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Abstract. In this paper, we consider two kinds of derivatives for the shape operator of a

real hypersurface in a Kähler manifold which are named the Lie derivative and the covari-

ant derivative with respect to the k-th generalized Tanaka-Webster connection ∇̂(k). The

purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank

two, whose Lie derivative of the shape operator coincides with the covariant derivative of

it with respect to ∇̂(k) either in direction of any vector field or in direction of Reeb vector

field.

1. Introduction

In the class of Hermitian symmetric spaces of rank 2, usually we can give
examples of Riemannian symmetric spaces G2(Cm+2) = SUm+2/S(U2Um) and
G∗2(Cm+2) = SU2,m/S(U2Um), which are said to be complex two-plane Grass-
mannians and complex hyperbolic two-plane Grassmannians, respectively (see [9]).
These are viewed as Hermitian symmetric spaces and quaternionic Kähler sym-
metric spaces equipped with the Kähler structure J and the quaternionic Kähler
structure J. There are exactly two types of singular tangent vectors X of
SUm+2/S(U2Um) and SU2,m/S(U2Um) which are characterized by the geometric
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properties JX ∈ JX and JX ⊥ JX respectively. Hereafter let Gm+2
2 (c) be the

compact complex Grassmannian G2(Cm+2), m ≥ 3, and the noncompact complex
Grassmannian G∗2(Cm+2), m ≥ 3, of rank two for c > 0 and c < 0 respectively,
where c is a scaling factor for the Riemannian metric g. The Riemannian curvature
tensor R̃ of Gm+2

2 (c) is locally given by

R̃(X,Y )Z = c
{
g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX

}
− c

{
g(JX,Z)JY + 2g(JX, Y )JZ

}
+ c

3∑
ν=1

{
g(JνY,Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ

}
+ c

3∑
ν=1

{
g(JJνY, Z)JJνX − g(JJνX,Z)JJνY

}
,

for all X, Y and Z ∈ TxGm+2
2 (c), x ∈ Gm+2

2 (c). Actually, in the previous studies
for Gm+2

2 (c) (e.g. [1], [2], [3], [5], [7], [11] etc.), the scaling factor c was given by 1
and − 1

2 for G2(Cm+2) and G∗2(Cm+2), respectively.

For real hypersurfaces M in Gm+2
2 (c), we have the following two natural geomet-

ric conditions: the 1-dimensional distribution C⊥ = Span{ξ} and the 3-dimensional
distribution Q⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape operator A of M .
Here the almost contact structure vector field ξ defined by ξ = −JN is said to be a
Reeb vector field, where N denotes a local unit normal vector field of M in Gm+2

2 (c).
The almost contact 3-structure vector fields ξ1, ξ2, ξ3 spanning the 3-dimensional
distribution Q⊥ of M in Gm+2

2 (c) are defined by ξν = −JνN (ν = 1, 2, 3), where
Jν denotes a canonical local basis of the quaternionic Kaehler structure J, such
that TxM = Q ⊕ Q⊥ = C ⊕ C⊥, x ∈ M . Under these invariant conditions for two
kinds of distributions C⊥ and Q⊥ in TxG

m+2
2 (c) Berndt and Suh gave the complete

classifications for real hypersurfaces in complex Grassmannians Gm+2
2 (c) of rank 2,

respectively (see [3] and [5]).
The Reeb vector field ξ is said to be Hopf if it is invariant under the shape

operator A. The 1-dimensional foliation of M by the integral curves of the Reeb
vector field ξ is said to be a Hopf foliation of M . We say that M is a Hopf hyper-
surface in Gm+2

2 (c) if and only if the Hopf foliation of M is totally geodesic. By the
almost contact metric structure (φ, ξ, η, g) and the formula ∇Xξ = φAX for any
X ∈ TM , it can be easily checked that M is Hopf if and only if the Reeb vector
field ξ is Hopf. On the other hand, when the distribution Q⊥ of a hypersurface M
in Gm+2

2 (c) is invariant under the shape operator, we say that M is a Q⊥-invariant
hypersurface. Moreover, we say that the Reeb flow on M in Gm+2

2 (c) is isometric,
when the Reeb vector field ξ on M is Killing. This means that the metric tensor g
is invariant under the Reeb flow of ξ on M , that is, Lξg = 0 where Lξ is the Lie
derivative along the flow of ξ. For the complex two-plane Grassmannian G2(Cm+2)
the following result is known.

Theorem A.([4]) The Reeb flow on a real hypersurface in G2(Cm+2) is isometric
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if and only if M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2).

Moreover, in [13] Suh has proved:

Theorem B. Let M be a connected orientable real hypersurface in the complex hy-
perbolic two-plane Grassmannians G∗2(Cm+2) = SU2,m/S(U2Um), m ≥ 3. The the
Reeb flow on M is isometric if and only if M is an open part of a tube around some
totally geodesic SU2,m−1/S(U2Um−1) in SU2,m/S(U2Um) or a horosphere whose
center at infinity is singular.

Usually, any submanifold in Kaehler manifolds has many kinds of connec-
tions. Among them, we consider two connections, namely, Levi-Civita and Tanaka-
Webster connections for real hypersurfaces M in Gm+2

2 (c). In fact, Gm+2
2 (c) is

a Riemannian symmetric space for real hypersurfaces in a Kaehler manifold, we
consider an affine connection ∇̂(k) which is called by the k-th generalized Tanaka-
Webster connection (in short, the g-Tanaka-Webster connection). It becomes a gen-
eralization of the well-known connection defined by Tanno [16]. Besides, it coincides
with Tanaka-Webster connection if a real hypersurface in Kaehler manifolds satis-
fies φA+Aφ = 2kφ for a non-zero real number k. The Tanaka-Webster connection
is defined as the canonical affine connection on a non-degenerate, pseudo-Hermitian
CR-manifold ([6], [15] and [17]). Using the k-th generalized Tanaka-Webster con-

nection ∇̂(k) defined in such a way that

(*) ∇̂(k)
X Y = ∇XY + g(φAX, Y )ξ − η(Y )φAX − kη(X)φY

for any X, Y tangent to M , where∇ denotes the Levi-Civita connection on M and k
is a non-zero real number. The latter part of the k-th generalized Tanaka-Webster

connection g(φAX, Y )ξ − η(Y )φAX − kη(X)φY is denoted by F̂
(k)
X Y . Here the

operator F̂
(k)
X is a kind of (1,1)-type tensor and said to be Tanaka-Webster operator.

Recently, there are many results for the classification problem of real hypersurfaces
in Gm+2

2 (c) related to the k-th generalized Tanaka-Webster connection ∇̂(k). In
particular, [7] was given the result about the shape operator as follows:

Theorem C. Let M be a Hopf hypersurface in complex two-plane Grassmannians

G2(Cm+2), m ≥ 3. If M satisfies (∇ξA)Y = (∇̂(k)
ξ A)Y for all tangent vector

field Y on M , then M is locally congruent to a tube of radius r over a totally
geodesic G2(Cm+1) in G2(Cm+2).

Motivated by this result, in this paper we study a real hypersurface M in
Gm+2

2 (c) whose Lie derivative coincides with k-th generalized Tanaka-Webster
derivative for the shape operator of M , that is,

(C-1) (LξA)Y = (∇̂(k)
ξ A)Y

for arbitrary tangent vector field X and Y on M . Thus we assert the following:
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Main Theorem. Let M be a Hopf hypersurface in complex Grassmannians
Gm+2

2 (c), c 6= 0 and m ≥ 3. If M satisfies (C-1), then M is locally congruent
one of the following :

(I) In case where Gm+2
2 (c) = G2(Cm+2):

(TA) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2).

(II) In case where Gm+2
2 (c) = SU2,m/S(U2Um):

(TA) a tube around a totally geodesic SU2,m−1/S(U2Um−1) in SU2,m/S(U2Um),

(HA) a horosphere in SU2,m/S(U2Um) whose center at infinity is singular and
of type JX ∈ JX.

Moreover, from this result we also have:

Corollary. There does not exist any Hopf hypersurface in complex Grassmannians
Gm+2

2 (c), c 6= 0, m ≥ 3, with

(C-2) (LXA)Y = (∇̂(k)
X A)Y

for all tangent vector fields X and Y on M .

2. Preliminaries

We use some references [2, 7, 8, 10, 12, 14] to recall the Riemannian geometry
of complex Grassmannians of rank two Gm+2

2 (c), c 6= 0, m ≥ 3, and some funda-
mental formulas including the Codazzi and Gauss equations for a real hypersurface
in Gm+2

2 (c). We can derive some facts from our assumption that M is a real hyper-
surface in Gm+2

2 (c) with geodesic Reeb flow, that is, Aξ = αξ where α = g(Aξ, ξ).
Among them, we introduce a lemma which is induced from the equation of Co-
dazzi [11, 12].

Lemma A. If M is a connected orientable real hypersurface in Gm+2
2 (c) with

geodesic Reeb flow, then

(2.1-(i)) gradα = (ξα)ξ + 4c

3∑
ν=1

ην(ξ)φξν

and

2AφAX − αAφX − αφAX

= 2cφX + 2c

3∑
ν=1

{
ην(X)φξν + ην(φX)ξν + ην(ξ)φνX

}
− 4c

3∑
ν=1

{
η(X)ην(ξ)φξν + ην(φX)ην(ξ)ξ

}
,

(2.1-(ii))
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for any tangent vector field X on M in Gm+2
2 (c).

As mentioned in Section 1, the complete classifications of real hypersurfaces
in Gm+2

2 (c), c 6= 0, m ≥ 3, with two kinds of A-invariant for the distributions
C⊥ = Span{ξ} and Q⊥ = Span{ξ1, ξ2, ξ3} was given in [3, 5], respectively. Here we
introduce these results as follows.

Theorem D.([3]) Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then both C⊥ and Q⊥ are invariant under the shape operator of M if and only if

(MA) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),
or

(MB) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

Theorem E.([5]) Let M be a connected real hypersurface in G∗2(Cm+2), m ≥ 3.
Then both C⊥ and Q⊥ are invariant under the shape operator of M if and only if
M is congruent to an open part of one of the following hypersurfaces:

(TA) a tube around a totally geodesic SU2,m−1/S(U2Um−1) in SU2,m/S(U2Um);

(TB) a tube around a totally geodesic HHn in SU2,m/S(U2Um), m = 2n;

(HA) a horosphere in SU2,m/S(U2Um) whose center at infinity is singular and of
type JX ∈ JX;

(HB) a horosphere in SU2,m/S(U2Um) whose center at infinity is singular and of
type JX⊥JX;
or the following exceptional case holds:

(E) The normal bundle νM of M consists of singular tangent vectors of type
JX⊥JX. Moreover, M has at least four distinct principal curvatures, three
of which are given by

α =
√

2, γ = 0, λ =
1√
2

with corresponding principal curvature spaces

Tα = (C ∩ Q)⊥, Tγ = JQ⊥, Tλ ⊂ C ∩ Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature function, then we
have Tµ ⊂ C ∩ Q ∩ JQ, JTµ ⊂ Tλ and JTµ ⊂ Tλ.

In particular, let us observe the structure of the model spaces, (MA), (TA) and (HA),
of Type (A) which are mentioned in Theorems D and E, respectively. In [1, 3],
[5] the authors gave the characterization of the singular tangent vector N of M
in Gm+2

2 (c): There are two types of singular tangent vector, those N for which
JN⊥JN , and those for which JN ∈ JN . In other words, it means that ξ ∈ Q or
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ξ ∈ Q⊥, since JN = −ξ and JN = Span{ξ1, ξ2, ξ3} = Q⊥ where TM = Q⊕Q⊥. The
following two propositions tell us that the normal vector field N on these model
spaces is singular of type of JN ∈ JN , that is, ξ ∈ Q⊥.

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AQ ⊂ Q, Aξ = αξ, and ξ is tangent to Q⊥. Let J1 ∈ J be the almost Hermitian
structure such that JN = J1N . Then M has the following three (if r = π/2

√
8)

or four (otherwise) distinct constant principal curvatures α, β, λ and µ with some
r ∈ (0, π/

√
8). Here HN denotes quaternionic span of the structure vector field ξ.

Type Eigenvalues Eigenspace Multiplicity

(MA) α=
√
8 cot(

√
8r) Tα=C⊥ 1

β=
√
2 cot(

√
2r) Tβ=C	Q 2

λ=−
√
2 tan(

√
2r) Tλ={X | X⊥HN, JX=J1X} 2m−2

µ=0 Tµ={X | X⊥HN, JX=−J1X} 2m−2

Proposition B. Let M be a connected real hypersurface of G∗2(Cm+2). Assume that
the maximal complex subbundle C of TM and the maximal quaternionic subbundle Q

of TM are both invariant under the shape operator of M . If JN ∈ JN , then one of
the following statements holds:

(TA) M has exactly four distinct constant principal curvatures α, β, λ1 and λ2.
The principal curvature spaces Tλ1

and Tλ2
are complex (with respect to J)

and totally complex (with respect to J).

(HA) M has exactly three distinct constant principal curvatures α, β and λ.

The eigenvalues and its corresponding eigenspaces and multiplicities are given as
follows.

Type Eigenvalues Eigenspace Multiplicity

(TA) α=2 coth(2r) Tα=C⊥ 1

β=coth(r) Tβ=C	Q 2

λ1=tanh(r) Tλ1=E−1 2m−2
λ2=0 Tλ2=E+1 2m−2

(HA) α=2 Tα=C⊥ 1

β=1 Tβ=(C	Q)⊕E−1 2m

λ=0 Tλ=E+1 2m−2

On Q, we have (φφ1)2 = I and Tr(φφ1) = 0. Let E+1 and E−1 be the eigenbundles
of φφ1|Q with respect to the eigenvalues +1 and −1, respectively.
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3. Proof of Main Theorem

We will prove that on a real hypersurface M satisfying the conditions given
in Main Theorem of Section 1, the shape operator A and the structure tensor φ
commute with each other, that is, the Reeb flow of M becomes isometric. Then by
virtue of Theorems A and B we assert our main theorem in Section 1.

In order to do this, first we calculate the squared norm of symmetric operator
(Aφ− φA) of a real hypersurface M in Gm+2

2 (c), c 6= 0, m ≥ 3.

Lemma 3.1. Let M be a real hypersurface in Gm+2
2 (c), m ≥ 3. Then the squared

norm of a symmetric operator (Aφ− φA) of M is given:

‖Aφ− φA‖2 = 2TrA2 + 2Tr(φAφA)− 2g(A2ξ, ξ).

Proof. Let {e1, e2, · · · , e4m−1} be an orthonormal basis for TxM where x is any

point of M . By direct calculation we have

‖φA−Aφ‖2 =

4m−1∑
i=1

g
(
(φA−Aφ)ei, (φA−Aφ)ei

)
=

4m−1∑
i=1

g(φAei, φAei)−
4m−1∑
i=1

g(φAei, Aφei)

−
4m−1∑
i=1

g(Aφei, φAei) +

4m−1∑
i=1

g(Aφei, Aφei)

= −
4m−1∑
i=1

g(Aφ2Aei, ei) +

4m−1∑
i=1

g(φAφAei, ei)

+

4m−1∑
i=1

g(AφAφei, ei)−
4m−1∑
i=1

g(φA2φei, ei)

=

4m−1∑
i=1

g(A2ei, ei)−
4m−1∑
i=1

η(Aei)g(Aξ, ei)

+ 2

4m−1∑
i=1

g(AφAφei, ei)−
4m−1∑
i=1

g(φA2φei, ei)

= TrA2 − g(Aξ,Aξ) + 2Tr(AφAφ)− Tr(φA2φ)

= TrA2 − g(Aξ,Aξ) + 2Tr(φAφA)− Tr(A2φ2)

= 2TrA2 − 2g(Aξ,Aξ) + 2Tr(φAφA),

where we have used the fact of Tr(AB) = Tr(BA) for any two matrices A, B with
same size. 2
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From now on, let M be a Hopf hypersurface in Gm+2
2 (c), c 6= 0, m ≥ 3, satisfy-

ing (C-1), that is,

(LξA)Y = (∇̂(k)
ξ A)Y

for all tangent vector fields Y on M . From the definition of the Tanaka-Webster

operator F̂
(k)
X , we get F̂

(k)
ξ Y = −kφY . From this and the basic formula ∇Y ξ =

φAY , M satisfies the following condition for new symmetric operator (Aφ− φA);

(3.1) (Aφ− φA)AY = k(Aφ− φA)Y,

where we have used

(LξA)Y = Lξ(AY )−A(LξY )

= [ξ, AY ]−A[ξ, Y ]

= ∇ξ(AY )−∇AY ξ −A(∇ξY ) +A(∇Y ξ)
= (∇ξA)Y −∇AY ξ +A(∇Y ξ)
= (∇ξA)Y − φA2Y +AφAY

and

(∇̂(k)
ξ A)Y = ∇̂(k)

ξ (AY )−A(∇̂(k)
ξ Y )

= ∇ξ(AY ) + F̂
(k)
ξ AY −A(∇ξY + F̂

(k)
ξ Y )

= (∇ξA)Y + F̂
(k)
ξ AY −AF̂ (k)

ξ Y

= (∇ξA)Y − kφAY + kAφY.

Taking the structure tensor φ to (3.1), it gives us

φAφAY = φ2A2Y + kφAφY − kφ2AY
= −A2Y + η(A2Y )ξ + kφAφY + kAY − kη(AY )ξ,

(3.2)

for all tangent vector fields Y on M . From this and Aξ = αξ, the trace of φAφA is
given by

Tr(φAφA) =

4m−1∑
i=1

g(φAφAei, ei)

=

4m−1∑
i=1

g(−A2ei + η(A2ei)ξ + kφAφei + kAei − kη(Aei)ξ, ei)

= −Tr(A2) + α2 + kTr(φAφ) + kTr(A)− kα.

Moreover, since the matrices in a trace of a product can be switched without chang-
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ing the result, we have also

Tr(φAφ) = Tr(φ2A) =

4m−1∑
i=1

g(φ2Aei, ei)

=

4m−1∑
i=1

g(−Aei + η(Aei)ξ, ei) = −TrA+ α.

Hence it follows that

(3.3) Tr(φAφA) = −Tr(A2) + α2.

By virtue of Lemma 3.1 and (3.3), we see that the squared norm of (Aφ − φA)
vanishes on M , which implies the symmetric operator (Aφ−φA) is identically zero
on M . 2

Summing up these observations we assert:

Lemma 3.2. Let M be a Hopf hypersurface in Gm+2
2 (c), c 6= 0, m ≥ 3. The

condition (LξA)Y = (∇̂(k)
ξ A)Y for all tangent vector fields Y on M is equivalent

that the Reeb flow on M is isometric, that is, Aφ = φA. Furthermore, M is locally
congruent to the model space of Type (A).

4. Proof of Corollary

Hereafter we will give a proof of Corollary introduced in Section 1. From now
on, assume that M is a Hopf hypersurface in Gm+2

2 (c), c 6= 0, m ≥ 3 with

(C-2) (LXA)Y = (∇̂(k)
X A)Y

for all vector fields X and Y are tangent to M . It is trivial that the condition of
(C-1) is weaker than (C-2). So, M satisfies the condition (C-1), naturally. Hence
we see that if M satisfies our assumptions in Corollary, then M is of Type (A) by
virtue of Lemma 3.2.

Now let us check the converse problem: whether the shape operator of model
spaces of Type (A) in Gm+2

2 (c) satisfies the condition (C-2) or not? In order to do
this, suppose that the model spaces of Type (A), that is, (MA), (TA), and (HA), in
Gm+2

2 (c) satisfies our conditions given in Corollary. Since

(LXA)Y = LX(AY )−A(LXY )

= [X,AY ]−A[X,Y ]

= ∇X(AY )−∇AYX −A(∇XY ) +A(∇YX)

= (∇XA)Y −∇AYX +A(∇YX)



534 I. Jeong and H. Lee

and

(∇̂(k)
X A)Y = ∇̂(k)

X (AY )−A(∇̂(k)
X Y )

= ∇X(AY ) + F̂
(k)
X AY −A(∇XY + F̂

(k)
X Y )

= (∇XA)Y + F̂
(k)
X AY −AF̂ (k)

X Y,

the condition (C-2) can be rewritten as

−∇AYX +A(∇YX) = F̂
(k)
X (AY )−A(F̂

(k)
X Y )

= g(φAX,AY )ξ − η(AY )φAX − kη(X)φAY

− g(φAX, Y )Aξ + η(Y )AφAX + kη(X)AφY,

(4.1)

for all vector fields X,Y ∈ TM∗ where M∗ denotes the model space of Type (A).
From Propositions A and B we see that ξ = ξ1, furthermore qν(X) = 2g(Aξν , X)
for ν = 2, 3. If we put X = ξ2 ∈ Tβ and Y = ξ3 ∈ Tβ in (4.1), then it becomes

(4.2) −β∇ξ3ξ2 +A(∇ξ3ξ2) = β(α− β)ξ ⇐⇒ 2β(α− β)ξ = 0,

where we have used φξ3 = ξ2, φξ2 = −ξ3 and

∇ξ3ξ2 = q1(ξ3)ξ3 − 2g(Aξ3, ξ3))ξ1 + βξ1 = q1(ξ3)ξ3 − βξ1.

From this, we see that β = 0 or α = β.
For the case of (MA), since α =

√
8 cot(

√
8r) and β =

√
2 cot(

√
2r) where

r ∈ (0, π√
8
), it makes an contradiction. Hence the model space of (MA) does not

satisfy our condition (C-2).
Moreover, for (TA) (and (HA), resp.) we obtain the contradiction, since α =

2 coth(2r) (and α = 2, resp.) and β = coth(r) (and β = 1, resp.) where r ∈ (0,∞).
Summing up these observations, we assert the corollary in Section 1. 2
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