is defined as follows. 

 

Def. 2: A point set Q’ is called the dominating-free set 

by two point sets C and S if for every point q  Q’, there 

exists a pair (s, c) of a server s and a client c such that 

dist(s, q)  dist(s, c). 

 

The dominating-free set by two point sets C and S is 

denoted by DFS(C, S). The following lemma shows a 

characterization of a dominating-free set. 

 

Lemma 1: For two point sets C and S, 

         ⋂  ⋃  (     )               . 

Proof. Let  (  )   (     )   (     )    

 (       ). For every point q of  (  ), at least one of 

the following k conditions holds true.  

 dist(s0, q)  dist(s0,   ) 

dist(s1, q)  dist(s1,   ) 

…  

dist(sk-1, q)  dist(sk-1,   ) 

But, for a point q   (  ), above all conditions are 

false. Hence, all points of  (  ) are contained in DFS(C, 

S) and all external points of  (  ) aren‟t contained in the 

set by definition. Therefore, for all j, the intersection of 

 (  )‟s is the dominating-free set by C and S.  

 

A convex polygon is defined as a polygon P P for which 

the line segment connecting any two points in PP P lies 

entirely within P. If we change the “line segment” to 

“horizontal or vertical line segment”, the resultant region 

is called an orthogonal convex polygon. The following 

lemma shows that a dominating-free set is an orthogonal 

convex polygon rotated by 90 degrees.  

 

Lemma 2:          is an orthogonal convex 

polygon rotated by 90o. 

Proof. Let‟s consider the coordinate system rotated by 

90 degrees. Then a diamond          would be a square 

under the transformed coordinate system. Since the union 

of two or more squares which share a point is an 

orthogonal convex,  (     )     (       )  is 

orthogonal convex, too. Since the intersection of two 

orthogonal convex polygons is also orthogonal convex[8], 

         is orthogonal convex by Lemma 1.  

 

From Lemma 2, we can get an algorithm for computing 

         as follows: First, compute  (  )   

  (     )     (       )  for all j. Next, compute 

incrementally the intersection of  (  )‟s. The union of k 

squares which share a point can be computed in O(klogk) 

time[7]. Since the intersection of two orthogonal convex 

polygons can be constructed in linear time[8], 

        can be computed in O(       ∑    
   ) = 

O(          ). 

 

 

III. TWO-SERVER PROBLEM 

 

In this section, we consider the two-server problem, i.e., 

the case that S = {s0, s1}. From Lemma 2, we know that 

there is an O(n2) time algorithm for computing 

        , where |C| = n and |S|= 2. We present a more 

efficient algorithm for computing a dominating-free set. 

Without loss of generality, we assume that the x-

coordinate of s0 is less than s1‟s and the y-coordinate of s0 

is less than s1‟s (see Fig. 2).  

Let    be the rectangle which is defined by    and    

of S. as shown in Fig. 2. 

 

Lemma 3:    is contained in         . 
Proof. For every point c of C, the polygon         

           includes   . So, the lemma holds true by 

Lemma 1.  

 

  
 

Fig. 2. An example of        and   . 
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Now, we define the event points as follows: Consider 

an intersection point z of the boundaries of two diamonds 

        and         for    . Let u (resp. v) be a 

vertex of         (resp.        ) which is adjacent 

from z. If the chain (u, z, v) is wedge-shaped(“V”) and the 

triangle (u, z, v) doesn‟t intersect with the interior of 

               , then z is said to be an event point. In 

Fig. 2, c and z are event points. 

Extending the edges of   , the rectangle defined by    

and   , the plane is partitioned into the regions R1(North-

east), R2(North), R3(North-west), R4(West), R5(South-

west), R6(South), R7(South-east), R8(East), and    as 

shown in Fig. 3.  

 

 

  
 

Fig. 3. The regions partitioned by s0 and s1. 

 

Lemma 4: All event points by C and S lie on the 

regions R2, R4, R6, or R8. 

 Proof. Since all vertices of         and         lie 

on the lines extending the edges of   , we can easily see 

that there doesn‟t exist an event point which lies inside 

the regions R1, R3, R5, or R7.  

 

A vertex of a polygon is called convex if its internal 

angle is strictly less than 180o, otherwise, it is called 

reflex. 

 

Lemma 5: All reflex vertices of          

correspond to event points. 

Proof. By Lemma 1, we know that          is the 

intersection of                  , i = 0, 1, … , n-1. 

                  is the union of two squares. So, the 

event points by          and          are  reflex 

vertices of                  .  

Since every          is a diamond of which the center 

is    and the radius is   , for two integers i and j, there is 

only the inclusion relation between          and 

 (     ) , i.e.,            (     )  or           

 (     ). So do         ‟s. 

Therefore, for two distinct integers i and j, any 

intersection points of          and  (     ) cannot be 

reflex vertices of         (see Fig. 4).  

 

 
 

Fig. 4. Illustration for the proof of Lemma 5. 

 

The region                   has at most two event 

points which lie on R2, R4, R6, or R8. Now, we introduce 

the pseudo-event points for                         

which are the intersection points between       and the 

lines extending the edges of   . Then, each region of R2, 

R4, R6, and R8 has at least one event point or pseudo-event 

point. In Fig 5, a white circle represents a client point, a 

white square represents an event point, and a gray square 

represents a pseudo-event points. 

 

  
 

Fig. 5. Event points and pseudo-event points. 

 

For an event point or a pseudo-event point z, a wedge 

region W(z) is defined as follows: If z is on R2(resp. R4, 

R6, or R8), W(z) is the region on the upper (resp. left, 

lower, or right) side of    among the regions which 

are surrounding with two lines which pass by z and 

have the scope +1 and -1. By the definition, a wedge 

region doesn‟t intersect any inner points of          

(see Fig. 5). 

For an event point or a pseudo-event point e which lies 

on Ri(i = 2, 4, 6, 8) called a local minimum if W(e) is not a 

subset of W(e’) for every event point or pseudo-event 

point e’.  For two event points or pseudo-event points e1 = 

(  ,   ) and e2 = (  ,   ), W(e1) includes W(e2) if   
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  +      +   and   -      -  ,           

  +      +   and   -      -  ,           

  +      +   and   -      -  ,           

  +      +   and   -      -  ,           

 

Lemma 6: All reflex vertices of          are event 

points which are local minima, and vice versa. 

Proof. By definition, an event point which is not a local 

minimum is contained in the wedge region by an event 

point or a pseudo-event point which is a local minimum. 

Since a wedge region lies on the exterior of        ), a 

reflex vertex of          must be an event point which 

is a local minimum. 

There is an inner point of          in a very small 

circle of which the center is an event point which is a 

local minimum. So, an event point which is a local 

minimum must be a part of the boundary of         . 

Hence, all local minima are reflex vertices of         . 
 

 

From now on, a pseudo-event point is just called an 

event point without distinction. Consider the sorted list Lj 

of the local minima on a region Rj (j = 2, 4, 6, 8). The 

event points on R2 and R6 are sorted along the x-axis, and 

those on R4 and R8 are sorted along the y-axis.  

 

Lemma 7: For each Lj (j = 2, 4, 6, 8), the intersection 

point of the boundaries of the wedge regions by two 

adjacent event points which don‟t lie on the lines 

extending edges of    is a convex vertex of         . 

Proof. As shown in Fig. 6, the intersection of the 

boundaries of the wedge regions by two adjacent event 

points aren‟t contained in the interior of any wedge region 

of an event points. Hence, it is a member of the boundary 

of         . Since it is not a reflex vertex by Lemma 6, 

it is a convex vertex of         .  

 

 
 

Fig. 6. Illustration for the proof of Lemma 7. 

 

Let z0 be the intersection point of the edge shared by R1 

and R2 and the boundary of the wedge region by the last 

event point of L2. Similarly, z1, z2 , … , and z7 are defined 

as shown in Fig. 7. 

 

  
 

Fig. 7. The intersection points z0, z1 , … , and z7. 

 

Lemma 8: The line segment l(zi, zi(i+1) mod 8) (i = 0, 1, 

… , 7) is an edge of         . 

Proof. For all k and j, the edges of          which 

pass by a region among R1, R3, R5, and R7 are parallel to 

each other(see Fig. 4). So, the innermost edge must be an 

edge of         . By definition of local minima, two 

end vertices of the edge are corresponding to z0, z1, … , or 

z7.  

 

Now, we describe an algorithm for computing 

        , where |C| = n and |S|= 2. An outline of an 

algorithm is as follows: 

 

1. Find the event points and pseudo-event points. 

2. Find the local minima among event points and  

pseudo-event points, then construct the sorted lists 

L2, L4, L6, and L8. 

3. Construct the boundary of         . 

 

Theorem 1:         , |C| = n and |S|= 2, can be 

constructed in O(nlogn) time and O(n) space. 

Proof. By above lemmas, we can see that above 

algorithm correctly constructs          for given two 

point sets C and S.  

Now, we consider the time complexity. The union U of 

two diamonds can be computed in constant time. At most 

two event points are extracted from U in constant time, 

and the eight intersection points z0, z1, … , and z7 can be 

computed in constant time, too. Hence, Step 1 can be 

done in O(n) time. 

For event points and pseudo-event points which lie on 

Ri (i = 2, 4, 6, 8), the local minima can be found by sorting 

the event points and pseudo-event points along (x+y, y-x) 

values and then traversing the sorted lists. L2, L4, L6, and 

L8 are consequently obtained through the procedure. 

Hence, Step 2 can be done in O(nlogn) time. 

By Lemma 6, 7, 8, we can see that all vertices of 

         are obtained from the lists L2, L4, L6, and L8. 

Therefore, sequentially traversing the lists is enough to 

get         . Hence, Step 3 can be done in O(n) time. 



INTERNATIONAL JOURNAL OF KIMICS, VOL. 9, NO. 1, FEBRUARY 2011 109 

Since only O(n) space is required through the entire 

steps of the algorithm, it runs in O(nlogn) time and O(n) 

space.  

 

In the special case that both of s0 and s1 have the same 

x-coordinates or y-coordinates, an algorithm for 

computing          is far simpler than the general case. 

So, we omit it.  

 

 

IV. CONCLUDING REMARKS 

 

In this paper, we presented an O(          ) time 

algorithm for computing the dominating-free set by two 

point set C and S under L1-metric. Specially, we presented 

an efficient O(nlogn) time algorithm for computing a 

dominating-free set when |S|=2. The algorithm uses some 

variables and 1-dimensional arrays as its principle data 

structures, so it is easy to implement and runs fast.  

As the further work, the study for finding a more 

efficient algorithm of computing a dominating-free set in 

case that |S| > 2 is needed. 
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