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ON THE TOPOLOGY OF DIFFEOMORPHISMS OF
SYMPLECTIC 4-MANIFOLDS

Jin Hong Kim

Abstract. For a closed symplectic 4-manifold X, let Diff0(X) be the
group of diffeomorphisms of X smoothly isotopic to the identity, and let
Symp(X) be the subgroup of Diff0(X) consisting of symplectic automor-
phisms. In this paper we show that for any finitely given collection of
positive integers {n1, n2, . . . , nk} and any non-negative integer m, there

exists a closed symplectic (or Kähler) 4-manifold X with b+2 (X) > m
such that the homologies Hi of the quotient space Diff0(X)/Symp(X)
over the rational coefficients are non-trivial for all odd degrees i = 2n1 −
1, . . . , 2nk − 1.

The basic idea of this paper is to use the local invariants for sym-
plectic 4-manifolds with contact boundary, which are extended from the
invariants of Kronheimer for closed symplectic 4-manifolds, as well as the
symplectic compactifications of Stein surfaces of Lisca and Matić.

1. Introduction

The purpose of this paper is to investigate the existence of closed symplectic
smooth 4-manifolds having non-trivial homotopy groups of certain diffeomor-
phisms of symplectic 4-manifolds, which was first initiated by P. B. Kronheimer
in [9]. To be precise, let (X,ω0) be a closed symplectic 4-manifold. Let Diff0(X)
be the group of diffeomorphisms of X smoothly isotopic to the identity, and let
Symp(X) be the subgroup of Diff0(X) consisting of symplectic automorphisms.
Let Λ0 be the space of 2-forms on X that are symplectic and cohomologous to
ω0. Now consider the map

Ψ : Diff0(X) → Λ0, f 7→ (f−1)∗ω0.

Then Ψ induces an injection from the quotient space Diff0(X)/Symp(X) to the
space Λ0. Since Diff0(X) is connected, it follows from a well-known theorem of
Moser in [13] that the image of Ψ is the connected component of Λ0 containing
ω0.
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Using families of the Seiberg-Witten solutions, Kronheimer in [9] defined an
interesting invariant which is an obstruction to some higher homotopy groups
of the quotient space Diff0(X)/Symp(X) or equivalently Λ0. One of the key
ingredients in [9] is a result of C. Taubes about the constraints on symplec-
tic forms [23, 24]. By the work of Taubes, Kronheimer showed the following
interesting theorem.

Theorem 1.1. For each positive integer n, there exists a closed symplectic 4-
manifold (Yn, ωn) with b+2 (Yn) > 2n+ 1 such that both homotopy group π2n−1

and homology group H2n−1 of the quotient space Diff0(Yn)/Symp(Yn) over the
rational coefficients are non-trivial.

His explicit examples are algebraic surfaces of general type. Kronheimer’s
result in [9] was motivated by a result of P. Seidel [19]. By using symplectic
Floer homology, Seidel showed that there are diffeomorphisms in Diff0(X) on
an open symplectic 4-manifold which cannot be symplectically isotopic to the
identity.

In view of Kronheimer’s results on the homotopy groups of diffeomorphisms
in symplectic 4-manifolds, the following general question seems to be worthy
of further investigation:

Question 1.2. Is there a closed symplectic (or Kähler) 4-manifolds (X,ω0)
having the non-trivial homologies

Hi(Diff0(X)/Symp(X);Q)

for all positive integers i?

Another interesting motivation for this question can also be found in a series
of Ruberman’s applications of the Seiberg-Witten theory to an obstruction to
smooth isotopy in dimension 4 and the topology of the space of all metrics
with positive scalar curvature. In particular, Ruberman, among other things,
showed in [16] that π0 of the diffeomorphism group of certain 4-manifolds is
infinitely generated (see [15], [16], and [17] for more applications). It is also
worth mentioning some related works of McMullen and Taubes, Smith, and
Vidussi. They independently showed that the moduli spaces of symplectic
forms modulo diffeomorphisms on certain simply connected 4-manifolds are
disconnected (see [12], [20], and [25]).

Let M be a smooth closed 3-manifold. A contact structure on M is a dis-
tribution ξ of tangent 2-planes locally defined by a 1-form θ such that θ ∧ dθ
is nowhere vanishing. Clearly θ ∧ dθ defines an orientation on Y and this ori-
entation does not depend of the choice of the sign of θ. When M has a fixed
orientation, we say that ξ is positive (negative, respectively) if the orientation
on M induced by ξ coincides with (is opposite to, respectively) the given ori-
entation. From now on, we assume that every contact structure of this paper
is positive. A 4-manifold with contact boundary is a pair (X, ξ) consisting of
a connected oriented smooth 4-manifold with boundary and a positive contact
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structure ξ on the boundary ∂X. A symplectic structure ω on the oriented
4-manifold X with a contact structure ξ on ∂X is compatible if the symplectic
2-form ω satisfies ω|ξ > 0 at every point of the boundary (see [1] for more
details on contact structures).

In [10], Kronheimer and Mrowka introduced monopole invariants for smooth
4-manifolds with contact boundary, and extended the results of Taubes in [22]
and [23] to this non-compact settings. Moreover, using the monopole invariants
for 4-manifolds with contact boundary in [10], Kronheimer also obtained local
versions of the results in Theorem 1.1. More precisely, let B4 be the unit ball
in C2, X ′ be the quotient B4/Zn+1, and let ξ be the contact structure on the
lens space at the boundary obtained from the embedding in C2/Zn+1. Let
Xn+1 be the resolution obtained from X ′ by resolving the singular point with
a sphere C of self-intersection −(n + 1). Then the boundary of Xn+1 is a
lens space L(n+ 1, 1). It is well-known that any lens space L(p, q) is obtained
by −p

q -surgery on the unknot, with −p
q < −1 except for S3 and S1 × S2.

By Proposition 5.3 in [7], Xn+1 admits a Stein structure with L(n + 1, 1)
as its oriented boundary. Thus if we denote by J∗ the dual of an almost
complex structure J , there exists a smooth strictly pluri-subharmonic function
φ : Xn+1 → R such that the 2-form ωφ = dJ∗dφ is non-degenerate and closed
(so Xn+1 admits a Kähler form ωφ) such that its boundary admits a contact
structure ξ obtained by a 1-form −J∗dφ. In his paper [9], Kronheimer stated
the following theorem whose proof was omitted.

Theorem 1.3. Let Λ be the space of symplectic 2-forms that are cohomologous
to ωφ. Then there is a family ωu parameterized by u ∈ S2n−1 which represents
a non-trivial class in homology of the space Λ. In particular, the family cannot
be extended to a family parameterized by the ball. Indeed, if ων (ν ∈ B2n) is any
family of symplectic forms compatible with a contact structure ξ and extending
the given family on S2n−1, then there exists at least one ν ∈ B2n for which the
pairing of ων with the sphere C is positive.

For the sake of completeness, we provide a proof of this theorem in Sections 2
and 3, relatively in detail.

On the other hand, using the symplectic compactifications of Stein surfaces
and the Seiberg-Witten theory, Lisca and Matić showed, among other things,
in [11] that given any positive integer n, there exists homology 3-spheres with
at least n homotopic, but non-isomorphic tight contact structures. Their proof
of the result seems to give many implications to answer Question 1.2. Indeed,
combining Kronheimer’s local results with the plumbing construction using
disk bundles over a sphere, in this paper we give a positive partial answer to
Question 1.2 as follows.

Theorem 1.4. For any given collection of positive integers {n1, n2, . . . , nk}
and any non-negative integer m, there exists a closed symplectic 4-manifold X
(or closed Kähler minimal surface of general type) with b+(X) > m having the
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non-trivial homologies

Hi(Diff0(X)/Symp(X);Q)

for all i = 2n1 − 1, . . . , 2nk − 1.

As a simple corollary, we have:

Corollary 1.5. For any positive odd integer k, there exists a closed symplectic
4-manifold X (or closed Kähler minimal surface of general type) having the
non-trivial homologies

Hi(Diff0(X)/Symp(X);Q)

for all odd degrees i between 0 and k inclusive.

We organize this paper as follows. In Section 2, we set up and review detail
constructions for the local results by Kronheimer which was stated without
proof. In Section 3, we prove Theorem 1.3. In Section 4, we construct examples
of closed symplectic 4-manifolds to give a partial answer to Question 1.2. It
seems that we are able to extend the result of Theorem 1.4 to even degrees using
the global invariants of even degrees which can be constructed analogously. We
hope we return this issue elsewhere.

2. Local invariants

In this section, we set up and review the facts necessary to detect the local
versions of Kronheimer’s results stated in Theorem 1.3, in detail.

2.1. 4-manifolds with contact boundary

Let (X, ξ) be a compact oriented smooth 4-manifold with a contact structure
ξ on the boundary ∂X which is compatible with the boundary orientation,
and let X+ be the smooth manifold obtained from X by attaching the open
cylinder [1,∞)× ∂X. According to [10], since ∂X is a contact 3-manifold, we
can give a symplectic structure ω0 and its compatible Riemannian metric g0 to
[1,∞)×∂X for which ω0 has length

√
2 and is self-dual. These two in turn give

X+ a metric and a symplectic structure outside a compact set. Now extend the
metric g0 to all of X+, also called g0. In [10], the triple (X+, ω0, g0) is called
an AFAK (asymptotically flat almost Kähler) manifold (see Subsection 2(iii)
in [10] for more detailed constructions). By Lemma 2.1 in [10], ω0 provides a
canonical spinc structure s0 = (W+,W−, ρ), a spinor Φ0 of unit length, and a
unique spin connection A0 on X+\X satisfying D+

A0
Φ = 0. As in [10], we write

Spinc(X, ξ) for the set of isomorphisms of spinc structures s on X+, equipped
with an isomorphism s → s0 on X+\X. For the sake of convenience, we use
the same notations A0 and Φ0 for arbitrary extensions of them to all of X+.

From now on, assume that we have provided suitable function spaces on
X+ to define a moduli space of pairs which solves the monopole equations and
which are asymptotic to (A0,Φ0) on the ends of X+.
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Let η ∈ L2
l−1(isu(W+)) for l > 4. The Seiberg-Witten equations, perturbed

by η, are the following pair of equations for a spin connection A and a section
Φ of W+

ρ(F+
bA )− {Φ⊗ Φ∗} = ρ(F+

bA0
)− {Φ0 ⊗ Φ∗0}+ η,

D+
AΦ = 0,

(2.1)

where Â means the induced connection on det(W+) and {Φ⊗Φ∗} denotes the
traceless part of the endomorphism Φ⊗ Φ∗.

Let R(X+) denote the space of all Riemannian metrics g on X+ of class Cl,
and let N(X) = e−ε0 t̃Cr(isu(W+)) with norm ||η||N(X) = ||eε0 t̃η||Cr for some
fixed r ≥ l, where ε0 > 0 and t̃ is an extension of the function t on [1,∞)×∂X
to all of X+. As in the case of closed 4-manifolds, we let P be the subset of
R(X+)×N(X+) consisting of pairs (g, η) such that η is self-dual with respect
to g. Let L2

l and L2
l,A0

(l > 4) be the Sobolev spaces of imaginary 1-forms and
sections of W+. We define

C = {(A,Φ) | (A−A0) ∈ L2
l and (Φ− Φ0) ∈ L2

l,A0
}

and
G = {u : X+ → C | |u| = 1 and 1− u ∈ L2

l+1}.
Then G is a Hilbert Lie group acting freely on C. Thus, unlike the Seiberg-
Witten equations on closed 4-manifolds, there is no Banach sub-manifold such
as Pred for which the corresponding Seiberg-Witten equations have a reducible
solution. This is the reason why no restriction on b+2 is necessary to define
monopole invariants for 4-manifolds with contact boundary.

We now have a family of the Seiberg-Witten equations (2.1) parameterized
by P, and write M for the parameterized space of solutions modulo the gauge
group G as follows.

M = {([A,Φ], (g, η)) | (2.1) hold}.
The transversality and compactness results of Theorem 2.4 in [10] say that M
is a Banach manifold of C/G × P and that the projection

π : M→ P
is a smooth and proper Fredholm map of index

indπ = 〈e(W+; Φ0), [X, ∂X]〉
and has orientable index bundle. An orientation of the index bundle can be
specified by a choice of homology orientation of (X, ξ) described in [10]. From
now on, we assume that such an orientation is chosen.

In order to define local invariants derived from the Seiberg-Witten equations,
we suppose that the index of π is negative, and thus we write indπ = −d
(d > 0). Let us denote by ∆ the image of π.
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Proposition 2.1. Under the assumptions stated in this subsection, there exists
a well-defined homomorphism

Qd−1 : Hd−1(P\∆;Z) → Z.

Proof. The proof is very similar to it in [9]. For the sake of convenience,
we briefly explain it. Since P is contractible, any closed chain S in P\∆ of
dimension d − 1 is the boundary of a singular chain T d in P of dimension
d. Now arrange that T d is transverse to π, and we define Qd−1(S) to be an
integer 〈[M]−d, π

−1(T d)〉 obtained by counting the points of M over T d. It is
straightforward to show that this definition is independent of the choice of T d.
This completes the proof. ¤
2.2. Special cases

In this subsection, we apply the above constructions to special cases of sym-
plectic 4-manifolds with contact boundary (X, ξ) which are compatible with
ξ.

Let (X, ξ) be a symplectic 4-manifold with contact boundary, and let ω be a
symplectic form on X, compatible with ξ. As before, let X+ be the 4-manifold
obtained by attaching the cone [1,∞)×∂X to X, together with a metric g0 and
symplectic form ω0 defined outside a compact set of X+. Then the manifold
X+ has a symplectic form ω on the compact submanifold X, and a symplectic
form ω0 on the complement of X in X+. Note that the compatibility condition
between ω and ξ does not guarantee that ω and ω0 match on ∂X. However, by
Lemma 4.1 in [10] using the argument of patching two symplectic forms, there
exists a symplectic form, also denoted by ω, on all of X+ which is an extension
of the symplectic form ω on X\U , where U is a collar neighborhood of ∂X of
X, and is asymptotic to ω0 on the end of X+.

Let (A0,Φ0) be the canonical spin connection and spinor for the spinc struc-
ture s0 defined on all of X+. Let E → X+ be a line bundle with a trivialization
outside a compact set and the first Chern class e ∈ H2

c (X+,Z) so that the spinor
bundles W+ and W+

0 for s and s0, respectively, are related by W+ = W+
0 ⊗E.

In order to apply the construction in the previous subsection, we assume that
the index −d of the spinc structure s is negative (so d > 0). Since d is non-zero,
s and s0 are distinct and so e is non-zero.

We will need the following dimension formula later.

Lemma 2.2. The formula d(s) is given by

d(s) = −〈e2 + c1(W+
0 ; Φ0) ∪ e, [X, ∂X]〉.

Proof. By the relationship ch(W+; Φ0) = ch(W+
0 ; Φ0)ch(E), it is easy to see

c1(W+; Φ0) = 2c1(E) + c1(W+
0 ; Φ0),

1
2
c1(W+; Φ0)2 − c2(W+; Φ0) = c1(E)2 + c1(W+

0 ; Φ0) ∪ c1(E) +
1
2
c1(W+

0 ; Φ0)2

− c2(W+
0 ; Φ0).
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Thus we get

c2(W+; Φ0) = − c1(E)2 − c1(W+
0 ; Φ0) ∪ c1(E)− 1

2
c1(W+

0 ; Φ0)2 + c2(W+
0 ; Φ0)

+
1
2
(2c1(E) + c1(W+

0 ; Φ0))2

= c1(E)2 + c1(W+
0 ; Φ0) ∪ c1(E) + c2(W+

0 ; Φ0).

Since d(s) = −〈c2(W+; Φ0), [X, ∂X]〉 and 〈c2(W+
0 ; Φ0), [X, ∂X]〉 = 0, we have

the formula, as required. ¤
2.3. Local invariants

In this subsection, we finish the constructions of local invariants which are
obstructions to the non-triviality of the homologies of the space Λ0 or equiva-
lently Diff0(X)/Symp(X).

Let Λ = Λ(e, s0) be the space of 2-forms ω in Ω2(X+) satisfying the following
three conditions: (1) ω is symplectic, (2) 〈[ω]∪e, [X, ∂X]〉 ≤ 0, and (3) sω

∼= s0.
Note that the space Λ is smaller than Λ0 defined in Section 1. The purpose of

this subsection is to construct homomorphisms τ∗ from the homology H∗(Λ;Z)
to the homology H∗(P\∆;Z). To do so, we again use the principle established
in [22] and [10] that the basic classes of a 4-manifold which were defined using
the Seiberg-Witten equations constrain the cohomology class of a symplectic
form. By composing τ∗ with Q, we then can have homomorphisms, also called
Qd−1, from the homology Hd−1(Λ;Z) to Z, which is the purpose of this section.

More precisely, for each compact subset K ⊂ Λ, we give a homotopy class
of maps

τK : K → P\∆
such that if K ⊂ K ′ ⊂ ∆ are compact subsets, then τK′ |K is homotopic to τK .
Thus we will have an element τ ∈ lim−→K

[K,P\∆].
To define τK , we use Theorem 4.2 in [10]. As in the proof of Theorem 4.2,

any element (A,Ψ) of C(X+, s) can be written in terms of a triple (a, α, β),
where a is a connection in E, α ∈ Ω0,0(E), and β ∈ Ω0,2(E). As in [10], we
also consider the following perturbed Seiberg-Witten equations by introducing
a parameter r ≥ 1 with η = 0 as follows.

∂̄aα+ ∂̄∗aβ = 0,

2iFω
a − r

4
(1− |α|2 + |β|2) = 0,

2F 0,2
a − r

2
ᾱβ = 0,

(2.2)

where Fω
a = 1

2 〈Fa, ω〉. Following [22], Kronheimer and Mrowka proved the
following lemma:

Lemma 2.3. Under the hypothesis e 6= 0 and 〈[ω] ∪ e, [X, ∂X]〉 ≤ 0, there
exists a constant r0 = r0(ω, gω, e) such that for all r ≥ r0 the equations (2.2)
have no solutions for the metric gω on X+ with perturbing term η = 0.
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As a consequence, we can say that (gω, 0) ∈ P\∆, when r ≥ r0. As in closed
symplectic 4-manifolds, this r0 depends on the geometry of X+ and its almost
complex structure. Thus this implies that we can choose a single sufficiently
large r0 so that the lemma above holds for all ω ∈ K. This in turn gives a map
τK from the compact set K to P\∆, as required. Clearly the homotopy class
of the map does not depend on the choice of gω, and so on. Now the family of
the maps on compact subsets induces a well-defined map on homologies

τ∗ : Hi(Λ;Z) → Hi(P\∆;Z).

3. Local results: Proof of Kronheimer’s Theorem 1.3

The purpose of this section is to give a proof of Theorem 1.3 by Kron-
heimer, for the sake of reader’s convenience. As before, let Xn+1 be the res-
olution obtained from X ′ by resolving the singular point with a sphere C of
self-intersection −(n+ 1). In addition, as in [9] we assume the following holds:

• We are given an analytic family X of Kähler manifolds Xu with the
same contact boundary as X ′.

• Xu are the fibers of a map p : X → U , where U is an open ball about
0 ∈ U ⊂ Cn.

• All fibers Xu are smooth, except for X0 = X ′ which has a single
quotient singularity at x0.

• All Xu (u 6= 0) are embedded in CN , with the Kähler form inherited
from the Fubini-Study metric on CN .

• We have a smooth family of manifolds X̃ and a commutative diagram

X̃ σ−−−−→ X

p̃

y
yp

U U

such that X̃0 = Xn+1 is a minimal resolution of X0.
• The family X̃ has a C∞ trivialization X̃→ X̃0 × U .

Note that using the trivialization we can regard the Fubini-Study forms on
Xu as giving a family of exact symplectic forms ωu on the fixed manifold
Xn+1 = X̃0. Clearly all the forms ωu in the family as exact symplectic forms
are cohomologous. Furthermore, let e denote the Poincaré dual of the homology
class represented by the exceptional 2-sphere C in X̃0. All the pairings 〈[ωu]∪
e, [X, ∂X]〉 are zero. Therefore, we have a (2n − 1)-sphere S = S2n−1 in the
space Λ. By Lemma 2.2, C2 = −(n+1), and the adjunction equality, the index
−d for the Seiberg-Witten equations with the spinc structure s = s0 + e is
given by

d = −〈e2 + c1(W+
0 ; Φ0) ∪ e, [X, ∂X]〉 = 2n.

Thus it makes sense to evaluate the homomorphism Q2n−1 on S.
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To complete the proof of Theorem 1.3, we need to show that S2n−1 is an
essential homology class in H2n−1(Λ;Z). To do so, it suffices to show that
Q2n−1(S2n−1) = ±1 as follows. Let µu be any smooth family of Kähler forms
on the fibers X̃u of p̃. Let σ∗ωu be the pull-back of the forms ωu under σ.
Since the form σ∗ω0 is degenerate along the complex exceptional curve C, we
define a new family of Kähler forms

ω̃u = σ∗ωu + ψ(u)µu,

where ψ : U → R is a non-negative C∞ bump function supported near 0 and
equal to zero on the small sphere S2n−1. Since ω̃u coincides with σ∗ωu = ωu

for u in the small sphere S2n−1, we can regard the family ω̃u, parameterized by
a ball B2n which bounds S2n−1, as an extension of the family ωu of symplectic
forms on the fixed manifold X̃0. Let us denote g̃u for the Kähler metric with
respect to the Kähler form ω̃u. Then we have a map

T 2n : B2n → P, u 7→ (g̃u, 0).

Now we need the following proposition which is analogous to Proposition
4.1 in [9].

Proposition 3.1. When r is sufficiently large, the solutions of the perturbed
Seiberg-Witten equations (2.2) on the Kähler manifold X+ correspond to al-
gebraic curves in X+ homologous to C, whose fundamental class is Poincaré
dual to e.

Proof. To show this, first act on the first equation of (2.2) with ∂̄a and use the
last equation of (2.2) to get

∂̄a∂̄
∗
aβ +

r

4
|α|2β = 0.

Thus we get |∂̄∗aβ|2 = − r
4 |α|2|β|2, and so either α = 0 or β = 0. On the other

hand, it follows from the proof of Theorem 4.2 in [10] that for sufficiently large
r we have the following inequality

∫

X+

r

2
iFω

a ≥
∫

X+

(1
4
|∇aα|2 +

1
2
|∇̃aβ|2 +

r2

32
(1− |α|2 − |β|2)2 +

r2

16
|β|2

)
.

As in [10], a gauge transformation can be chosen so that the left hand side of
the inequality is the pairing rπ〈[ω] ∪ e, [X, ∂X]〉. Thus if α = 0, then we get

rπ〈[ω] ∪ e, [X, ∂X]〉 ≥
∫

X+

(1
2
|∇̃aβ|2 +

r2

32
(1 + |β|4)

)

≥
∫

X+

r2

32
,

which implies that π〈[ω]∪e, [X, ∂X]〉 is infinite. This is a contradiction. There-
fore β = 0, and the zero set of α is a curve C whose fundamental class is
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Poincaré dual to e. Conversely, it is a well-known procedure that from the al-
gebraic curve C we can obtain the holomorphic bundle (E, ∂̄a) and the section
α up to isomorphism (see e.g. [3]). This completes the proof. ¤

Now we return to the proof of Theorem 1.3. Note that there is only one
such curve in our manifold X̃0 by construction and no such curve for u 6= 0.
Thus for sufficiently large r the image of T 2n meets ∆ = π(M) only at T 2n(0),
and there is only one solution in M over T 2n(0).

As a final step, we need to show that the map π is transverse to T 2n, as
in Proposition 3.1 in [9]. However, in Section 4 of [9], Kronheimer provided
a detailed argument showing that for the examples in his paper the map π
is transverse to T 2n at T 2n(0) by comparing the deformation theory of the
solutions (a, α, β) of the Seiberg-Witten equations with the deformation theory
of the curve C given by the zero set of α (see [14] for related discussions).
Certainly his argument goes through in our case, too. Thus this completes the
proof of Theorem 1.3.

4. Global results: Proof of Theorem 1.4

The main purpose of this section is to give a partial answer to Question 1.2
positively.

In order to get global results on closed symplectic (or Kähler) manifolds from
the local result of Theorem 1.3, we need to use the symplectic compactifications
of Stein surfaces of P. Lisca and G. Matić in [11].

Theorem 4.1 (Theorem 3.2 or Corollary 3.3 in [11]). Let X be a Stein surface,
and let φ : X → R be a smooth strictly pluri-subharmonic function such that
the boundary of X is the regular level set of φ. Then there exist a holomorphic
embedding j of X as a domain inside a closed Kähler minimal surface S of
general surface such that the pull-back of the Kähler form of S to X equals
ωφ = dJ∗dφ.

Moreover, we can refine the statement in Theorem 4.1 as follows (see [21]
and [2] for a similar argument).

Lemma 4.2. Let X be a Stein surface. For any non-negative integer m, there
exists a holomorphic embedding j of X as a domain inside a closed Kähler
minimal surface S of general type with b+2 (S\j(X)) > m (so b+2 (S) > m).

Proof. Suppose that b+2 (S\j(X)) = m in Theorem 4.1. Then we first extend X
into X ′ by attaching a 2-handle with framing tb(K)−1 along a Legendrian knot
satisfying tb(K) > 1 contained in a standard 3-ball D3 in ∂X (see [7] for the
definitions of Legendrian knots and tb(K)). By the choice of such a knot with
the framing, the well-known Eliashberg’s theorem in [5] and [6] and its Gompf’s
refinement in [7] imply that X ′ is also a Stein surface. Now we embedd X ′ into
a closed Kähler minimal surface S′ of a general type. Since we have attached a
2-handle with positive framing, we have a second homology class with positive
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self-intersection number in S′\X. Thus clearly we have b+2 (S′\j(X)) > m, so
that b+2 (S′) > m. This completes the proof. ¤

We also need the following symplectic gluing result of symplectic forms,
provided that the two corresponding contact structures on the glued region are
isomorphic.

Lemma 4.3 (Lemma 4.1 in [11]). Let X1 and X2 be two Stein surfaces with
boundary ∂Xi (i = 1, 2), and suppose that ∂Xi are diffeomorphic to the con-
nected 3-manifold M . Let φ : X1 → R be a smooth strictly pluri-subharmonic
function having ∂X1 as a level set, and let X1 have the symplectic structure
ω1 = dJ∗dφ. Suppose that the contact structures ξ1 and ξ2 induced on M are
isomorphic. Then there exist a J-compatible symplectic form ω2 on the interior
of X2 and a symplectic embedding of the interior of a collar U1 ⊂ X1 around
∂X1 as a subcollar of the interior of a collar U2 ⊂ X2 around ∂X2.

4.1. Simple cases

We first show the following simple theorem which is a slight generalization
of Theorem 1.1 of Kronheimer, in the sense that we do not need any restriction
on b+2 (X).

Theorem 4.4. For any positive integer n, there exists a closed symplectic
(Kähler) 4-manifold X having the non-trivial homology

H2n−1(Diff0(X)/Symp(X);Q).

Proof. Once again, let B4 be the unit ball in C2, X ′ be the quotient B4/Zn+1,
and let Xn+1 be the resolution obtained from X ′ by resolving the singular point
with a sphere C of self-intersection −(n+1). Then the boundary is a lens space
L(n+1, 1) and admits the contact structure ξ obtained from the embedding in
C2/Zn+1. Moreover, Xn+1 becomes a Stein manifold with contact boundary.
By Theorem 1.3, we also have a family ωu parameterized by u ∈ S2n−1 which
represents a non-trivial class in homology of the space consisting of symplectic
2-forms that are cohomologous to ωφ. According to Theorem 4.1, we can
consider the Kähler embedding j : Xn+1 → S, where S is a minimal surface of
general type.

Our aim now is to extend the family ωu of symplectic forms on Xn+1 to a
family of symplectic forms on all of S which represents a non-trivial class in
homology of the space Λ. To do so, we first choose a symplectic form ωu0 from
the family ωu for u ∈ S2n−1. Then, by Lemma 4.3, we can extend ωu0 to a
symplectic form ω̃u0 defined on all of S. Now it remains to extend the rest
of the family ωu defined on Xn+1 to all of S. Since ωu and ωu0 are isotopic,
they are connected by a path of cohomologous symplectic forms between ωu

and ωu0 . Let Ωu
s be such a smooth path over Xn+1 of cohomologous symplectic

forms such that Ωu
0 = ωu0 and Ωu

1 = ωu. Assuming the collar U of ∂Xn+1 is
diffeomorphic to ∂Xn+1 × [0, 1), we can define a new symplectic form ω̃u as
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follows:

ω̃u =





ωu, on Xn+1\U
Ωu

t (y, t), (y, t) ∈ U ∼= ∂Xn+1 × [0, 1)
ω̃u0 , on S\Xn+1.

Then all new symplectic forms ω̃u are continuous and further cohomologous,
since two forms ω̃u0 and ω̃u are connected by a path of symplectic forms given
by

Ω̃u
s =





Ωu
1−s, on Xn+1\U

Ωu
(1−s)t, on U

ω̃u0 , on S\Xn+1.

We next claim that the new family ω̃u for u ∈ S2n−1 is an essential element
in the space of Λ. Indeed, suppose that there exists a singular chain T 2n in
the space Λ of dimension 2n which bounds the family ω̃u. Then the restriction
of T 2n to the submanifold Xn+1 of S induces a singular chain of dimension
2n, also denoted T 2n, in the space consisting of symplectic 2-forms that are
cohomologous to ωφ, which bounds the family ωu for u ∈ S2n−1. But this is a
contradiction. This completes the proof. ¤

4.2. General cases

The purpose of this subsection is to prove Theorem 1.4 which is a partial
answer to Question 1.2.

For any rational number −p
q ∈ Q, we have a continued fraction expansion

of the form

(4.1) −p
q

= a0 −
1

a1 −
1

a2 − · · · −
1
ak

,

where aj ∈ Z for 0 ≤ j ≤ k. We will abbreviate (4.1) by writing

−p
q

= [a0, a1, . . . , ak].

Note that lens spaces are a special case of Seifert fibered spaces. Our orientation
convention will be that a lens space L(p, q) is obtained by −p

q -Dehn surgery on
an unknot in S3 (see [8], [18], or [4]). Using the continued fraction expansion
−p
q

= [a0, a1, . . . , ak], we get L(p, q) as the boundary of the 4-manifold obtained

by plumbing together k + 1 disk bundles over S2 with the Euler number aj ,
according to the following linear chain Γ:

Γ : t t t t t ta0 a1 a2 ak−2 ak−1 ak
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where each dot represents a sphere Sj (j = 0, 1, . . . , k + 1) which has self-
intersection number aj and intersects only Sj−1 and Sj+1.

Theorem 4.5. For any given collection of positive integers {n1, n2, . . . , nk}
and any non-negative integer m, there exists a closed symplectic 4-manifold
X(or closed Kähler minimal surface of general type) with b+2 (X) > m having
the non-trivial homologies

Hi(Diff0(X)/Symp(X);Q)

for all i = 2n1 − 1, . . . , 2nk − 1.

Proof. To construct such a closed symplectic 4-manifold, we use the 4-manifold
obtained by plumbing together the disk bundles of cotangent bundles over a
sphere. As noted earlier, Seifert fibered 3-manifolds are the boundaries of the
plumbed 4-manifolds P (Γ) associated to the plumbing graph Γ, and a lens
space L(p, q) with

−p
q

= [−(n1 + 1),−(n2 + 1), . . . ,−(nk + 1)]

is a special case of Seifert fibered 3-manifolds, associated to the linear graph Γ
with weights −(n1+1),−(n2+1), . . . ,−(nk+1). In addition, given a 4-manifold
P (Γ) obtained by plumbing on the linear graph Γ, let Γ′ be a sub-chain in Γ
as shown below:

Γ′ : t t t t−(ni + 1) −(ni+1 + 1) −(ni+l−1 + 1) −(ni+l + 1)

Then the plumbing on Γ′ gives rise to a sub-manifold P (Γ′) of P (Γ) with the
lens space L(p′, q′) as a boundary, where

−p
′

q′
= [−(ni+1 + 1),−(ni+2 + 1), . . . ,−(ni+l + 1)].

Here P (Γ′) is taken so that P (Γ′) is strictly contained in the interior of P (Γ)
(e.g., see [18] for the construction). Thus the closure of P (Γ)\P (Γ′) is a smooth
compact 4-manifold with oriented boundary −L(p′, q′)∪L(p, q) in our case. In

particular, if we take Γ′ to be
−(ni+1)• , then P (Γ) contains the sub-manifold

P (Γ′) with the lens space L(ni + 1, 1) as its boundary, which will be used in
the proof, later.

Moreover, it is a theorem of Y. Eliashberg or a construction of Gompf in [7]
that by attaching 2-handles along Legendrian knots K with framing tb(K)− 1
we can assume that the plumbed 4-manifold is a Stein manifold with the lens
space as a contact boundary. So, we assume that the plumbed 4-manifold P (Γ)
associated to the linear graph Γ is a Stein manifold with contact boundary. In
order to compactify the Stein manifold P (Γ), we use Theorem 4.1 of Lisca and
Matić and Lemma 4.2 concerning the symplectic compactifications of Stein
surfaces to get such a compactification X with b+2 (X) > m.



688 JIN HONG KIM

Let φ : P (Γ) → R be a smooth strictly pluri-subharmonic function such that
the sub-level set of φ for a regular value is ∂P (Γ), and such that the pull-back
of the Kähler form of X to P (Γ) equals ωφ = dJ∗dφ. Using Lemma 4.2, we
next extend the exact Kähler form ωφ to all of X. We may also assume that
for i = 1, . . . , k, X contains Xni+1 as a Stein sub-manifold whose boundary is
a lens space L(ni +1, 1). Thus over each Stein sub-manifold Xni+1 we have an
essential element cohomologous to ωφ, parameterized by a (2ni − 1)-sphere, in
the homology H2ni−1(Diff0(Xni+1)/Symp(Xni+1),Q).

Finally, we apply again Lemma 4.2 and the argument in the proof of Theo-
rem 4.1 to the essential element in order to obtain a family of symplectic forms
defined on all of X, parameterized by a (2ni − 1)-sphere. Then an easy argu-
ment proving Theorem 4.5 implies that the extended family of symplectic forms
induces an essential element in the homology H2ni−1(Diff0(X)/Symp(X);Q).
Since we can apply the same argument to any Xni+1, we have completed the
proof for the odd degrees, as stated. ¤
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