Bull. Korean Math. Soc. 51 (2014), No. 5, pp. 1241-1257
http://dx.doi.org/10.4134/BKMS.2014.51.5.1241

GLOBAL WEAK MORREY ESTIMATES FOR SOME
ULTRAPARABOLIC OPERATORS OF
KOLMOGOROV-FOKKER-PLANCK TYPE

XI1A0JING FENG, PENGCHENG NIU, AND MAOCHUN ZHU

ABSTRACT. We consider a class of hypoelliptic operators of the following
type

Po N
L= Z aijaiixj + Z bijmiazj — O,
Q=1 ij=1
where (a;;), (bij) are constant matrices and (a;;) is symmetric positive
definite on RPo (pg < N). By establishing global Morrey estimates of
singular integral on the homogenous space and the relation between Mor-
rey space and weak Morrey space, we obtain the global weak Morrey
estimates of the operator L on the whole space RV+t1,

1. Introduction and main results

Let us concern a class of ultraparabolic operators of Kolmogorov-Fokker-
Planck type in RV *1:

N N
(1.1) Lo =div(AV) + (2, BV) =0, = > ay0i,, + Y bizi0s, — 0,
i,j=1 i,j=1

where 1 < pg < N, A = (ai;) and B = (b;;) are N x N matrices with constant
real entries, V. = (0z,,0z5,---,0zy), div and (-,-) denote the gradient, the
divergence and the inner product in R, separately. The matrix A is supposed
to be symmetric and positive semidefinite. We also assume that the following
condition holds:

(Ho) Ker(A) does not contain nontrivial subspaces which are invariant for
B.
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Hérmander in [12] pointed out that (Ho) implies (actually, is equivalent to)
the hypoellipticity of (1.1). By introducing the matrix

(1.2) C(t) = /O E(s)AE” (s)ds,

where E(s) = exp(—sB7T), the authors in [14] showed that (Hp) is equivalent
to the condition

(1.3) C(t) >0 for every t > 0.

It is interesting to remark that the condition (1.3) can also be expressed in
geometric-differential terms. In fact, setting

N
Xi:Zaijazja i:L-'wNv Y = <1"BV>’
j=1

then (1.3) is equivalent to the following Hérmander’s condition
(1.4) rank £(X1, Xa,..., Xy, Y)(z) = N, z € RV,

where £(X7, Xs,...,Xn,Y) denotes the Lie algebra generated by Xi, X, ...,
Xn,Y. The proof of the equivalence between (Hp) and (1.4) is implicitly
contained in the introduction of [12], and Kuptsov in [13] gave an explicit
proof of the equivalence between (1.3) and (1.4).

The authors in [14] also proved that (1.4) implies that, for some basis on
R¥, the matrices A and B take the form:

(1.5) A= (/(1)0 8)

and
* Bl 0 0
* B2 0
(1.6) B=|: S
* * B,
* % *
respectively, where Ag = (aij)ﬁ‘}zl is a pg X po constant matrix (pg < N)

with rank po; B; is a pj—1 x p; block with rank p;, j = 1,2,...,r. Moreover
po=zpr=z--2p-=landpo+pr+---+p-=N.

Specially, if we denote by By the matrix obtained by annihilating all the
blocks of the matrix written as (1.6), then the operator Ly becomes

Po N
L= le(AV) + <$,Bov> — 0 = Z aij(')izj + Z bij:z:i@zj — 0O,

4,j=1 ,j=1
which is the principal part of Ly. In this paper, we will consider the operator
L and make the following assumption:
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(Hi) Ao = (aiy)}%=, is symmetric and positive definite, and there exists
positive constant v such that

Po
1
1.7 V¢ < ai;&&; < =€)

(17) < 3 vt < I
for all £ € RPo.

It is known that L is hypoelliptic (see [14]). On the other hand, L is a heat
operator when pg = N, B = 0 and the degenerate operators (i.e., with pg < N)
appear in many research fields. For instance, the Kolmogorov equation

92 u+ x105,u = dyu, (z,t) € R?

occurs in the financial problem (see [1, 10]), in the kinetic theory (see [6, 16])
as well as in the visual perception problem (see [18]).

We know that L is a class of Kolmogorov-Fokker-Planck ultraparabolic op-
erator. Owing to its importance in physics and in mathematical finance, it
has been extensively studied (see [3, 4, 11, 14, 19, 20]). The authors in
[11, 14, 19, 20] proved an invariant Harnack inequality for the non-negative
solutions of the equation Lu = 0. The local L? estimates have been studied by
the authors in [3] and [4].

There are also some authors studied the Morrey estimates for some operators
(see [7, 15, 22]). The local Morrey estimates for second-order nondivergence
elliptic operators in Euclidean spaces were established by G. Fazio and M. Ra-
gusa in [7]. G. Lieberman in [15] derived directly the local Morrey estimates
for some second-order nondivergence elliptic and parabolic operators. For par-
abolic nondivergence operators of Hormander type, S. Tang and P. Niu in [22]
checked the local Sobolev-Morrey estimates. In this paper, we investigate the
global weak Morrey estimates for the operator L. Moreover, the Holder esti-
mates of the operator L under some certain conditions are given.

To state our main results, we introduce some notations and function spaces.

Definition 1.1 (Morrey space). We say that a measurable function f €
LY (RN*1) belongs to the Morrey space LPA(RNHL) with p € (1,+00) and

loc

A €]0,Q + 2], if the norm

1 1/P
TP <sup7 / If(z)lpdw>

r>0T

is finite, where @ and B, are described in (2.2) and (2.5), separately.
Letting Y; = 0, (i =1,2,...,p0), and noting Yy = (x, BV) — 0;, we use the
simplified notations:

Ppo

1Dl or @y = Y I1Vjull oo @nny;
j=1
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Po
(1.8) HD2'UJHLP’*(RN+1) = Z HYinu”LP’)\(]RN*l) + HYOUHLP’)‘(]RNJA);
ij=1
and
(L9) DMl oy = 3 1Y5 - Yiul poaansr) for k> 2,

where the sum is taken over all monomials Y}, ---Y;, which are homogeneous
of degree k. (Remark that Y; has degree two while the remaining fields have
degree one.)

Definition 1.2. Let p € (1,400), A € [0,Q + 2] and k be a nonnegative
integer. We define Sobolev-Morrey spaces S*P*(RN*+1) which consists of all
LPARNL) functions with k-th derivatives with respect to vector fields Y;'s
(¢=0,1,...,p0). The Sobolev-Morrey norm is defined by

k

HU’HS’“P*‘(RNJA) = Z ||Dhu||L1),>\(]RN+1).
h=0

Definition 1.3. Let f € LP(RV+1), 20 e RN *L p >0, 7 > 0, and set
Arp(f) = {z € By(20) [/ (2)| > 7},
where B,(zo) is given in (2.5). The function
Ap(T,p) = |AT,p(f)|
is called a distribution function of f.
Definition 1.4 (Weak Morrey space). For p € (1,00), A € [0,Q + 2], a

measurable function f is said to belong to a weak Morrey space (denoted by
LEARN*Y)), if

. -
||f||Lﬁ;)\(RN+1) = ig%_}_g%{/l | /\f('r7 p) <pT PAP}
is finite.

The main results in this paper are as follows.

Theorem 1.1. For every p € (1,00), A € [0,Q + 2), there exists a positive
constant C, depending on p, po, the matriz B and the number v in (1.7) such
that

”DkJFQU”Lg;A(RNH) < CHLU”S’W’*(RNH)
for every u € C§°(RNTY) and nonnegative integer k.
Theorem 1.2. If2p+ A > Q+2, p+ A< Q+2 and 6 = w, then

there exists a positive constant C, depending only on p, A and the operator L,
such that for every u € C§°(RN*1),

|u(z) = w(w)]|

Hz_l o ng < C||LuHLPv>‘(]RN+1)7
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for every z,w € RN*L 2 = w, where o is the group law given in Section 2;
Ifp+A>Q+2andd = %}Qm, then there exists a positive constant C,
depending only on p, X and the operator L, such that for every u € C$°(RNT1),
|02;u(2) — Op; u(w)|

[zt owll®

< CHLU||LP,)\(]RN+1)

for every z,w € RN*L 2w and j =1,2,...,po.

The paper is organized as follows: In Section 2, we introduce some prelim-
inary and known results which will be used later. Section 3 is first devoted
to obtaining global second order Morrey estimates and the higher order Mor-
rey estimates by using global LP estimate. And then, we check the relation
between the global Morrey space and the global weak Morrey space. Using
these conclusions, Theorem 1.1 is proved. The proof of Theorem 1.2 is given
in Section 4.

2. Preliminary

It is proved in [14] that the operator L is left-invariant with respect to the
Lie group K whose underlying manifold is R¥*!, endowed with the composition
law

(z,t) 0 (§,7) = (£ + E(T)a,t +7),
where E(7) = exp(—7BT) and BT denotes the transpose of B. Note that
(&7 7_)71 = (7E(7T)§a 77_)'

There exists a group of dilations on RV which we denote by (D(A))x>o.
More precisely, D(A) is defined by

(2.1) D()\) = diag(A*, A2, ... AN A%,

where
Q1= =py =1, Qpoi1 = = Qpogpr = By
Qpgt-tp,_g 41 = - = QN =21 + 1.

Therefore, we can write

D()\) = diag( M, , N1,

2r+1 2
plﬂ"'v)\ Iprv)\)v

where I,,, D()) denote the p; x p; identity matrix and the matrix of dilations
on RM*1 respectively. Note that

det(D(\)) = \9+2
where
(2.2) Q+2=po+3p1+-+2r+1p.+2

is called the homogeneous dimension of RV*! with respect to (D(A))xs0.
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Definition 2.1. We say that a differential operator Y on RV *! is homogeneous
of degree 5 > 0, if

Y(p(D(N)2)) = M (Yp)(D(N\)z), ze RV*L X >0

for every test function . Also, we say that a function f is homogeneous of
degree « if

F((DMN)2)) = A f(2), A >0, z € RVFL

Clearly, if Y is a homogeneous differential operator of degree 5 and f is a
homogeneous function of degree «, then Y f is homogeneous of degree a — .
By Definition 2.1, it is easy to show that the operator L is homogeneous of
degree two with respect to the dilations D(A), i.e.,

L(u(D(N\)z)) = A2 (Lu)(D(M\)z), z € RN T X >0

for every u € Cg°(RNF1).
We introduce a norm and a quasidistance in RV*1, related to the groups of
translations and dilations defined above.

Definition 2.2. Let z = (21, 22,...,2n,t) € RN T if 2 = 0 we set ||z]| = 0,
while if 2 € RVT1\{0} we define ||z|| = o, where g is the unique positive solution
to the equation

2 2 2 2
g gttt
where aq, o, ..., ay are the positive integers in (2.1).
Bramanti and Cerutti in [4] showed that the norm || - || satisfies
(2.3) Iz < callell, = € R
and
(2.4) Iz o ¢ll < call=ll + lISH), 2,¢ € RM,

where the positive constants ¢; and ¢y depend only on the matrix B.

Remark 2.1. There is a natural homogeneous norm in RN¥*1, induced by dila-
tion D(\):

N
Iz, )l =Dl | + |t/
j=1
Clearly, we have
[DN)z] = Alz], A >0, z€ RNTL
Definition 2.3. For every z,w € RV*1  define a quasidistance by

d(z,w) = lw" o 2.
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The ball with respect to d is denoted by
(2.5) B(z,r) = B.(2) = {w € RN 1 d(z,w) < r}.
Since B(0,7) = D(r)B(0,1) and det(D()\)) = A9*2, we also have
|B,(0)] = r92[ By (0)],

where |B1(0)| = wny1 is the Lebesgue measure of the Euclidean unit ball of
RN*1. This implies that the Lebesgue measure dz is a doubling measure with
respect to d, since

|B(z,2r)| = 2972|B(z,7)|, 2 e RNTL > 0.

Therefore, the space (RN*+1 dz, d) is a space of homogenous type. Recall that
if f and ¢ are functions on RV*!, their convolution f * g is defined by

fro@= [ reoy ey = [ a7 ow) f)dy.

RN+1

Lemma 2.1 ([14]). The operator L possesses a fundamental solution

0, t<0,
2.6 I'(z) = )~ N/2 _
26) ) (47/(1;—0(” exp(—3(C7 ! (t)z, ), >0,

where z = (x,t) and C(t) is as in (1.2). Moreover, I' € C°(RN*1\ {0}).
The authors in [8] and [21] proved a representation formula:
(2.7) u(z) = —(Lu*T)(z) = —/ (¢t o 2)Lu(¢)dC.
RN+1

And the following formula was given by Bramanti in [5]:
(2.8) ag%m]u(z) = —PV(Lu % aiile")(z) + ¢;jLu(z)

for every u € C§°(RM*1) and some constants ¢;j, 4,5 = 1,2,...,po. The
principal value in (2.8) is understood as

PV(Lux 92, T)(z) = lim (02, T)(¢toz)Lu(¢)dC.
o 20 tozl>e T
Set
FZ(Z) = amlF(z), FU(Z) = aziamjl“(z), ’L',j = 1, 2, ...y PO-

We also observe that I'(z) is homogeneous of degree —@Q with respect to the
group (D(M))aso and T';(z) (i,7 = 1,2,...,po) are homogeneous of degree
—(Q + 1). Recall that I';;(-) has the following properties.
Lemma 2.2 ([4]). Fori,j =1,2,...,po, one has

(a) Ty(-) € C=(RN*1\{0});

(b) T';;(-) is homogeneous of degree —Q — 2;

(c) for every R>1r >0,

Iij(2)dz = I';j(2)do(2) = 0.
/T<|Z|<R ) /HZII—l (=)o)
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Lemma 2.3 ([8, 9]). Let K, be a kernel in C*°(RN+1\{0}) and homogeneous
of degree h — Q — 2, for some integer h with 0 < h < Q 4+ 2. Denote

Thf = [f* Ky

and let P" be a homogeneous left invariant differential operator of degree h.
Then

(d)
P"T,f = PV.(f x P"K}) + af,

where o is a constant depending on P" and Kp;
(e) the singular integral operator

f = PV.(f *x P"K})

is continuous on LP(RN*1) for 1 < p < <.

3. Proof of Theorem 1.1

In this section, we first establish global second order Morrey estimates and
the higher order Morrey estimates by applying Lemmas 2.2 and 2.3 and then
give the relation between the global Morrey space and the global weak Morrey
space. Based on these, Theorem 1.1 is proved.

Lemma 3.1. Let a € R and v € C(RNT\{0}) be a homogeneous function
with degree a with respect to the group (D(A\))xso. Then

[y ()| < ell=*,
where ¢ = supy, | [7(2)], ©n11 denotes the unit sphere of RNFL.
Proof. Since 7 is a homogeneous function with degree a, one has
1(2) = [l21*v(D(|2]7)2), = € R¥\{0}.

It is clear that || D(]|z]|~1)z|| = 1, hence |y(D(||z]|~1)2)| < ¢, z € RN1\{0}.
Therefore, |y(z)| < ¢||z||*. The proof is completed. O

Let us define a singular integral operator

€20 J)i¢-10z)>e

for every measurable function g.

Lemma 3.2. Letp € (1,00), A € [0,Q +2). For every g € LP(RNTY), there
erists a positive constant ¢ depending on p, X and the operator L, such that

ITi59ll Lor @41y < cllgllLea@a+n)-

Proof. Fix y and » > 0. For any measurable set £ C RYT1 its characteristic
function is denoted by xg. Then we set

go = 9XB,(y)» 9k = gXszT(y)\szflr(y)v k= 15 27 SRR
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and § = 1/(2cica), where ¢; and c2 are the constants in (2.3) and (2.4). It
immediately follows from Lemma 2.3 that
173591 e @n+1y < cllgllLe@n+1y,

where c is a positive constant. Hence,

2
(3:2) N T590ll e (85, () SN Tisg0l Loy Sellgllrs. @y <er gl Loa@y o,

where the last inequality is obtained from the definition of LPA(RN*1). We
now consider gy (z), where k € Nt and z € By, (y). By Lemma 3.1, there exists
¢ > 0 such that

(3.3) ITii(¢hoz)| < ell¢ oz 7@F2).
Moreover, if ¢ € Bok,.(y)\Bar-1,.(y), then by (2.3) and (2.4),
k=1 _
<€t oyl
C1

el ozl + ] 27 oyl

<ea([[¢ o 2] + eadr),
and

-1 > 2kp,
6 0sl > ot

Thus, from (3.1) and (3.3), it follows

i) < [

2k trglly=todfl <2k

c

WW(OWC

c(4cic)@t?

< ——F 5 d
<Laal /B L

A=(Q+2)
< Ngllpoagen (28r)

and by integration over Bj,(y),

A A=(R+2)
(3-4) I Ti9k | Lo (85, ) < €77 gl Lor @y (27) 7,

where ¢” is a positive constant depending only on p and the constants ¢; and
¢a. By (3.2) and (3.4),
1 _a e A= (Q42) k
s 17539l Lo (Bs, () < O™ 7 lgllLer@nry e+ > (277 )7,
(6r)» k=1

which plainly proves the conclusion, since the above series is convergent. [

Theorem 3.1. For every p € (1,00), A € [0,Q + 2), there exists a constant

C > 0, depending on p, po, the matriz B and the number v in (1.7) such that
for every u € C$° (RN T,

||3§izju||LM(RN+l) < Ol Lul| prr@n+1y, 4,5 =1,2,...,po;

IYoull ox@n+1y < CllLul| pox@n+1y,
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where Yy = (x, BV) — 0.
Proof. Tt follows from (2.8) that

02 . u(z) = —PV(Lu * ('ﬁﬂjf)(z) + c;jLu(z).

ZTilyj
By Lemma 3.2, there exists a constant C' such that

19

iZj
The estimate of ||Youl|r.x@n+1y yields from

Po
(3.5) You = Lu — Z aij0% , u

iZj
i,j=1

This ends the proof.

Lemma 3.3. Let

(3.6) PF =Y, Y, Y, =0z, i=1,...

fork=1,2,...and0 < j; <po, i =1,2,...,1, where Y, --

of degree k. Then for any test function T, we have
(P*T) 7 =T % P*r.

Proof. Tt is easy to check that for any test function 7,

(3.7) (YiD)xr=TxY;7, i=1,2,...,pp.

By (3.5),
— - 2
YO =L - Z aijﬁzﬂj.
i,7=1

Consequently, we have

l

UHLP,A(RN+1) < CHLU||LPv>\(RN+1)a i,j = 1, 2, ...y PO-

-Y}, is homogeneous

Po
(YoI) s 7 =Yo(T' x7) = L(T x 1) — Z aijaimj (T*T1)

ij=1

(3.8) = (T L7) = (T Y ai;0;,,,7)

3,j=1
Ppo

=Tx(L— Y a;0}, )T =TxYyr.

i,j=1
It follows from (3.7) and (3.8) that
(P*T) % 7 =T * P*r.
This finishes the proof.
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Theorem 3.2. Forp € (1,00), A € [0,Q + 2), there exists a constant C' > 0,
depending on p, po, the matriz B and the number v in (1.7) such that for every
u € C§°(RNTL) and nonnegative integer k,

(39) HDk+2U||Lp,)\(]RN+1) < CHLUHSk,p,A(RN+1).
Proof. Due to (1.8), (3.6) and Theorem 3.1, we have
(310) ||P2u||Lp,)\(]RN+1) < CHLUHLP’)‘(]RNJA)'

In order to obtain the estimate of | D3ul|1sa@n+1), it is enough to consider
[ P3ul| o5 gv+1) from (1.9) and (3.6). Note that the P? can be split as P?Y;
and Y;Yp, i =1,...,pg. In the first case, by Lemma 3.3,

P?Yu = P?Y;(T' * Lu) = P*(T % Y;Lu).
Thus, on the basis of Lemma 3.2, there exists a constant C' such that
(3.11) [|P*Yul| o @1y < ||[P?(C % Y;Lu) || poa@n+1y < CllYiLul| poo @)

In the second case, note that YoI'(2) = — >0, a;;0% . T'(z), 2 € RN\ {0}.

By Lemmas 3.2 and 3.3, there exists a constant C' such that
||}/1;YOU||LP,)\(]RN+1) = ||}/1Y0(F * LU)”L;J,)\(]RN+1)
< N (YViYoI s Lu)|| o v+t
(312) = ||(YOF * Y;L’U,)HL;;,A(RN+1)
C||Yz'LU||LM(RN+1)

<
< C||DLU||Lp,A(RN+1).

By (3.11) and (3.12), we have
(313) ||P3u||Lp,)\(]RN+l) < C”DLUHLP’)‘(]RN+1)'

For k > 2, we will consider the estimates of D¥*2u. In fact, by (1.9) and
(3.6), we only to show the estimates of P**2u. Let us split the P**2y as P2P*
(with P? = Y)) and P3P*~! (with P3 = Y;Y; for some i = 1,2,...,po). In the
first case, using Lemmas 3.2 and 3.3, leads to that there exists a constant C'
such that

||P2Pku||vak(RN+1) = ||PQ(PkF *LU)||LM(RN+1)
= ||PQ(F *PkLU)HLM(RNH)

CHPkLUHLm(RNH)

CHDkLu”LP’)\(]RN+1)'

(3.14)

NN
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In the second case, by Lemmas 3.2, 3.3 and Theorem 3.1, there exists a constant
C such that

1YiYo P~ ul| o1y = [[Yi¥o (PP 'T % Lu)|| o @y

< (ViYol * PE= Lu) || oo vy

(3.15) = | (YoI' # YiP" ' Lu) || o mv+1y
C||P* L o v +1
C||D*Lul| o> 41y

NN

Hence, by (3.14) and (3.15),
(3.16) HPk+2u||Lp,>\(RN+1) < CHDkLu||Lp,>\(RN+1).

Therefore, (3.9) is followed from (3.10), (3.13) and (3.16). The proof is com-
pleted. (I

Theorem 3.3. For every p € (1,00), there exists a constant C > 0, such that
for every f € LPARNTY),

||f||Lﬁ;>‘(RN+1) < C||f||Lp,>\(RN+1).

Proof. For every f € LPA(RNTL),

P A ()] < o / ()P
A

TP

GRS
RN+1

<p
e[

where C' is a constant. Then,
[l @asay < CUFllor @y

It ends the proof. O

Proof of Theorem 1.1. For every nonnegative integer k, by Theorem 3.2, we
have

HDk+2U||LPv>\(RN+1) < CHLullsk’p’)‘(RN+1)'

Hence, from Theorem 3.3, there exists a constant C' such that
HDk+2U||Lﬂ’>‘(RN+1) < CHLU||Sk,p,>\(RN+1).

The proof is completed. O
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4. Holder continuity

In this section, by demonstrating Holder estimates of two integral operators,
we prove Theorem 1.2.

Lemma 4.1 ([17]). Let b € R! and K € CYRN*1\{0}) be a homogeneous
function with degree b with respect to the group (D(M\))aso and there exist two
constants ¢ > 0 and M > 1 such that if ||z|] > M||z=t o (||. Then

[K(Q) = K(2)| <clle™ ol ="

Lemma 4.2. Letp € (1,00) and X € [0, Q+2). Fizedw € RN o € [0,Q+2),
B€(0,Q+2) and o > 0, for every g € LPANRNFL) we set

Tt = | e

¢-1oz]zollu-toz| ICTH 0 2] 9F27

Tyg(z) = /” ﬁdg

¢-tozl|<olw-toz| I¢7 0 2]| @27
Then, if A+ pa < Q + 2, then there exists ¢ = ¢(p, A\, a,0) > 0 such that

and

_ potA—(Q+2)
(4.1) Tag(2)| < cllgllppr@yenlw ozl 7.
Moreover, if A4+ pB > Q + 2, then there exists ¢ = ¢(p, A, 8,0) > 0 such that
_ PBAA—(Q12)
(42) IT5g(2)| < ellgllprr@yenllw™t oz 7.

Proof. Observing that

HMW<Z/ 994
k=172

k=lg||lw—loz||<[|(~Loz||<2Fo|lw—loz| ||<71 o Z||Q+2ia

[e%S) 9 Q+2—a
< 1; <2k0||w—1 o z|> /B . l9(¢)]d¢

2kciollw—loz| (2)

%S
_ pat+A—(Q+2) pat+A—(Q+2)
ellglpra@venlw ™oz 7 > @0 7 ),

k=1
we know that (4.1) is true, since the above series is convergent.
Similarly, by integrating on the set

{CeRY 27 ofw™ o 2]| < ¢ o 2] < 2 FollwT o 2},

it yields
o)
9(9)
Tl <Y | . d¢
b \; 2= ko|lw—loz||<||[¢~toz|| <21~ *o|lw— Loz HC 1OZHQ+2 A

00 9 Q+2-p
S Z 21*k0||w*1 ° z||) /B ) |9(C)|dC

k=1 2 *kclauwflozu(z)



1254 X. FENG, P. NIU, AND M. ZHU

o0
< C||g||LP,)\(]RN+1)||w71 o 2| PBEA—(Q42) Z(2pB+A;<Q+2> )—k.
k=1

Noting that the above series is convergent, (4.2) is proved. (]
Proof of Theorem 1.2. For u € C§°(RN*1), by Lemmas 3.1 and 4.1, there exist
M, c > 0 such that

) —ut)| < [N 02 =T 0wl Lu(Olds

/” o wl ol

1ozl > Mz tow| (70 2]|9F

(&
+f el (Ol
[[¢—toz||[<M|z—tow]|| ||C Lo z”Q

4 /” T L)l

¢ loz||[<M|lz—Low|| ||C_1 ©
= Il + IQ + I3.

By applying Lemma 4.2 and choosing o« = 2 and 0 = M/c¢q, there exists a
positive constant ¢ such that

N

_ 2042~ (Q+2)
(4.3) |L] < ellLull ppa@nnllz owl| T 7

choosing 5 =2 and 0 = Mc; in Lemma 4.2, there exists a positive constant ¢
such that

A—(Q+2)
(44) |IQ| < c||Lu||Lp,)\(RN+1)||Z71 o w”u;

choosing 8 = 2 and 0 = c2(1 + M) in Lemma 4.2, there exists a positive

constant ¢ such that

_ 2p+A—(Q+2)
(45) |I3| < C||LU||LP,)\(RN+1)||Z 1 o ’LUH P .
Hence, by (4.3), (4.4) and (4.5), it is easy to obtain

|u(z) = w(w)]|
Hz_l o ng < C”LUJHLP’*(]RN+1)7

where C is a positive constant, z,w € RVt 2 £ w.
By (2.7), we write

Oz, u(z) = — /]RNH I‘j(g“_l o z)Lu(¢)d¢

for every z € RV *1 and j = 1,2,...,po. Analogously, by Lemmas 3.1 and 4.1,
we get that there exist M, c > 0 such that

o) =) < [ T 00 =Ty 0wl Lu(O)ldC

cllz=t ow||

< T —oas HLu()]d¢
/|(10z||2M|z10w| [~ o z||9+2
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c
+ / | Lu(Q)ld¢
IC—Toz||<M||z—tow]| [¢71 o z]|@t?
c
+ / | Lu(O)ldC
[[¢—Toz||<M|z—towl]| ||C_1 o w||Q+1
=0+ I+ I
By applying Lemma 4.2 and choosing & = 1 and ¢ = M/c¢q, there exists a

positive constant ¢ such that

+A—(Q+2)
(4.6) 1] < ell Ll oagn I ow] 0
choosing 8 =1 and 0 = Mc; in Lemma 4.2, there exists a positive constant ¢
such that
A (Q+2)
(4.7) ] < el Lull @y llz 0wl

choosing f = 1 and 0 = c2(1 + M) in Lemma 4.2, there exists a positive
constant ¢ such that

PEA—(Q+2)

(48) 13) < ellLull o on |2~ 0 wl| =25

He

wh

[1]
2]

3]

[4]

[5]

[6]

7]

(8]

[9]

nce, by (4.6), (4.7) and (4.8), we derive
|02, u(2) — Og; u(w)]
Iz~ ow]l®

< C||Lu||LPv>‘(]RN+1)7 .] = 15 27 -+ Do,
ere C is a positive constant, z, w € RV*! 2 =£ w. This ends the proof. O
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