• 제목/요약/키워드: $L^p$-estimates

Search Result 104, Processing Time 0.021 seconds

FINITE VOLUME ELEMENT METHODS FOR NONLINEAR PARABOLIC INTEGRODIFFERENTIAL PROBLEMS

  • Li, Huanrong;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2003
  • In this paper, finite volume element methods for nonlinear parabolic integrodifferential problems are proposed and analyzed. The optimal error estimates in $L^p\;and\;W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ as well as some superconvergence estimates in $W^{1,p}\;(2\;{\leq}\;p\;{\leq}\;{\infty})$ are obtained. The main results in this paper perfect the theory of FVE methods.

  • PDF

Lp ESTIMATES WITH WEIGHTS FOR THE (equation omitted)-EQUATION ON REAL ELLIPSOIDS IN Cn

  • Ahn, Heung-Ju
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.263-280
    • /
    • 2003
  • We prove weighted L$^{p}$ estimates with respect to the non-isotropic norm for the (equation omitted)-equation on real ellipsoids, where weights are powers of the distance to the boundary. The non-isotropic norm is smaller than the usual norm, by a factor which is equal to the distance to the boundary in the complex tangential component and which is equal to the m-th root of the distance to the boundary in the complex normal component. Here n is the maximal order of contact of the boundary of the real ellipsoid with complex analytic curves.

SHARP Lp→Lr ESTIMATES OF RESTRICTED AVERAGING OPERATORS OVER CURVES ON PLANES IN FINITE FIELDS

  • Koh, Doowon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.251-259
    • /
    • 2015
  • Let $\mathbb{F}^d_q$ be a d-dimensional vector space over a finite field $\mathbb{F}^d_q$ with q elements. We endow the space $\mathbb{F}^d_q$ with a normalized counting measure dx. Let ${\sigma}$ be a normalized surface measure on an algebraic variety V contained in the space ($\mathbb{F}^d_q$, dx). We define the restricted averaging operator AV by $A_Vf(X)=f*{\sigma}(x)$ for $x{\in}V$, where $f:(\mathbb{F}^d_q,dx){\rightarrow}\mathbb{C}$: In this paper, we initially investigate $L^p{\rightarrow}L^r$ estimates of the restricted averaging operator AV. As a main result, we obtain the optimal results on this problem in the case when the varieties V are any nondegenerate algebraic curves in two dimensional vector spaces over finite fields. The Fourier restriction estimates for curves on $\mathbb{F}^2_q$ play a crucial role in proving our results.

[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES

  • AL-QASSEM HUSSAIN MOHAMMED
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.405-434
    • /
    • 2005
  • We establish appropriate $L^p$ estimates for a class of maximal operators $S_{\Omega}^{(\gamma)}$ on the product space $R^n\;\times\;R^m\;when\;\Omega$ lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;=\;2$, we prove the $L^p\;(2\;{\le}\;P\;<\;\infty)\;boundedness\;of\;S_{\Omega}^{(\gamma)}\;whenever\;\Omega$ is a function in a certain block space $B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ (for some q > 1). Moreover, we show that the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is nearly optimal in the sense that the operator $S_{\Omega}^{(2)}$ may fail to be bounded on $L^2$ if the condition $\Omega\;{\in}\;B_q^{(0,0)}(S^{n-1}\;\times\;S^{m-1})$ is replaced by the weaker conditions $\Omega\;{\in}\;B_q^{(0,\varepsilon)}(S^{n-1}\;\times\;S^{m-1})\;for\;any\;-1\;<\;\varepsilon\;<\;0.$

Weighted LP Estimates for a Rough Maximal Operator

  • Al-Qassem, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.255-272
    • /
    • 2005
  • This paper is concerned with studying the weighted $L^P$ boundedness of a class of maximal operators related to homogeneous singular integrals with rough kernels. We obtain appropriate weighted $L^P$ bounds for such maximal operators. Our results are extensions and improvements of the main theorems in [2] and [5].

  • PDF

GLOBAL WEAK MORREY ESTIMATES FOR SOME ULTRAPARABOLIC OPERATORS OF KOLMOGOROV-FOKKER-PLANCK TYPE

  • Feng, Xiaojing;Niu, Pengcheng;Zhu, Maochun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1241-1257
    • /
    • 2014
  • We consider a class of hypoelliptic operators of the following type $$L=\sum_{i,j=1}^{p_0}a_{ij}{\partial}^2_{x_ix_j}+\sum_{i,j=1}^{N}b_{ij}x_i{\partial}_{x_j}-{\partial}_t$$, where ($a_{ij}$), ($b_{ij}$) are constant matrices and ($a_{ij}$) is symmetric positive definite on $\mathbb{R}^{p_0}$ ($p_0{\leqslant}N$). By establishing global Morrey estimates of singular integral on the homogenous space and the relation between Morrey space and weak Morrey space, we obtain the global weak Morrey estimates of the operator L on the whole space $\mathbb{R}^{N+1}$.

THE MAXIMAL OPERATOR OF BOCHNER-RIESZ MEANS FOR RADIAL FUNCTIONS

  • Hong. Sung-Geum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • Author proves weak type estimates of the maximal function associated with the Bochner-Riesz means while it is claimed p=2n/(n+1+$2\delta) and 0<\delta\leq(n-1)/2$ that the maximal function is bounded on L^p-{rad}$.

  • PDF

Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Yu, Liu
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.425-443
    • /
    • 2010
  • We investigate the Schr$\ddot{o}$dinger type operator $H_2\;=\;(-\Delta_{\mathbb{H}^n})^2+V^2$ on the Heisenberg group $\mathbb{H}^n$, where $\Delta_{\mathbb{H}^n}$ is the sublaplacian and the nonnegative potential V belongs to the reverse H$\ddot{o}$lder class $B_q$ for $q\geq\frac{Q}{2}$, where Q is the homogeneous dimension of $\mathbb{H}^n$. We shall establish the estimates of the fundamental solution for the operator $H_2$ and obtain the $L^p$ estimates for the operator $\nabla^4_{\mathbb{H}^n}H^{-1}_2$, where $\nabla_{\mathbb{H}^n}$ is the gradient operator on $\mathbb{H}^n$.