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Weighted Lp Estimates for a Rough Maximal Operator

H. M. Al-Qassem
Department of Mathematics, Yarmouk University, Irbid, Jordan
e-mail : husseink@yu.edu.jo

Abstract. This paper is concerned with studying the weighted Lp boundedness of a

class of maximal operators related to homogeneous singular integrals with rough kernels.

We obtain appropriate weighted Lp bounds for such maximal operators. Our results are

extensions and improvements of the main theorems in [2] and [5].

1. Introduction

Let Sn−1 be the unit sphere in Rn equipped with the normalized Lebesgue
measure dσ = dσ (x′). Let Ω be a homogeneous function of degree zero on Rn, with
Ω ∈ L1(Sn−1) and

(1.1)
∫

Sn−1
Ω(x′) dσ (x′) = 0,

where x′ = x/ |x| for any x 6= 0.

Let H = the set of all radial functions h satisfying

(∫ ∞

0

|h(r)|2 dr

r

)1/2

≤ 1.

For a suitable C1 function γ on the interval (0,∞) we define the maximal
operator MΩ,γ by

(1.2) MΩ,γf(x) = sup
h∈H

∣∣∣∣
∫

Rn

f(x− γ(|y|)y′)h(|y|)Ω (y′) |y|−n
dy

∣∣∣∣ ,

where y′ = y/ |y| ∈ Sn−1 and f ∈ S(Rn), the space of Schwartz functions.
For the sake of simplicity, we denote MΩ,γ = MΩ if γ(t) = t.
In [2], L. K. Chen and H. Lin studied the Lp boundedness of the maximal

operatorMΩ under a smoothness condition on Ω. In fact, they proved the following:
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Theorem A ([2]). Assume n ≥ 2 and Ω ∈ C(Sn−1) satisfying (1.1). Then

‖MΩ(f)‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn)

for 2n/(2n− 1) < p < ∞ and f ∈ Lp. Moreover, the range of p is the best possible.

Recently, in [5] Y. Ding and H. Qingzheng showed that the smoothness condition
assumed on Ω was not necessary as described in the following theorem.

Theorem B ([5]). Assume n ≥ 2 and Ω ∈ L2(Sn−1) satisfying (1.1). Then

(1.3) ‖MΩ(f)‖Lp(ω) ≤ Cp ‖f‖Lp(ω),

if p and ω satisfy one of the following conditions:

(a) 2 ≤ p < ∞ and ω ∈ Ap/2(Rn);

(b) 2n/(2n−1) < p < 2, ω(x) = |x|α , and 1
2 (1−n)(2−p) < α < 1

2 (2np−2n−p).

Here Ap(Rn) is the Muckenhoupt’s weight class whose definition will be recalled
in Section 2 and the weighted Lp(ω) = Lp(Rn, ω(x)dx), ω ≥ 0, is defined by

Lp(Rn, ω(x)dx) =

{
f : ‖f‖Lp(ω) =

(∫

Rn

|f(x)|p ω(x)dx

)1/p

< ∞
}

.

In light of the above results, the following natural questions arise:

Question 1. Under similar conditions on ω in Theorem B, does the Lp (ω) bound-
edness of the operator MΩ still hold under the condition Ω ∈ Lq(Sn−1), for some
q 6= 2?

Question 2. Does the Lp(Rn) (or Lp (ω)) boundedness of the operator MΩ would
hold under a weaker condition than the condition Ω ∈ Lq(Sn−1), for q > 1?

We are able to obtain answers to these questions in the affirmative. More
precisely, we have the following results:

Theorem 1.1. Suppose that n ≥ 2 and Ω ∈ Lq(Sn−1) (q > 1) satisfying (1.1).
Then

(1.4) ‖MΩ(f)‖Lp(ω) ≤ Cp ‖f‖Lp(ω),

if p and ω satisfy one of the following conditions:

(a) δ ≤ p < ∞ and ω ∈ Ap/δ;

(b) 2nδ/(2n+nδ−2) < p < 2, ω(x) = |x|α , 1
2 (1−n)(2−p) < α < 1

2 (2np−2n−p),
where δ = max{2, q′} and q′ is the dual exponent of q.
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For radial weights we are able to prove the following sharper and more general
result:

Theorem 1.2. Suppose that n ≥ 2 and Ω satisfies (1.1). Suppose γ is in C2([0,∞)),
convex, and increasing function with γ(0) = 0. Then

(1.5) ‖MΩ,γ(f)‖Lp(ω) ≤ Cp ‖f‖Lp(ω)

if p, Ω and ω satisfy one of the following conditions:

(a) Ω ∈ H1(Sn−1), ω ∈ ÃI
p/2(R+), 2 ≤ p < ∞;

(b) Ω ∈ Lq(Sn−1) (q > 1), 2nδ/(2n+nδ− 2) < p < 2, ω(x) = |x|α , 1
2 (1−n)(2−

p) < α < 1
2 (2np− 2n− p).

Here ÃI
p(R+) is a special class of radial weights introduced by Duoandikoetxea

[7] and H1(Sn−1) represents the Hardy space on the unit sphere. The definitions
of ÃI

p(R+) and H1(Sn−1) will be reviewed in Section 2.
It is known that for any q > 1,

(1.6) C(Sn−1) ⊆ Lq(Sn−1) ⊆ L log+ L(Sn−1) ⊆ H1(Sn−1)

and all inclusions are proper.
By the relationships in (1.6) remarked above one sees that even in the special

case γ(t) = t (MΩ,γ = MΩ), Theorems 1.1-1.2 represent improvements of Theorems
A and B.

The paper is organized as follows. A few definitions and lemmas will be recalled
or proved in Section 2. Section 3 contains the proofs of the main theorems.

Throughout this paper, the letter C will stand for a positive constant that
may vary at each occurrence. However, C does not depend on any of the essential
variables.

2. Some definitions and lemmas

We start this section with recalling the definition of some special classes of
weights and some of their important properties which relevant to our current study.

Definition 2.1. A locally integrable nonnegative function ω is said to belong to
Ap(Rn) (1 < p < ∞) if there is a positive constant C such that

sup
Q⊂Rn

(
|Q|−1

∫

Q

ω(x)dx

)(
|Q|−1

∫

Q

ω(x)−1/(p−1)dx

)p−1

≤ C,

and a locally integrable nonnegative function ω is said to belong to A1(Rn) if there
is a positive constant C such that

|Q|−1
∫

Q

ω(y)dy ≤ Cω(x), a.e. x ∈ Q,
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or equivalently M∗ω(x) ≤ Cω(x) a.e. x ∈ Rn, where Q denotes a cube in Rn

with its sides parallel to the coordinate axes and M∗f denotes the usual Hardy-
Littlewood maximal function.

Definition 2.2. Let 1 ≤ p < ∞. If ω(x) = ν1(|x|)ν2(|x|)1−p,where either νi ∈
A1(R+) is decreasing or ν2

i ∈ A1(R+), i = 1, 2, thenwe say that ω ∈ Ãp(R+).

Let AI
p(Rn) be the weight class defined by exchanging the cubes in the defini-

tions of Ap for all n-dimensional intervals with sides parallel to coordinate axes (see
[11]). Let ÃI

p = Ãp ∩ AI
p. If ω ∈ Ãp, it follows from [7] that M∗f is bounded on

Lp(Rn, ω(|x|)dx). Therefore, if ω(t) ∈ Ãp(R+), then ω(|x|) ∈ Ap(Rn).
By following the same argument as in the proof of the elementary properties of

Ap weight class (see for example [10]) we get the following:

Lemma 2.3. If 1 ≤ p < ∞, then the weight class ÃI
p(R+) has the following

properties:

(i) ÃI
p1
⊂ ÃI

p1
, if 1 ≤ p1 < p2 < ∞;

(ii) For any ω ∈ ÃI
p, there exists an ε > 0 such that ω1+ε ∈ ÃI

p;

(iii) For any ω ∈ ÃI
p and p > 1, there exists an ε > 0 such that p − ε > 1 and

ω ∈ ÃI
p−ε.

Now, let us recall the definition of the Hardy space H1(Sn−1) and some of its
important properties. The Hardy space has many equivalent definitions, one of
which is given in terms of the following radial maximal operator on Sn−1 :

P+ : f → sup
0≤r<1

∣∣∣∣
∫

Sn−1
Prx(y)f(y)dσ(y)

∣∣∣∣ ,

where Px(y) =
(
1− |x|2

)
/ |x− y|n .

Definition 2.4. An integrable function fon Sn−1 is in the space H1(Sn−1) if
‖f‖H1(Sn−1) = ‖P+f‖L1(Sn−1) < ∞.

Now let us recall the atomic decomposition of H1(Sn−1). For x0 ∈ Sn−1 and
ρ > 0 we let B(x0, ρ) = Sn−1 ∩ {y ∈ Rn : |y − x0| < ρ}.
Definition 2.5. A function a(·) on Sn−1 is called an ∞-regular atom if there exist
x0 ∈ Sn−1 and ρ ∈ (0, 2] such that

supp(a) ⊂ B(x0, ρ);(2.1)
‖a‖∞ ≤ ρ−n+1;(2.2) ∫

Sn−1
a(y′)dσ(y′) = 0.(2.3)
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A very useful characterization of the space H1(Sn−1) is its atomic decomposi-
tion. The atomic decomposition of H1(Sn−1) is given by the following lemma:

Lemma 2.6. If Ω ∈ H1(Sn−1) and satisfies the mean value zero property
(1.1), then there exist {cj}j∈N ⊆ C and ∞-regular atoms {aj}j∈N such that

Ω =
∞∑

j=1

cjaj and ‖Ω‖H1(Sn−1) ≈
∞∑

j=1

|cj | .

For any non-zero ξ = (ξ1, · · · , ξn) ∈ Rn, we write ξ′ = ξ/ |ξ| = (ξ′1, · · · , ξ′n) =
(ξ′1, ξ

′
∗). For a fixed ρ > 0, we let Lρ(ξ) = (ρ2ξ1, ρξ2, · · · , ρξn) = (ρ2ξ1, ρξ∗) and let

r ≡ r(ξ′) = |ξ|−1 |Lρ(ξ)| .
In proving our main results we shall need the following two results proved by

Fan and Pan in [9]:

Lemma 2.7. Let a be an ∞-regular atom on Sn−1 (n ≥ 3) with supp(a) ⊆ B(ξ′, ρ)
(0 < ρ ≤ 1). Let

Fa(s, ξ′) = (1− s2)(n−3)/2χ(−1,1)(s)
∫

Sn−2
a(s, (1− s2)1/2ỹ)dσ(ỹ).

Then up to a constant multiplier independent of a, Fa(s, ξ′) is an ∞-regular atom
on R. More precisely, there is a constant C independent of a such that

supp(Fa) ⊆ (ξ′1 − 3r, ξ′1 + 3r);(2.4)
‖Fa‖∞ ≤ Cr−1;(2.5) ∫

R

Fa(s)ds = 0,(2.6)

where r ≡ r(ξ′) =
∣∣(ρ2ξ′1, ρξ′∗)

∣∣ .

Lemma 2.8. Suppose that n = 2 and a is an ∞-regular atom satisfying (2.1)-(2.3).
Let ξ′ = (ξ′1, ξ

′
2) ∈ S1 be the center of the support of a(·). Let

fa(s, ξ′) = (1− s2)−1/2χ(−1,1)(s)
{

a
(
s,

√
1− s2

)
+ a

(
s,−

√
1− s2

)}
.

Then up to a constant multiplier independent of a, fa(s, ξ′) is an ∞-regular atom

on R. The radius of their support is r ≡ r(ξ′) = ρ
√

ρ (ξ′1)
2 + (ξ′2)

2
, and the center

of their support is ξ′1.

Lemma 2.9. Suppose that a(·) is an ∞-regular atom on Sn−1 with supp(a) ⊆
B(e, ρ), where e = (1, · · · , 0) ∈ Sn−1. Let γ be in C2([0,∞)), convex, and increasing
function with γ(0) = 0 and let

Ia,γ,k(ξ) =

(∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(y′)e−iγ(t)<ξ,y′>dσ(y′)

∣∣∣∣
2

dt

t

)1/2

.



260 H. M. Al-Qassem

Then there exists a positive constant C independent of k, ξ and ρ such that

|Ia,γ,k(ξ)| ≤ C
∣∣γ(2k+1)Lρ(ξ)

∣∣ 1
4 ;(2.7)

|Ia,γ,k(ξ)| ≤ C
∣∣γ(2k)Lρ(ξ)

∣∣− 1
4 .(2.8)

Proof. We shall only prove (2.7)-(2.8) for the case n > 2, since the proof for n = 2
is essentially the same (we use Lemma 2.5 instead of Lemma 2.4). For any ξ 6= 0,
we choose a rotation θ such that θ(ξ) = |ξ| e. Let y′ = (s, y′2, · · · , y′n). Then

|Ia,γ,k(ξ)|2 =
∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(θ−1y′)e−iγ(t)|ξ|<e,y′>dσ(y′)

∣∣∣∣
2

dt

t
,

where θ−1 is the inverse of θ. Now, a(θ−1y′) is again a regular∞−atom with support
in B(ξ′, ρ), where ξ′ = ξ/ |ξ| . For simplicity, we still denote it by a(y′). Thus we
have

|Ia,γ,k(ξ)|2 =
∫ 2k+1

2k

∣∣∣∣
∫

R

Fa(s, ξ′)e−iγ(t)|ξ|sds

∣∣∣∣
2

dt

t
,

where Fa(s, ξ′) has support in (ξ′1−3r, ξ′1 +3r) (see Lemma 2.4). By the cancelation
property of Fa(s, ξ′) and the conditions on γ we have

|Ia,γ,k(ξ)|2 =
∫ 2k+1

2k

∣∣∣∣
∫

R

Fa(s, ξ′)
(
e−iγ(t)|ξ|s − 1

)
ds

∣∣∣∣
2

dt

t

≤ Cr−2
(|ξ| γ(2k+1)

)2

(∫ ξ′1+3r

ξ′1−3r

|s| ds

)2

≤ C
∣∣γ(2k+1)Lρ(ξ)

∣∣2 .

Thus by combining the last estimate with the trivial estimate |Ia,γ,k(ξ)| ≤ C we get
(2.7). To prove (2.8), we notice that

|Ia,γ,k(ξ)|2 =
∫

R×R

(∫ 2k+1

2k

e−iγ(t)|ξ|(s−u) dt

t

)
Fa(s, ξ′)Fa(u, ξ′)dsdu.

Denote

Jk(ξ, s, u) =

(∫ 2k+1

2k

e−iγ(t)|ξ|(s−u) dt

t

)
.

By a simple change of variable, we have

Jk(ξ, s, u) =
∫ 2

1

e−iγ(2kt)|ξ|(s−u) dt

t
≡

∫ 2

1

G′(t)
dt

t
,
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where

G(t) =
∫ t

1

e−iγ(2kw)|ξ|(s−u)dw, 1 ≤ t ≤ 2.

By the assumptions on γ, we obtain

d

dw
γ(2kw) = 2kγ′(2kw) ≥ γ(2kw)

w
≥ γ(2k)

t
for 1 ≤ w ≤ t ≤ 2.

Thus by van der Corput’s lemma, |G(t)| ≤ ∣∣ξ(s− u)γ(2k)
∣∣−1

t, for 1 ≤ t ≤ 2. Hence
by integration by parts,

|Jk(ξ, s, u)| ≤ C
∣∣ξ(s− u)γ(2k)

∣∣−1
.

This estimate when combined with the trivial estimate Jk(ξ, s, u) ≤ ln 2 gives

|Jk(ξ, s, u)| ≤ C
∣∣ξ(s− u)γ(2k)

∣∣− 1
2 .

Thus

|Ia,γ,k(ξ)|2 ≤ C
∣∣ξγ(2k)

∣∣− 1
2

∫

R×R

|s− u|− 1
2 Fa(s, ξ′)Fa(u, ξ′)dsdu

≤ C
∣∣ξγ(2k)

∣∣− 1
2 r−1

∫

R

(∫ ξ′1+3r

ξ′1−3r

|s− u|− 1
2 ds

)∣∣∣Fa(u, ξ′)
∣∣∣ du.

By a simple change of variable we get

∫ ξ′1+3r

ξ′1−3r

|s− u|− 1
2 ds ≤

∫ ξ′1+3r−u

ξ′1−3r−u

|s|− 1
2 ds

≤
∫ 6r

−6r

|s|− 1
2 ds ≤ Cr

1
2 .

So,

|Ia,γ,k(ξ)| ≤ C
∣∣ξrγ(2k)

∣∣− 1
4 ‖Fa‖

1
2
1 ≤ C

∣∣ξrγ(2k)
∣∣− 1

4 = C
∣∣γ(2k)Lρ(ξ)

∣∣− 1
4 .

This completes the proof of Lemma 2.9. ¤
For any Ω ∈ L1(Sn−1), we define the maximal operator

M∗
Ω,γf(x) = sup

k∈Z
|µk,γ,Ω ∗ f(x)| ,

where

µk,γ,Ω ∗ f(x) =
∫

2k≤|y|<2k+1
f(x− γ(|y|)y′) |Ω(y′)|

|y|n dy.
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If γ(t) = t, we denote M∗
Ω,γ by M∗

Ω. Then we have the following results related to
the maximal operators M∗

Ω,γ and M∗
Ω.

Lemma 2.10. Let Ω ∈ L1(Sn−1) and ω ∈ Ãp(R+), 1 < p < ∞. Let γ be in
C2([0,∞)), convex, and increasing function with γ(0) = 0. Then

(2.9)
∥∥M∗

Ω,γ(f)
∥∥

Lp(ω)
≤ Cp ‖Ω‖L1(Sn−1) ‖f‖Lp(ω) ,

where Cp is a constant independent of Ω and f ∈ Lp(ω).

Proof. Using the spherical coordinate we have

|µk,γ,Ω ∗ f(x)| ≤
∫ 2k+1

2k

∫

Sn−1
|f(x− γ(t)y′)| |Ω(y′)| dσ(y′)

dt

t
.

Let s = γ(t). By the assumptions on γ, we have

M∗
Ω,γf(x) ≤

∫ γ(2k+1)

γ(2k)

∫

Sn−1
|f(x− sy′)| |Ω(y′)| dσ(y′)

ds

s

≤
∫

Sn−1
|Ω(y′)|My′f(x)dσ(y′)(2.10)

where

My′f(x) = sup
R∈R

1
R

∫ R

0

|f(x− sy′)| ds

is the Hardy-Littlewood maximal function of f in the direction of y′. By equation
(8) in [7] and since ω ∈ Ãp(R+) we have

(2.11) ‖My′f‖Lp(ω) ≤ C ‖f‖Lp(ω) with C independent of y′.

By (2.10) and Minkowski’s inequality for integrals we have

∥∥M∗
Ω,γf

∥∥
Lp(ω)

≤
∫

Sn−1
|Ω(y′)| ‖My′f‖Lp(ω) dσ(y′)

and hence by (2.11) we get (2.9). This completes the proof of the lemma. ¤

We shall need the following lemma from [7, p. 873].

Lemma 2.11. Let Ω ∈ Ld(Sn−1) for some d > 1. Then the maximal operator M∗
Ω

is bounded from Lp(ω) to itself, when p and ω satisfy one of the following conditions:

(a) d′ ≤ p < ∞, p 6= 1 and ω ∈ Ap/d′ ;

(b) 1 < p ≤ d, p 6= ∞ and ω1−p′ ∈ Ap′/d′ .



Weighted Lp Estimates for a Rough Maximal Operator 263

Let MS be the spherical maximal operator defined by

MSf(x) = sup
r>0

∫

Sn−1
|f(x− rθ)| dσ(θ).

We shall need the following result concerning the weighted Lp boundedness of MS

with power weights.

Lemma 2.12 ([8]). Suppose that n ≥ 2, p > n/(n − 1) and 1 − n < α < (n −
1) (p− 1)− 1. Then MS(f) is bounded on Lp(Rn, |x|α).

3. Proof of theorems

In the proof of our results we will apply the machinery developed by Duoandiko-
etxea and Rubio de Francia in [6]. We shall start by presenting a proof of Theorem
1.2.

The proof of Theorem 1.2 under condition (a).
In view of the atomic decomposition of Ω, it suffices to show that

(3.1) ‖Ma,γ(f)‖Lp(ω) ≤ Cp ‖f‖Lp(ω)

holds for ω ∈ ÃI
p/2(R+), 2 ≤ p < ∞ and f ∈ Lp(ω) when a satisfies

(i) supp(a)⊆ B(z0, ρ) for some z0 ∈ Sn−1 and ρ ∈ (0, 2];

(ii) ‖a‖∞ ≤ ρ−(n−1);

(iii)
∫
Sn−1 a(y)dσ(y) = 0.

Let us first prove (3.1) for the case 2 < p < ∞. For each k ∈ Z, let ηk = γ(2k).
Since γ is convex and increasing in (0, ∞), we have γ(t)/t is also increasing for t > 0.
Therefore, the sequence {ηk : k ∈ Z} is a lacunary sequence with ηk+1/ηk ≥ 2. Since
the weight function ω is radial, by using an appropriate rotation on Sn−1, we may
assume w.l.o.g. that z0 = (0, · · · , 0, 1). Let {Φj}∞−∞ be a smooth partition of unity
in (0, ∞) adapted to the intervals Ej = [η−1

j+1, η−1
j−1]. More precisely, we require the

following:

Φj ∈ C∞, 0 ≤ Φj ≤ 1,
∑

j

Φj (t) = 1,

supp Φj ⊆ Ej ,

∣∣∣∣
dsΦj (t)

dts

∣∣∣∣ ≤
C

ts
.

By duality,

Ma,γf(x) =

(∫ ∞

0

∣∣∣∣
∫

Sn−1
a(ξ)f(x− γ(r)ξ)dσ(ξ)

∣∣∣∣
2

dr

r

)1/2

=

(∑

k∈Z

∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(ξ)f(x− γ(r)ξ)dσ(ξ)

∣∣∣∣
2

dr

r

)1/2

.
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Now if we let Ψ̂j(ξ) = Φj(|Lρ(ξ)|), then we have f =
∑
j

Ψj+k ∗ f for f ∈ S(Rn)

and for any k ∈ Z. Thus

Ma,γf(x) =




∑

k∈Z

∫ 2k+1

2k

∣∣∣∣∣∣
∑

j

∫

Sn−1
a(ξ) (Ψj+k ∗ f) (x− γ(r)ξ)dσ(ξ)

∣∣∣∣∣∣

2

dr

r




1/2

.

By Minkowski’s inequality, we have

(3.2) Ma,γf(x) ≤
∑

j

Ma,γ,jf(x),

where

Ma,γ,jf(x) =

(∑

k∈Z

∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(ξ) (Ψj+k ∗ f) (x− γ(r)ξ)dσ(ξ)

∣∣∣∣
2

dr

r

)1/2

.

By Plancherel’s theorem and Lemma 2.9 we get

‖Ma,γ,j(f)‖22 =
∫

Rn

∑

k∈Z

∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(ξ)(Ψj+k ∗ f)(x− γ(r)ξ)dσ(ξ)

∣∣∣∣
2

dr

r
dx

≤
∑

k∈Z

∫

∆j+k

(∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(ξ)e−iγ(r)<ξ,x>dσ(ξ)

∣∣∣∣
2

dr

r

) ∣∣∣f̂(x)
∣∣∣
2

dx

≤ C2−2α|j| ∑

k∈Z

∫

∆j+k

∣∣∣f̂(x)
∣∣∣
2

dx

≤ C2−2α|j| ‖f‖22 ,

where

∆j = {x ∈ Rn : η−1
j+1 ≤ |Lρ(x)| < η−1

j−1}.

Therefore,

(3.3) ‖Ma,γ,j(f)‖2 ≤ C2−α|j| ‖f‖2 .

Now, we need to compute the Lp(ω)-norm of Ma,j(f) for p > 2. By duality,
there is a function g in L(p/2)′(ω1−(p/2)′) with ‖g‖(p/2)′,ω1−(p/2)′ ≤ 1 such that
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‖Ma,γ,j(f)‖2p,ω

=
∑

k∈Z

∫

Rn

∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(ξ) (Ψj+k ∗ f) (x− γ(r)ξ)dσ(ξ)

∣∣∣∣
2

dr

r
|g(x)| dx

≤ ‖a‖1
∑

k∈Z

∫

Rn

|Ψk+j ∗ f(x)|2
∫ 2k+1

2k

∫

Sn−1
|a(ξ)| |g(x + γ(r)ξ)| dσ(ξ)

dr

r
dx

≤ C
∑

k∈Z

∫

Rn

|Ψk+j ∗ f(x)|2 M∗
a,γ(g̃)(−x)dx, with g̃(x) = g(−x),

≤ C

∥∥∥∥∥
∑

k∈Z

|Ψk+j ∗ f |2
∥∥∥∥∥

p/2,ω

∥∥M∗
a,γ(g̃)

∥∥
(p/2)′,ω1−(p/2)′ .

By Lemma 2.3 and since ω ∈ Ãr(R+) if and only if ω1−r′ ∈ Ãr′(R+) we get
ω ∈ ÃI

p/2(R+) ⊂ ÃI
p(R+) ⊂ Ãp(R+) and ω1−(p/2)′ ∈ Ã(p/2)′(R+). Therefore, by

the weighted Littlewood-Paley theory [11] and Lemma 2.10, we have

(3.4) ‖Ma,γ,j(f)‖p,ω ≤ C ‖f‖p,ω for 2 < p < ∞ and ω ∈ ÃI
p/2(R+).

By interpolating between (3.3) and (3.4) with ω = 1, we get

(3.5) ‖Ma,γ,j(f)‖p ≤ Cp2−θ|j| ‖f‖p

for 2 ≤ p < ∞ and for some θ > 0.

Now, by Lemma 2.3, for any ω ∈ ÃI
p/2(R+), there is an ε > 0 such that

ω1+ε ∈ ÃI
p/2(R+). Thus by (3.4) we have

(3.6) ‖Ma,γ,j(f)‖p,ω1+ε ≤ C ‖f‖p,ω1+ε for 2 < p < ∞ and ω ∈ ÃI
p/2(R+).

Therefore, using the Stein-Weiss interpolation theorem with change of measure [15],
we may interpolate between (3.5) and (3.6) to obtain a positive number τ such that

(3.7) ‖Ma,γ,j(f)‖p,ω ≤ Cp2−τ |j| ‖f‖p,ω for 2 < p < ∞ and ω ∈ ÃI
p/2(R+)

which in turn implies

(3.8) ‖Ma,γ(f)‖p,ω ≤ Cp

∑

j

‖Ma,γ,j(f)‖p,ω ≤ Cp ‖f‖p,ω

for 2 < p < ∞ and ω ∈ ÃI
p/2(R+). In the endpoint case p = 2 and ω ∈ ÃI

1(R+),
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by Schwarz inequality, and (2.10) we have

‖Ma,γ,j(f)‖22,ω

=
∑

k∈Z

∫

Rn

∫ 2k+1

2k

∣∣∣∣
∫

Sn−1
a(ξ) (Ψj+k ∗ f) (x− γ(r)ξ)dσ(ξ)

∣∣∣∣
2

dr

r
ω(x)dx

≤ ‖a‖1
∑

k∈Z

∫

Rn

|Ψk+j ∗ f(x)|2
∫ 2k+1

2k

∫

Sn−1
|a(ξ)| |ω(x + γ(r)ξ)| dσ(ξ)

dr

r
dx

≤ C ‖a‖1
∑

k∈Z

∫

Rn

|Ψk+j ∗ f(x)|2 M∗
a,γ(ω̃)(−x)dx, with ω̃(x) = ω(−x)

≤ C ‖a‖1
∑

k∈Z

∫

Rn

|Ψk+j ∗ f(x)|2
∫

Sn−1
|a(y′)|My′ ω̃(−x)dσ(y′)dx.

By the arguments in the proof of Theorem 7 in [7, p. 875] we infer that

My′(ω̃)(−x) ≤ Cω(x) with C independent of y′.

Thus,

‖Ma,γ,j(f)‖22,ω ≤ C ‖a‖21
∑

k∈Z

∫

Rn

|Ψk+j ∗ f(x)|2 ω(x)dx

≤ C

∥∥∥∥∥∥

(∑

k∈Z

|Ψk+j ∗ f |2
)1/2

∥∥∥∥∥∥

2

2,ω

.

Since ω ∈ ÃI
1(R+) ⊂ A1(R+), by the weighted Littlewood-Paley theory we get

(3.9) ‖Ma,γ,j(f)‖2,ω ≤ ‖f‖2,ω for ω ∈ ÃI
1(R+).

As above, by using the interpolation theorem with change of measure between (3.3)
and (3.9), Lemma 2.3 and using (3.2) we get (3.1) for p = 2. Thus the proof Theorem
1.2 under condition (a) is complete. ¤

The proof of Theorem 1.2 under condition (b).
Let {Φj}∞−∞ be as before and Λ̂j(ξ) = Φj(|ξ|) for ξ ∈ Rn. Then by the above

arguments and changing variables we get

(3.10) MΩ,γf(x) ≤
∑

j

SΩ,γ,jf(x),

where

SΩ,γ,jf(x) =

(∑

k∈Z

∫ γ(2)

γ(1)

∣∣∣∣
∫

Sn−1
Ω(ξ) (Λj+k ∗ f) (x− r2kξ)dσ(ξ)

∣∣∣∣
2

dr

r

)1/2

.
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By the same proof as that of (3.3) we have

(3.11) ‖SΩ,γ,j(f)‖2 ≤ C2−α|j| ‖f‖2 .

By (3.10)-(3.11), interpolation theorem with change of measure and following the
same argument as in the proof of (3.7), we notice that the proof of Theorem 1.2 for
condition (b) is completed if we can show that

(3.12) ‖SΩ,γ,j(f)‖p,|x|α ≤ ‖f‖p,|x|α

for 2nδ/(2n + nδ− 2) < p < 2, 1
2 (1− n)(2− p) < α < 1

2 (2np− 2n− p). To this end,
we use the duality argument. In fact, by duality there is a function g = gk,j(x, r)

satisfying ‖g‖ ≤ 1 and gk,j(x, r) ∈ Lp′
(
l2

[
L2

(
[γ(1), γ(2)] , dt

t

)
, k

]
, |x|−αp′/p

dx
)

such that

‖SΩ,γ,jf‖p,|x|α

=
∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

∫

Sn−1
Ω(ξ) (Λj+k ∗ f) (x− 2krξ)gk,j(x, r)dσ(ξ)

dr

r
dx

=
∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

∫

Sn−1
Ω(ξ) (Λj+k ∗ f) (x)gk,j(x + 2krξ, r)dσ(ξ)

dr

r
dx

≤

∥∥∥∥∥∥∥


∑

k∈Z

(∫ γ(2)

γ(1)

∫

Sn−1
Ω(ξ)gk,j(·+ 2krξ, r)dσ(ξ)

dr

r

)2



1/2
∥∥∥∥∥∥∥

p′,|x|−αp′/p

×
∥∥∥∥∥∥

(∑

k∈Z

|Λj+k ∗ f |2
)1/2

∥∥∥∥∥∥
p,|x|α

.

Now set

F (g) =
∑

k∈Z

(∫ γ(2)

γ(1)

∫

Sn−1
|Ω(ξ)|

∣∣gk,j(·+ 2krξ, r)
∣∣ dσ(ξ)

dr

r

)2

.

Since |x|α ∈ Ap(Rn) if and only if −n < α < n(p− 1), by the weighted Littlewood-
Paley theory we have

(3.13) ‖SΩ,γ,jf‖p,|x|α ≤ Cp ‖f‖p,|x|α
∥∥∥(F (g))1/2

∥∥∥
p′,|x|−αp′/p

.

Since
∥∥∥(F (g))1/2

∥∥∥
p′,|x|−αp′/p

= ‖F (g)‖1/2

p′/2,|x|−αp′/p and p′ > 2, there is a function

b ∈ L(p′/2)′(Rn, |x|−αp′/p) such that ‖b‖
(p′/2)′,|x|−αp′/p ≤ 1 and
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‖F (g)‖
p′/2,|x|−αp′/p

=
∫

Rn

∑

k∈Z

(∫ γ(2)

γ(1)

∫

Sn−1
|Ω(ξ)|

∣∣gk,j(x + 2krξ, r)
∣∣ dσ(ξ)

dr

r

)2

|b(x)| dx.

Now, we need to consider two cases:
Case 1. 2nδ/(2n+nδ− 2) < p < 2, 1

2 (1−n)(2− p) < α < 1
2 (2np− 2n− p) and

q ≥ 2.

By Hölder’s inequality, we have

(∫ γ(2)

γ(1)

∫

Sn−1
|Ω(ξ)|

∣∣gk,j(x + 2krξ, r)
∣∣ dσ(ξ)

dr

r

)2

(3.14)

≤ ‖Ω‖2q
∫ γ(2)

γ(1)

(∫

Sn−1

∣∣gk,j(x + 2krξ, r)
∣∣q′ dσ(ξ)

)2/q′
dr

r

≤ ‖Ω‖2q
∫ γ(2)

γ(1)

∫

Sn−1

∣∣gk,j(x + 2krξ, r)
∣∣2 dσ(ξ)

dr

r
.

Thus, by (3.14) and a simple change of variable we get

‖F (g)‖
p′/2,|x|−αp′/p

≤ C

∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(x, r)|2
(∫

Sn−1

∣∣b(x− 2krξ)
∣∣ dσ(ξ)

)
dr

r
dx

≤ C

∫

Rn

(∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(x, r)|2 dr

r

)
MS(|b|)(x)dx

≤
∥∥∥∥∥∥

(∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(·, r)|2 dr

r

)1/2
∥∥∥∥∥∥

2

p′,|x|−αp′/p

‖MS(|b|)‖(p′/2)′,|x|2α/(2−p) .

By the conditions on p, q and α we have (p′/2)′ > n/(n − 1) and 1 − n < 2α
2−p <

(n− 1) ((p′/2)′ − 1)− 1. Thus by Lemma 2.12 and the choices of g and b we obtain

‖F (g)‖
p′/2,|x|−αp′/p ≤ C

which proves (3.12) for q ≥ 2.

Case 2. 2nδ/(2n + nδ − 2) < p < 2, 1
2 (1 − n)(2 − p) < α < 1

2 (2np − 2n − p)
and 1 < q < 2.
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By Hölder’s inequality, Fubini’s theorem and a change of variable, we have

‖F (g)‖
p′/2,|x|−αp′/p

≤ ‖Ω‖q
q

∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

∫

Sn−1
|Ω(ξ)|2−q ∣∣gk,j(x + 2krξ, r)

∣∣2 dσ(ξ)
dr

r
|b(x)| dx

≤ C

∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(x, r)|2
(∫

Sn−1
|Ω(ξ)|2−q ∣∣b(x− 2krξ)

∣∣ dσ(ξ)
)

dr

r
dx

≤ C

∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(x, r)|2
(∫

Sn−1

∣∣b(x− 2krξ)
∣∣q′/2

dσ(ξ)
)2/q′

dr

r
dx

≤ C

∫

Rn

∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(x, r)|2
(∫

Sn−1

∣∣b(x− 2krξ)
∣∣q′/2

dσ(ξ)
)2/q′

dr

r
dx

≤ C

∫

Rn

(∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(x, r)|2 dr

r

) (
MS(|b|q′/2)(x)

)2/q′

dx

≤ C

∥∥∥∥∥∥

(∑

k∈Z

∫ γ(2)

γ(1)

|gk,j(·, r)|2 dr

r

)1/2
∥∥∥∥∥∥

2

p′,|x|−αp′/p

×

∥∥∥∥
(
MS(|b|q′/2)

)2/q′
∥∥∥∥

(p′/2)′,|x|2α/(2−p)
.

Since (2/q′)(p′/2)′ > n/(n− 1), by Lemma 2.12 we get (3.12) in the case 1 < q < 2.
This completes the proof of Theorem 1.2 under condition (b). ¤

Proof of Theorem 1.1.
Let ϕ(r) be a smooth function supported on

{
r : 1

2 < r < 2
}

and
∑

j ϕ(2jr) = 1.

Let Υ̂j(ξ) = ϕ(2j |ξ|) and

Hr,k,jf(x) =
∫

Sn−1
Ω(ξ) (Υj+k ∗ f) (x− 2krξ)dσ(ξ).

Since f =
∑
j

Υj+k ∗ f for f ∈ S(Rn) and for any k ∈ Z, applying Minkowski’s

inequality to get

(3.15) MΩf(x) ≤
∑

j

MΩ,jf(x),

where

MΩ,jf(x) =

(∑

k∈Z

∫ 2

1

|Hr,k,jf(x)|2 dr

r

)1/2

.
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It is clear that by Theorem 1.2, we only need to prove Theorem 1.1 under condition
(a).

By the same arguments as in the proof of (3.3) we have

(3.16) ‖MΩ,j(f)‖2 ≤ C2−α|j| ‖f‖2 .

As in the proof of Theorem 1.2 under condition (b) and (3.15)-(3.16), we only need
to show that

(3.17) ‖MΩ,jf‖p,ω ≤ Cp ‖f‖p,ω for δ ≤ p < ∞, ω ∈ Ap/δ.

The proof of (3.17) will be divided into two steps.

Case (1): δ ≤ p < ∞, ω ∈ Ap/δ and q ≥ 2. In this case 2 ≤ p < ∞
and ω ∈ Ap/2. First we consider the case p > 2. By duality, there is a function
g ∈ L(p/2)′(ω1−(p/2)′) with ‖g‖(p/2)′,ω1−(p/2)′ ≤ 1 such that

‖MΩ,j(f)‖2p,ω =
∑

k∈Z

∫

Rn

∫ 2

1

∣∣∣∣
∫

Sn−1
Ω(ξ) (Υj+k ∗ f) (x− r2kξ)dσ(ξ)

∣∣∣∣
2

dr

r
|g(x)| dx.

By Hölder’s inequality, we have
∣∣∣∣
∫

Sn−1
Ω(ξ) (Υj+k ∗ f) (x− r2kξ)dσ(ξ)

∣∣∣∣
2

(3.18)

≤ ‖Ω‖2q
(∫

Sn−1

∣∣(Υk+j ∗ f) (x− r2kξ)
∣∣q′ dσ(ξ)

)2/q′

≤ ‖Ω‖2q
∫

Sn−1

∣∣(Υk+j ∗ f) (x− r2kξ)
∣∣2 dσ(ξ).

Thus, by Fubini’s theorem and a simple change of variable we get

‖MΩ,j(f)‖2p,ω

≤ C
∑

k∈Z

∫

Rn

|Υk+j ∗ f(x)|2
∫ 2

1

∫

Sn−1

∣∣g(x + r2kξ)
∣∣ dσ(ξ)

dr

r
dx

≤ C
∑

k∈Z

∫

Rn

|Υk+j ∗ f(x)|2 M∗(g̃)(−x)dx, with g̃(x) = g(−x)

≤ C

∥∥∥∥∥
∑

k∈Z

|Υk+j ∗ f |2
∥∥∥∥∥

p/2,ω

‖M∗(g̃)‖(p/2)′,ω1−(p/2)′ .

Therefore, by the weighted Lp (1 < p < ∞) boundedness of the Hardy-Littlewood
maximal operator M∗ and the weighted Littlewood-Paley theory [11] we get

(3.19) ‖MΩ,j(f)‖p,ω ≤ Cp ‖f‖p,ω for 2 < p < ∞ and ω ∈ Ap/2(Rn).
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In the endpoint case p = 2 and ω ∈ A1(Rn), by (3.18) and the definition of A1

weight we have

‖MΩ,j(f)‖22,ω

=
∑

k∈Z

∫

Rn

∫ 2

1

∣∣∣∣
∫

Sn−1
Ω(ξ) (Υj+k ∗ f) (x− r2kξ)dσ(ξ)

∣∣∣∣
2

dr

r
ω(x)dx

≤ ‖Ω‖2q
∑

k∈Z

∫

Rn

|Υk+j ∗ f(x)|2
(∫ 2

1

∫

Sn−1
ω(x + r2kξ)dσ(ξ)

dr

r

)
dx

≤ C
∑

k∈Z

∫

Rn

|Υk+j ∗ f(x)|2 M∗(ω̃)(−x)dx, with ω̃(x) = ω(−x)

≤ C

∥∥∥∥∥∥

(∑

k∈Z

|Υk+j ∗ f |2
)1/2

∥∥∥∥∥∥

2

2,ω

.

Thus, by the weighted Littlewood-Paley theory we get

(3.20) ‖MΩ,j(f)‖2,ω ≤ ‖f‖2,ω for ω ∈ A1(Rn).

Case (2): δ ≤ p < ∞, ω ∈ Ap/δ and 1 < q < 2. In this case we have
q′ ≤ p < ∞, ω ∈ Ap/q′ and p > 2.

As above, by duality, there is a function g ∈ L(p/2)′(ω1−(p/2)′) and satisfies
‖g‖(p/2)′,ω1−(p/2)′ ≤ 1 such that

‖MΩ,j(f)‖2p,ω =
∑

k∈Z

∫

Rn

∫ 2

1

∣∣∣∣
∫

Sn−1
Ω(ξ) (Υj+k ∗ f) (x− r2kξ)dσ(ξ)

∣∣∣∣
2

dr

r
|g(x)| dx.

By Hölder’s inequality, Fubini’s theorem and a change of variable, we have

‖MΩ,j(f)‖2p,ω

≤ ‖Ω‖1
∑

k∈Z

∫

Rn

∫ 2

1

∫

Sn−1
|Ω(ξ)|2−q ∣∣(Υk+j ∗ f) (x− r2kξ)

∣∣2 dσ(ξ)
dr

r
|g(x)| dx

≤ C
∑

k∈Z

∫

Rn

|Υk+j ∗ f(x)|2 M∗
Ω

(2−q) (g̃)(−x)dx

≤ C

∥∥∥∥∥∥

(∑

k∈Z

|Υk+j ∗ f |2
)1/2

∥∥∥∥∥∥

2

p,ω

∥∥∥M∗
Ω

(2−q) (g̃)
∥∥∥

(p/2)′,ω1−(p/2)′
.

By the above arguments, the proof of (3.17) will be completed in Case (2) if we can
show that

(3.21)
∥∥∥M∗

Ω
(2−q) (g̃)

∥∥∥
(p/2)′,ω1−(p/2)′

≤ C ‖g‖(p/2)′,ω1−(p/2)′ .
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To this end, we invoke Lemma 2.11. In fact, if we let d = q/(2− q), then we notice

that |Ω|2−q ∈ Ld(Sn−1), d′ = q′/2,
(
ω1−(p/2)′

)1−(p/2)

= ω ∈ Ap/q′ = A(p/2)/d′ and

(p/2)′ < d. Therefore, d, (p/2)′ and ω1−(p/2)′ satisfy condition (b) in Lemma 2.11.
This finishes the proof of Theorem 1.1 for condition (a). This ends the proofs of
Theorems 1.1 and 1.2. ¤
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