• Title/Summary/Keyword: $K{\ddot{a}}hler$ manifold

Search Result 28, Processing Time 0.017 seconds

On Some Properties of Riemannian Manifolds with a Generalized Connection

  • Dehkordy, Azam Etemad
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1237-1246
    • /
    • 2016
  • In this paper we study some properties of submanifolds of a Riemannian manifold equipped with a generalized connection $\hat{\nabla}$. We also consider almost Hermitian manifolds that admits a special case of this generalized connection and derive some results about the behavior of this manifolds.

REMARKS ON A THEOREM OF CUPIT-FOUTOU AND ZAFFRAN

  • Kim, Jin Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.591-602
    • /
    • 2020
  • There is a well-known class of compact, complex, non-Kählerian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular holomorphic foliation 𝓕. Moreover, later Meersseman showed that if an LVMB manifold is actually an LVM manifold, then the regular holomorphic foliation 𝓕 is actually transverse Kähler. The aim of this paper is to deal with a converse question and to give a simple and new proof of a well-known result of Cupit-Foutou and Zaffran. That is, we show that, when the holomorphic foliation 𝓕 on an LVMB manifold N is transverse Kähler with respect to a basic and transverse Kähler form and the leaf space N/𝓕 is an orbifold, N/𝓕 is projective, and thus N is actually an LVM manifold.

DEFORMATION RIGIDITY OF ODD LAGRANGIAN GRASSMANNIANS

  • Park, Kyeong-Dong
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.489-501
    • /
    • 2016
  • In this paper, we study the rigidity under $K{\ddot{a}}hler$ deformation of the complex structure of odd Lagrangian Grassmannians, i.e., the Lagrangian case $Gr_{\omega}$(n, 2n+1) of odd symplectic Grassmannians. To obtain the global deformation rigidity of the odd Lagrangian Grassmannian, we use results about the automorphism group of this manifold, the Lie algebra of infinitesimal automorphisms of the affine cone of the variety of minimal rational tangents and its prolongations.

SHIODA-TATE FORMULA FOR AN ABELIAN FIBERED VARIETY AND APPLICATIONS

  • Oguiso, Keiji
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.237-248
    • /
    • 2009
  • We give an explicit formula for the Mordell-Weil rank of an abelian fibered variety and some of its applications for an abelian fibered $hyperk{\ddot{a}}hler$ manifold. As a byproduct, we also give an explicit example of an abelian fibered variety in which the Picard number of the generic fiber in the sense of scheme is different from the Picard number of generic closed fibers.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

ON THE TOPOLOGY OF DIFFEOMORPHISMS OF SYMPLECTIC 4-MANIFOLDS

  • Kim, Jin-Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.675-689
    • /
    • 2010
  • For a closed symplectic 4-manifold X, let $Diff_0$(X) be the group of diffeomorphisms of X smoothly isotopic to the identity, and let Symp(X) be the subgroup of $Diff_0$(X) consisting of symplectic automorphisms. In this paper we show that for any finitely given collection of positive integers {$n_1$, $n_2$, $\ldots$, $n_k$} and any non-negative integer m, there exists a closed symplectic (or K$\ddot{a}$hler) 4-manifold X with $b_2^+$ (X) > m such that the homologies $H_i$ of the quotient space $Diff_0$(X)/Symp(X) over the rational coefficients are non-trivial for all odd degrees i = $2n_1$ - 1, $\ldots$, $2n_k$ - 1. The basic idea of this paper is to use the local invariants for symplectic 4-manifolds with contact boundary, which are extended from the invariants of Kronheimer for closed symplectic 4-manifolds, as well as the symplectic compactifications of Stein surfaces of Lisca and Mati$\acute{c}$.

SOLUTION TO ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS IN WEAKLY q-CONVEX DOMAINS

  • Saber, Sayed
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.409-421
    • /
    • 2018
  • Let X be a complex manifold of dimension n $n{\geqslant}2$ and let ${\Omega}{\Subset}X$ be a weakly q-convex domain with smooth boundary. Assume that E is a holomorphic line bundle over X and $E^{{\otimes}m}$ is the m-times tensor product of E for positive integer m. If there exists a strongly plurisubharmonic function on a neighborhood of $b{\Omega}$, then we solve the ${\bar{\partial}}$-problem with support condition in ${\Omega}$ for forms of type (r, s), $s{\geqslant}q$ with values in $E^{{\otimes}m}$. Moreover, the solvability of the ${\bar{\partial}}_b$-problem on boundaries of weakly q-convex domains with smooth boundary in $K{\ddot{a}}hler$ manifolds are given. Furthermore, we shall establish an extension theorem for the ${\bar{\partial}}_b$-closed forms.

THE ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS AND PSEUDOCONVEXITY OF GENERAL ORDER IN KÄHLER MANIFOLDS

  • Saber, Sayed
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1211-1223
    • /
    • 2016
  • Let M be an n-dimensional $K{\ddot{a}}hler$ manifold with positive holomorphic bisectional curvature and let ${\Omega}{\Subset}M$ be a pseudoconvex domain of order $n-q$, $1{\leq}q{\leq}n$, with $C^2$ smooth boundary. Then, we study the (weighted) $\bar{\partial}$-equation with support conditions in ${\Omega}$ and the closed range property of ${\bar{\partial}}$ on ${\Omega}$. Applications to the ${\bar{\partial}}$-closed extensions from the boundary are given. In particular, for q = 1, we prove that there exists a number ${\ell}_0$ > 0 such that the ${\bar{\partial}}$-Neumann problem and the Bergman projection are regular in the Sobolev space $W^{\ell}({\Omega})$ for ${\ell}$ < ${\ell}_0$.