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DEFORMATION RIGIDITY OF ODD LAGRANGIAN

GRASSMANNIANS

Kyeong-Dong Park

Abstract. In this paper, we study the rigidity under Kähler deforma-
tion of the complex structure of odd Lagrangian Grassmannians, i.e., the
Lagrangian case Grω(n, 2n+1) of odd symplectic Grassmannians. To ob-
tain the global deformation rigidity of the odd Lagrangian Grassmannian,
we use results about the automorphism group of this manifold, the Lie
algebra of infinitesimal automorphisms of the affine cone of the variety of
minimal rational tangents and its prolongations.

1. Introduction

The study on deformations of the complex structure of complex manifolds
originates with Riemann. One hundred years after Riemann, Kodaira and
Spencer developed the deformation theory of higher dimensional compact com-
plex manifolds. Kodaira and Spencer showed that an infinitesimal deformation
of a compact complex manifold should be represented by the Kodaira-Spencer

class, which is an element of the first cohomology group with coefficients in the
sheaf of germs of holomorphic vector fields (see [11] and [12]).

Let S be a rational homogeneous manifold G/P for a complex simple Lie
group G and a parabolic subgroup P ⊂ G. As a consequence of the Bott-Borel-
Weil theorem, H1(S, TS) = 0, in fact, Hi(S, TS) = 0 for i ≥ 1. By Kodaira-
Spencer theory, vanishing of the first cohomolgy group H1(S, TS) implies local
deformation rigidity of rational homogeneous manifolds. Furthermore, Hwang
and Mok proved the global deformation rigidity of a rational homogeneous
manifold S of Picard number 1 ([4], [5], [7], [8], [9]).

Theorem 1.1. Let π : X → ∆ be a smooth projective morphism from a complex

manifold X to the unit disc ∆ ⊂ C. Suppose for any t ∈ ∆\{0}, the fiber

Xt = π−1(t) is biholomorphic to a rational homogeneous manifold S of Picard
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number 1 different from the 7-dimensional orthogonal Grassmannian Grq(2, 7).
Then, the central fiber X0 is also biholomorphic to S.

A projective manifold X is called quasi-homogeneous if the identity com-
ponent Aut0(X) of the automorphism group of X acts on X with open dense
orbit. We may think such a variety as a smooth equivarient compactifica-
tion of a homogeneous manifold G/H , where G = Aut0(X) and H ⊂ G is
the isotropy subgroup of a general point of X . It is then natural to have ques-
tions about the deformation rigidity of quasi-homogeneous manifolds. Studying
the deformation of quasi-homogeneous manifolds is also motivated by the re-
markable exception of Theorem 1.1. The orthogonal Grassmannian Grq(2, 7),
the variety of all q-isotropic complex planes in a 7-dimensional complex vec-
tor space endowed with a symmetric bilinear form q, can be deformed to the
G2-horospherical manifold called (G2, α2, α1) in [19] (Proposition 2.3 of [20]),
which is quasi-homogeneous under the complex Lie group of type G2 considered
as a subgroup of the projective orthogonal group PSO(7) = Aut(Grq(2, 7)).

The proof of Theorem 1.1 had been carried out over several steps for about 10
years starting with the irreducible Hermitian symmetric spaces of the compact
type. As a forward step to the global deformation rigidity problem of a quasi-
homogeneous Fano manifold of Picard number 1, we will deal with the odd

Lagrangian Grassmannian Grω(n, 2n+ 1), which is described in Section 2. In
this case, the open orbit of its automorphism group is isomorphic to the dual
tautological bundle on the Lagrangian Grassmannian Grω(n, 2n), which is the
irreducible Hermitian symmetric space of type III.

Theorem 1.2. Let π : X → ∆ be a smooth projective morphism from a complex

manifold X to the unit disc ∆ ⊂ C. Suppose for any t ∈ ∆\{0}, the fiber Xt =
π−1(t) is biholomorphic to an odd Lagrangian Grassmannian Grω(n, 2n + 1).
Then, the central fiber X0 is also biholomorphic to Grω(n, 2n+ 1).

In Section 2, we will define the odd symplectic Grassmannians and review
their geometric properties. In Section 3, after recalling the notion of the va-
riety of minimal rational tangents (VMRT) on uniruled projective manifolds,
the prolongations of a linear Lie algebra and the cone structures on a complex
manifold, we reduce the rigidity problem under Kähler deformation to calculat-
ing the prolongations of the Lie algebra of infinitesimal automorphisms of the
cone structure given by VMRT (see Proposition 3.5). Then by considering the
automorphism group of an odd Lagrangian Grassmannian, the Lie algebra of
infinitesimal automorphisms of the affine cone of VMRT and its prolongations,
we can prove Theorem 1.2 in Section 4.

2. Odd symplectic Grassmannians

Let V be a complex vector space endowed with a skew-symmetric bilinear
form ω of maximal rank. We denote the variety of all k-dimensional isotropic
subspaces of V by Grω(k, V ) = {W ⊂ V : dimW = k, ω|W ≡ 0}. When dim V
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is even, say, 2n, the form ω is a nondegenerate symplectic form and this variety
Grω(k, 2n) is the usual symplectic Grassmannian, which is homogeneous under
the action of the symplectic group Sp(2n). However, when dimV is odd, say,
2n + 1, the skew-form ω has the one-dimensional kernel Kerω. The variety
Grω(k, 2n + 1), called the odd symplectic Grassmannian, is not homogeneous
and has two orbits under the action of its automorphism group if 2 ≤ k ≤ n
(cf. [14] and Proposition 1.12 of [19]). If k = 1, then the isotropic condition
holds trivially so that Grω(1, V ) is just the linear space PdimV −1. Next, for
k = n+ 1 the odd symplectic Grassmannian Grω(n + 1, 2n+ 1) is isomorphic
to the symplectic Grassmannian Grω(n, 2n) because any (n + 1)-dimensional
isotropic subspace must contain the one-dimensional kernel of ω.

In what follows, we will assume that 2 ≤ k ≤ n when considering the odd
symplectic Grassmannians. The odd symplectic Grassmannians have many
nice geometric properties as follows.

Proposition 2.1. Let S be an odd symplectic Grassmannian Grω(k, 2n + 1)
for 2 ≤ k ≤ n.

(1) S is a smooth Fano manifold of Picard number 1.
(2) The automorphism group Aut(S) of S is isomorphic to the semi-direct

product ((Sp(2n)× C∗)/{±1})⋉C2n.

(3) S has two orbits under its automorphism group Aut(S). Furthermore, the

closed orbit {W ∈ Grω(k, 2n+1) : Kerω ⊂W} is isomorphic to the symplectic

Grassmannian Grω(k−1, 2n) and the open orbit {W ∈ Grω(k, 2n+1) : Kerω 6⊂
W} is isomorphic to the dual tautological bundle on Grω(k, 2n).

(4) S does not admit local deformation of its complex structure, that is,

H1(S, TS) = 0.

Proof. (1) Because the skew-form ω is generic, the smoothness of S follows
from Bertini’s theorem (Proposition 4.1 of [14]). The Picard group of S is the
free abelian group generated by the class of the closure of the codimension 1
cell (Subsection 4.13 of [14]).

(2) See Section 5 of [14] or Theorem 1.11 of [19]. Note that the semi-direct
product (Sp(2n)× C∗)⋉ C2n is equal to the odd symplectic group Sp(2n + 1)
defined in [14] and Aut(Grω(k, 2n+ 1)) = PSp(2n+ 1) for 2 ≤ k ≤ n.

(3) Since the odd symplectic group Sp(2n+1) is the stabilizer in GL(2n+1) of
the odd symplectic form ω, both orbits are stable under Sp(2n+1). Considering
the decomposition C2n+1 = Kerω ⊕ C2n, any W ∈ Grω(k, 2n + 1) containing
Kerω corresponds to a point of Grω(k−1, 2n). And the projection coming from
the above decomposition gives a map from the open orbit onto Grω(k, 2n) of
which the fiber at a point E ∈ Grω(k, 2n) is E

∗ (see Proposition 4.3 of [14]).
(4) From Theorem 0.5 of [20], we know that Hi(S, TS) = 0 for any i ≥ 1. �

From Proposition 2.1(3), an odd symplectic Grassmannian Grω(k, 2n + 1)
has three orbits under the semisimple part Sp(2n) of its automorphism group.
In particular, the Sp(2n)-closed orbit lying in the open orbit is isomorphic to
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a symplectic Grassmannian Grω(k, 2n), which becomes the Lagrangian Grass-
mannian Grω(n, 2n) when k = n. This Lagrangian case Grω(n, 2n+ 1) of odd
symplectic Grassmannians will be called the odd Lagrangian Grassmannian.

3. Prolongations of infinitesimal automorphisms

of cone structure defined by VMRT

In this section, we review some basic facts for the variety of minimal ra-
tional tangents (VMRT) on uniruled projective manifolds, the prolongations
of a linear Lie algebra and the cone structures on a complex manifold. Then
we can reduce the rigidity problem under Kähler deformation to calculating
the prolongations of the Lie algebra of infinitesimal automorphisms of the cone
structure given by VMRT.

3.1. Variety of minimal rational tangents

A Fano manifold is a compact complex manifold X with the positive anti-
canonical bundle K−1

X . By Mori’s theory, Fano manifolds are uniruled, i.e.,
covered by rational curves. Rational curves play a crucial role in the study of
Fano manifolds (cf. [15] and [16]). In the 1990’s Hwang and Mok introduced
the notion of the variety of minimal rational tangents on uniruled projective
manifolds (see [3] and [6]). For the study of Fano manifolds, more generally
uniruled manifolds, a basic tool is the deformation theory of rational curves.
The study on the deformation of minimal rational curves leads to their asso-
ciated varieties of minimal rational tangents, which is defined as a subvariety
of the projectivized tangent bundle P(TX) consisting of tangent directions of
minimal rational curves immersed in a uniruled projective manifold X .

Let X be a projective manifold of dimension n. By a parameterized rational

curve we mean a nonconstant holomorphic map f : P1 → X from the projective
line P1 into X . We say that a (parameterized) rational curve f : P1 → X is free
if the pullback f∗TX of the tangent bundle is nonnegative in the sense that
f∗TX splits into a direct sum O(a1) ⊕ · · · ⊕ O(an) of line bundles of degree
ai ≥ 0 for all i = 1, . . . , n. For a polarized uniruled projective manifold (X,L)
with an ample line bundle L, a minimal rational curve on X is a free rational
curve of minimal degree among all free rational curves on X .

Let J be a connected component of the space of minimal rational curves
and let K := J /Aut(P1) be the quotient space of unparameterized minimal
rational curves. We call K a minimal rational component. For a point x ∈ X ,
consider the subvariety Kx of K consisting of minimal rational curves belonging
to K marked at x. Define the tangent (rational) map τx : Kx 99K P(TxX) by
τx([f(P1)]) = [df(ToP1)] sending a member of Kx smooth at x to its tangent
direction at x, where f : P1 → X is a minimal rational curve with f(o) = x.
For a general point x ∈ X , by Theorem 3.4 of [10], this tangent map induces a
morphism τx : Kx → P(TxX), which is finite over its image.
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Definition. Let X be a polarized uniruled projective manifold with a mini-
mal rational component K. For a general point x ∈ X , the image Cx(X) :=
τx(Kx) ⊂ P(TxX) is called the variety of minimal rational tangents (to be ab-
breviated as VMRT) of X at x. The union of Cx over general points x ∈ X
gives the fibered space C ⊂ P(TX) → X of varieties of minimal rational tangents
associated to K.

We have the following description of the VMRT of (even or odd) symplectic
Grassmannians. Although this is identical to Lemma 3.6 of [2], we give details
of the proof for the convenience of the reader since the proof there is omitted.
For the case of (even) symplectic Grassmannians, the following lemma was
originally proven in Proposition 3.2.1 of [9] or Corollary 5.5 of [13].

Lemma 3.1. Let V be a complex vector space endowed with a skew-symmetric

bilinear form ω of maximal rank. The VMRT at a general point of the (even or

odd) symplectic Grassmannian Grω(k, V ) is isomorphic to a natural embedding

P(OPk−1(−1)m ⊕OPk−1(−2)) ⊂ Pmk+ 1

2
k(k+1)−1

for k ≥ 2 and m := dimV − 2k.

Proof. Let S = Grω(k, V ) and fix a k-dimensional isotropic subspace E ⊂ V .
When dimV is odd, we choose E not containing the one-dimensional kernel
of ω which lies in the open orbit by Proposition 2.1(3). Since we can view S
as a subvariety of the Grassmannian Gr(k, V ) of k-dimensional subspaces in
V and the tangent space of Gr(k, V ) at a point [E] is naturally isomorphic to
Hom(E, V/E) = E∗ ⊗ V/E, we have

T[E]S = {h ∈ Hom(E, V/E) : ω(h(e1), e2) + ω(e1, h(e2)) = 0, ∀e1, e2 ∈ E}.

Putting E⊥ := {v ∈ V : ω(v, e) = 0, ∀e ∈ E}, E⊥ is a subspace of dimension
dimV −k containing E because E is an isotropic subspace (not containing Kerω
when dimV is odd). The isomorphism V/E⊥ ∼= E∗ is induced by the skew-
symmetric form ω. Then, we have the natural projection ψ : E∗ ⊗ (V/E) →
E∗⊗E∗ defined by the composition V/E → V/E⊥ with the above isomorphism
V/E⊥ ∼= E∗. Hence, the map ψ : E∗ ⊗ (V/E) → E∗ ⊗E∗ is given by e∗ ⊗ v 7→
e∗ ⊗ v♭, where v♭ ∈ E∗ for v ∈ V is defined by v♭(e) := ω(v, e). Now, for any
e1, e2 ∈ E and h = e∗ ⊗ v ∈ T[E]S,

ψ(e∗ ⊗ v)(e1 ⊗ e2) = (e∗ ⊗ v♭)(e1 ⊗ e2) = e∗(e1)v
♭(e2)

= e∗(e1)ω(v, e2) = ω(e∗(e1)v, e2)

= ω(h(e1), e2) = ω(h(e2), e1) (∵ h ∈ T[E]S)

= ω(e∗(e2)v, e1) = ω(v, e1)e
∗(e2)

= v♭(e1)e
∗(e2) = (v♭ ⊗ e∗)(e1 ⊗ e2).

Thus, the tangent space T[E]S is given by the inverse image ψ−1(Sym2E∗) of

Sym2E∗ ⊂ E∗⊗E∗, where Sym2E∗ means the second symmetric power of E∗.
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Since v♭ = 0 for all v ∈ E⊥, there is a natural subspace D[E] of the tangent

space ψ−1(Sym2E∗) ⊂ E∗ ⊗ (V/E) defined by D[E] := E∗ ⊗ (E⊥/E) = Kerψ.
It follows that the tangent space of Grω(k, V ) at [E] can be identified with

T[E]Grω(k, V ) = (E∗ ⊗ (E⊥/E))⊕ Sym2E∗.

Minimal rational curves on S are lines of the Grassmannian Gr(k, V ) lying
on S. Thus the variety C[E](S) of minimal rational tangents of S at a general
point [E] ∈ S is the variety of decomposable tensors in T[E]S. If a decomposable
tensor h = e∗ ⊗ v is contained in T[E]S, then we have

ω(v, e′) = ω(h(e), e′) = −ω(e, h(e′))

= −ω(e, (e∗ ⊗ v)e′) = −ω(e, e∗(e′)v)

= −ω(e, v)e∗(e′) for all e′ ∈ E,

that is, ω(v, ·) = v♭ ∈ Ce∗. Conversely, if v♭ ∈ Ce∗, then e∗ ⊗ v is contained in
T[E]S. Therefore, the affine cone of VMRT C[E](S) is

C̃[E](S) = {e∗ ⊗ v ∈ E∗ ⊗ (V/E) : v♭ ∈ Ce∗}\{0},

where the affine cone Ã ⊂ V \{0} of a complex-analytic subvariety A ⊂ P(V )
means the preimage π−1(A) of the canonical projection π : V \{0} → P(V ).
Because v♭ = 0 for v ∈ E⊥, its intersection with D[E] = Kerψ is

C̃[E](S) ∩D[E] = {e∗ ⊗ v ∈ E∗ ⊗ (E⊥/E)}\{0}.

Under the projection e∗ ⊗ v 7→ e∗, P({e∗ ⊗ v ∈ E∗ ⊗ (E⊥/E)}) = C[E](S) ∩

P(D[E]) is a trivial Pm−1-bundle on P(E∗) = Pk−1. Hence, the VMRT C[E](S)
is a Pm-bundle on P(E∗).

Let F be the vector bundle on P(E∗) such that P(F ) = C[E](S). Then, F

has a trivial subbundle isomorphic to P(E∗) × (E⊥/E). From the above de-
scription, the vector bundle modulo the trivial subbundle is isomorphic to the
tautological line bundle of P(E∗) so that F ∼= Om ⊕ O(−1). The embedding
C[E](S) ⊂ P(T[E]S) restricts to the Segre embedding on C[E](S) ∩ P(D[E]) =

P(E∗)×P(E⊥/E), which is given by the dual tautological line bundle O(1) on
the projectivization P(T[E]S) when we view P(E∗) × P(E⊥/E) as the projec-
tivization of the vector bundle O(−1)m on P(E∗). Thus, the variety C[E](S)
of minimal rational tangents at [E] ∈ S is isomorphic to the projectivization
of the vector bundle O(−1)m ⊕ O(−2) on P(E∗) embedded by the complete
linear system associated to the dual tautological bundle of the projectivization
P(T[E]S). �

3.2. Prolongations of a linear Lie algebra

Let G ⊂ GL(V ) be a linear Lie group and g ⊂ gl(V ) its Lie algebra. The
(algebraic) prolongations g(k) of a linear Lie algebra g ⊂ gl(V ) originate from
the higher order derivatives of the infinitesimal automorphisms of the flat G-
structure, which is a subbundle V ×G of the frame bundle F(V ) = V ×GL(V ).
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Taking a global coordinate system (x1, . . . , xn) given by a basis of V , we can
interpret every vector field ξ =

∑n
i=1 ξi

∂
∂xi

on V as a V -valued function Fξ on
V . Then the derivative dFξ of Fξ is expressed as the coefficient matrix under
the identification V ∼= TvV for v ∈ V . Now, we consider this as a gl(V )-valued
linear map on V . In addition, if the lift of a vector field on V to the frame
bundle F(V ) is tangent to a G-subbundle, then the coefficient matrix of the
derivative dFξ is a g-valued linear map on V . Likewise, the coefficient matrix
of the second derivative of Fξ is a gl(V )⊗ V ∗-valued linear map on V , in fact,

actually takes values in Sym2 V ∗ ⊗ V and V ∗ ⊗ g.

Definition. Let V be a complex vector space and g ⊂ gl(V ) a linear Lie
algebra. For an integer k ≥ 0, the space g(k), called the k-th prolongation of g, is
the vector space of symmetric multi-linear homomorphisms A : Symk+1 V → V
such that for any fixed vectors v1, . . . , vk ∈ V , the endomorphism

v ∈ V 7→ A(v1, . . . , vk, v) ∈ V

belongs to g. That is, g(k) = Hom(Symk+1 V, V ) ∩ Hom(Symk V, g).

We are interested in the case where a Lie algebra g arises from geometric
situations, in particular, the Lie algebra of infinitesimal linear automorphisms
of an irreducible projective subvariety.

Definition. Let S ⊂ PV be an irreducible projective variety. The projective

automorphism group of S is Aut(S) = {g ∈ PGL(V ) : g(S) = S}. Its Lie

algebra is denoted by aut(S). Denote by S̃ ⊂ V , the affine cone of S and by

TαS̃ ⊂ V , the affine tangent space at a smooth point α ∈ S̃. The Lie algebra

of infinitesimal linear automorphisms of S̃ is defined by

aut(S̃) = {A ∈ gl(V ) : A(α) ∈ TαS̃ for any smooth point α ∈ S̃ ⊂ V }.

Its prolongation aut(S̃)(k) will be called the k-th prolongation of S ⊂ PV .

In [9], Hwang and Mok studied the prolongations aut(S̃)(k) of a projective
variety S ⊂ PV using the projective geometry of S and the deformation theory
of rational curves on S. In particular, the vanishing of the second prolonga-

tion aut(S̃)(2) for an irreducible smooth nondegenerate projective variety was
proven, which is Theorem 1.1.2 of [9].

Proposition 3.2. Let S ⊂ PV be an irreducible smooth nondegenerate projec-

tive variety. If S 6= PV , then the second prolongation of S vanishes, that is,

aut(S̃)(2) = 0.

From the definition of prolongations, it is immediate that g(k) = 0 for some
k ≥ 0 implies g(k+1) = 0. Thus, if S & PV is an irreducible smooth nondegen-

erate projective variety, then aut(S̃)(k) = 0 for k ≥ 2.
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3.3. Cone structures defined by VMRT

Cone structure C on complex manifold M is a closed analytic subvariety
C ⊂ P(TM ) such that the natural projection π : C → M is proper, flat and
surjective with connected fibers. We denote the fiber π−1(x) by Cx for a point
x ∈M . A germ of holomorphic vector field ξ at x ∈M is said to preserve the

cone structure if the local 1-parameter family of biholomorphisms integrating ξ
lifts to local biholomorphisms of P(TM ) preserving C. The Lie algebra aut(C, x)
of infinitesimal automorphisms of the cone structure C at x is the set of all
germs of holomorphic vector fields preserving the cone structure at x.

The Lie algebra aut(C, x) is naturally filtered by the vanishing order of vec-
tor fields at x. More precisely, letting aut(C, x)k be the subalgebra of aut(C, x)
consisting of vector fields which vanishes at x to order ≥ k+1 for each integer
k ≥ 0, the Lie bracket gives the structure of filtration aut(C, x) ⊃ aut(C, x)0 ⊃
aut(C, x)1 ⊃ aut(C, x)2 ⊃ · · · . Note that the graded pieces (under natural filtra-
tion) of the Lie algebra of infinitesimal symmetries of G-structure on complex
manifoldM are contained in the prolongations g(k) of the Lie algebra g ⊂ gl(V )
of G with dimV = dimM and equal to the prolongations when the G-structure
on M is flat.

Let ξ be a germ of holomorphic vector field on M vanishing to order ≥ k+1
at x. Then, its (k+1)-jet Jk+1

x (ξ) defines an element of Symk+1(T ∗
xM)⊗TxM .

Because Jk+1
x (ζ) = 0 for a vector field ζ vanishing to order ≥ k + 2 at x,

this defines the inclusion aut(C, x)k/aut(C, x)k+1 ⊂ Hom(Symk+1(TxM), TxM).
The following result is from Proposition 1.2.1 of [9] (also, see Section 5 of [2]).

Proposition 3.3. Let C ⊂ P(TM ) be a cone structure on a complex manifoldM
and x ∈M a point. For each k ≥ 0, if the quotient space aut(C, x)k/aut(C, x)k+1

is regarded as a subspace of Hom(Symk+1(TxM), TxM), then we have the in-

clusion

aut(C, x)k/aut(C, x)k+1 ⊂ aut(C̃x)
(k).

From Proposition 3.3, we have the natural inequalities

dim aut(C, x)0 ≤ dim aut(C̃x) + dim aut(C, x)1

≤ dim aut(C̃x) + dim aut(C̃x)
(1) + dim aut(C, x)2 ≤ · · · .

Because the codimension of aut(C, x)0 in aut(C, x) is at most dimM , we obtain
the following direct consequence.

Corollary 3.4. Let C ⊂ P(TM ) be a cone structure on a complex manifold M

and x ∈M . If aut(C̃x)
(k+1) = 0 for some k ≥ 0, then

dim aut(C, x) ≤ dimM + dim aut(C̃x) + dim aut(C̃x)
(1) + · · ·+ dim aut(C̃x)

(k).

In summary of the above results, we have a criterion on the biholomorphic
equivalence of locally rigid Fano manifolds with smooth nondegenerate projec-
tively equivalent VMRTs.
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Proposition 3.5. Let π : X → ∆ be a smooth and projective morphism from

a complex manifold X to the unit disc ∆. Suppose for any t ∈ ∆\{0}, the

fiber Xt = π−1(t) is biholomorphic to a locally rigid Fano manifold S, and

the variety Cs(S) of minimal rational tangents at a general point s of S is

irreducible, smooth, nondegenerate, and not linear. If the following conditions

hold:

(a) the VMRT at a general point of X0 is projectively isomorphic to Cs(S),
and

(b) dim aut(S) = dimS+dim aut(C̃s)+dim aut(C̃s)
(1) for the cone structure

C on S given by VMRT,

then the central fiber X0 is also biholomorphic to S.

Proof. First, we recall the standard fact that the Euler-Poincaré characteris-
tic of the holomorphic tangent bundle TX on a Fano manifold X is given by
χ(X,TX) = h0(X,TX) − h1(X,TX). In fact, the Serre duality and Kodaira-
Nakano vanishing theorem imply that Hi(X,TX) = Hn−i(X,T ∗

X ⊗ KX) = 0
for i ≥ 2. Since the Euler-Poincaré characteristic is constant in a smooth
family, χ(X0, TX0

) = χ(S, TS). Because S is a locally rigid Fano manifold,
h1(S, TS) = 0 and so χ(Xt, TXt

) = h0(S, TS) for all t. Thus, if the inequality
h0(X0, TX0

) ≤ h0(S, TS) holds, then we get h1(X0, TX0
) = 0, which implies the

desired rigidity result from the Kodaira-Spencer deformation theory.
Because aut(X0) is isomorphic to the space H0(X0, TX0

) of global sections of
the tangent bundle TX0

(Section 2.3 of [1]), we know h0(X0, TX0
) = dim aut(X0).

Also, aut(C̃x)
(k) = 0 for k ≥ 2 by Proposition 3.2. Then, from the fact that

any global vector field must preserve the cone structure given by VMRT and
Corollary 3.4, for a general point x ∈ X0, we have the inequality

h0(X0, TX0
) = dim aut(X0)

≤ dim aut(C, x)

≤ dimX0 + dim aut(C̃x) + dim aut(C̃x)
(1)

= dimS + dim aut(C̃s) + dim aut(C̃s)
(1)

= dim aut(S)

= h0(S, TS),

where the first equality in the last line is just the assumption (b). Therefore,
we have h1(X0, TX0

) = h0(X0, TX0
)− h0(S, TS) = 0, hence the central fiber X0

is also biholomorphic to the general fiber S. �

4. Proof of Theorem 1.2

The proof of Theorem 1.2 consists of two parts. The first part is to show that
the variety of minimal rational tangents at a general point of the central fiber
X0 agrees with that of the model manifold as a projective subvariety. Next, to
obtain the global deformation rigidity of an odd Lagrangian Grassmannian, we
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use results about the automorphism group of this manifold, the Lie algebra of
infinitesimal automorphisms of the affine cone of VMRT and its prolongations.

For the projective equivalence of VMRTs, let us consider the situation more
general than Theorem 1.2. Let W and Q be complex vector spaces of di-
mensions k ≥ 2 and m, respectively. By Lemma 3.1, the variety of mini-
mal rational tangents at a general point of the odd symplectic Grassmannian
Grω(k, 2k +m) is a projective subvariety Z ⊂ Pmk+ 1

2
k(k+1)−1 of which affine

cone Z̃ ⊂ (W ⊗Q)⊕ Sym2W is given by {λ⊗ µ+ Cλ2 : λ ∈W, µ ∈ Q}.

Proposition 4.1. Let π : X → ∆ be a smooth projective morphism from a

complex manifold X to the unit disc ∆. Suppose for any t ∈ ∆\{0}, the fiber

Xt is biholomorphic to Grω(k, 2k+m). Then, the VMRT at a general point x of

X0 is projectively isomorphic to Z ⊂ P((W ⊗Q)⊕Sym2W ) = Pmk+ 1

2
k(k+1)−1.

Proof. This was proven in Proposition 3.5.2 of [9] for the case of (even) sym-
plectic Grassmannians. The proof was presented under the assumption that
m = dimQ is even. However, the proof did not use this assumption. Thus, the
proof there also works for odd symplectic Grassmannians. �

Now recall the results about the Lie algebra of infinitesimal automorphisms
of the affine cone of VMRT and its prolongations. The following is from Propo-
sition 3.8 of [2].

Lemma 4.2. If Z ⊂ P((W ⊗Q)⊕ Sym2W ) is the variety of minimal rational

tangents at a general point [W ] of Grω(k, 2k +m), then

aut(Z̃) = (W ∗ ⊗Q)⋊ (gl(W )⊕ gl(Q)) and aut(Z̃)(1) = Sym2W ∗.

Proof of Theorem 1.2. If n = 1, then Grω(1, 3) is just the projective plane P2,
which is the case already established in Theorem 1.1. Hence, we suppose n ≥ 2.
Let us continue to use the previous notations. In this case, dimW = n and
dimQ = 1. Since Grω(n, 2n+ 1) is a locally rigid Fano manifold (Proposition
2.1 (1) and (4)) and the VMRT at a general point of the central fiber X0 is
projectively isomorphic to Z ⊂ P((W ⊗ Q) ⊕ Sym2W ) by Proposition 4.1, it
suffices to check the condition (b) of Proposition 3.5.

Now, we can easily obtain the dimension computation

dimGrω(n, 2n+ 1) = dim((W ⊗Q)⊕ Sym2W )

= n+
1

2
n(n+ 1)

=
1

2
n(n+ 3).

In addition, Lemma 4.2 implies that dim aut(Z̃) = n+n2+1 and dim aut(Z̃)(1) =
1
2n(n+ 1). Hence, we have

dimGrω(n, 2n+ 1) + dim aut(Z̃) + dim aut(Z̃)(1) = 2n2 + 3n+ 1.
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On the other hand, by Proposition 2.1(2),

dimAut(Grω(n, 2n+ 1)) = dimSp(2n+ 1)

= dimSp(2n) + 1 + 2n

= n(2n+ 1) + 2n+ 1

= 2n2 + 3n+ 1.

Therefore, X0 is also biholomorphic to Grω(n, 2n+ 1) by Proposition 3.5. �

We have obtained the rigidity result only for the Lagrangian case Grω(n, 2n+
1) among odd symplectic Grassmannians Grω(k, 2n+1) because the condition
(b) of Proposition 3.5 does not hold in other cases. However, the VMRT at a
general point of the central fiber is also projectively isomorphic to the VMRT
Cs(Grω(k, 2n + 1)) at a general point s ∈ Grω(k, 2n + 1) regardless of k by
Proposition 4.1. Thus, we guess that a similar result to Theorem 1.2 may hold
for more broad cases of odd symplectic Grassmannians.

On the other hand, we know the global deformation rigidity of a general hy-
perplane section S of the 10-dimensional spinor variety S5. It is well-known that
S is a 9-dimensional Fano manifold of coindex 3 and the quasi-homogeneous
horospherical manifold of type (B3, α1, α3) considered in [19]. Mukai [17] clas-
sified the Fano manifolds of coindex ≤ 3. By Mukai’s result, any projective and
smooth deformation of S must be a general hyperplane section of S5 and so is
biholomorphic to S because all smooth hyperplane sections of S5 are conjugate
to each other. However, we can also obtain the deformation rigidity result from
the consideration on the prolongations of the cone structure defined by VMRT
in the same way as the above proof.

Corollary 4.3. Let π : X → ∆ be a smooth projective morphism from a com-

plex manifold X to the unit disc ∆. Suppose for any t ∈ ∆\{0}, the fiber Xt is

biholomorphic to a general hyperplane section S of the 10-dimensional spinor

variety S5. Then, the central fiber X0 is also biholomorphic to S.

Proof. The argument is similar to the one used for odd Lagrangian Grassman-
naians. Since the VMRT Z = Cs(S) at a general point s of S is isomorphic to
a natural embedding Grω(2, 5) ⊂ P(TsS) = P8 induced by the Plücker embed-
ding, the condition (a) of Proposition 3.5 is satisfied by Theorem 1.2 and Zak’s
theorem on tangencies (Proposition 1.3.2 of Hwang-Mok [6] and Zak [21]). We
use the facts that from Propositions 3.11 and 3.12 of [2]

aut(Z̃) = C⊕W ⋊ (so(Q)⊕ C) and aut(Z̃)(1) = Q∗,

where Q is a 5-dimensional orthogonal vector space andW is the 4-dimensional
spin representation of so(5). Because Aut(S) = (SO(7)× C∗)⋉ C8 from The-
orem 1.11 of [19], the result follows from Proposition 3.5. �
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