References
-
O. Abdelkader and S. Saber, Solution to
$\overline{\partial}$ -equations with exact support on pseudoconvex manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007), no. 3, 339-348. https://doi.org/10.1142/S0219887807002090 - A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. (1965), no. 25, 81-130.
- B. Berndtsson and Ph. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1-10. https://doi.org/10.1007/s002090000099
-
H. P. Boas and E. J. Straube, Equivalence of regularity for the Bergman projection and the
$\overline{\partial}$ -Neumann problem, Manuscripta Math. 67 (1990), no. 1, 25-33. https://doi.org/10.1007/BF02568420 -
J. Cao and M. C. Shaw, The
$\overline{\partial}$ -Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in${\mathbb{CP}^n}$ with n$\geq$ 3, Math. Z. 256 (2007), no. 1, 175-192. https://doi.org/10.1007/s00209-006-0064-5 -
J. Cao, M. C. Shaw, and L. Wang, Estimates for the
$\overline{\partial}$ -Neumann problem and nonexistence of$C^2$ Levi-flat hypersurfaces in${\mathbb{C}P^n}$ , Math. Z. 248 (2004), no. 1, 183-221. https://doi.org/10.1007/s00209-004-0661-0 - S. C. Chen and M. C. Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19, (American Mathematical Society, Providence, RI and International Press, Boston, MA, 2001.
- J.-P. Demailly, Complex analytic and differential geometry, https://www-fourier.ujfgrenoble.fr/demailly/manusripts/agbook.pdf.
-
M. Derridj, Regularite pour
$\overline{\partial}$ dans quelques domaines faiblement pseudo-convexes, J. Differential Geometry 13 (1978), no. 4, 559-576. https://doi.org/10.4310/jdg/1214434708 - K. Diederich and J. E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math. 82 (1985), no. 2, 291-305. https://doi.org/10.1007/BF01388805
- M. G. Eastwood and G. V. Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv. 55 (1980), no. 3, 413-426. https://doi.org/10.1007/BF02566697
- O. Fujita, Domaines pseudoconvexes d'ordre general et fonctions pseudoconvexes d'ordre general, J. Math. Kyoto Univ. 30 (1990), no. 4, 637-649. https://doi.org/10.1215/kjm/1250519954
- P. S. Harrington, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett. 15 (2008), 485-490. https://doi.org/10.4310/MRL.2008.v15.n3.a8
-
P. S. Harrington and M.-C. Shaw, The Strong Oka's lemma, bounded plurisubharmonic functions and the
$\overline{\partial}$ -Neumann problem, Asian J. Math. 11 (2007), no. 1, 127-139. https://doi.org/10.4310/AJM.2007.v11.n1.a12 - J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81 (1965), 451-472. https://doi.org/10.2307/1970624
-
L. Hormander,
$L^2$ -estimates and existence theorems for the$\overline{\partial}$ -operator, Acta Math. 113 (1965), 89-152. https://doi.org/10.1007/BF02391775 - J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer, Berlin Heidelberg New York, 1972.
- K. Matsumoto, Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kahler manifolds, J. Math. Soc. Japan 48 (1996), no. 1, 85-107. https://doi.org/10.2969/jmsj/04810085
- T. Ohsawa, and N. Sibony, Bounded P.S.H. functions and pseudoconvexity in Kahler manifolds, Nagoya Math. J. 149 (1998), 1-8. https://doi.org/10.1017/S0027763000006516
-
S. Saber, Solution to
$\overline{\partial}$ problem with exact support and regularity for the$\overline{\partial}$ -Neumann operator on weakly q-convex domains, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 1, 135-142. https://doi.org/10.1142/S0219887810003963 -
S. Saber, The
$L^2$ $\overline{\partial}$ -Cauchy problem on weakly q-pseudoconvex domains in Stein manifolds, Czechoslovak Math. J. 65 (2015), no. 3, 739-745. https://doi.org/10.1007/s10587-015-0205-2 -
S. Saber, The
$\overline{\partial}$ Cauchy-Problem on weakly q-convex domains in the complex projective space, preprint. -
M.-C. Shaw, Local existence theorems with estimates for
$\overline{\partial}_b$ on weakly pseudo-convex boundaries, Math. Ann. 294 (1992), no. 4, 677-700. https://doi.org/10.1007/BF01934348 - Y. T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom. 17 (1982), no. 1, 55-138. https://doi.org/10.4310/jdg/1214436700
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Math. Series 30, Princeton University Press, Princeton, New Jersey, 1970.
- G. Vigna Suria, q-pseudoconvex and q-complete domains, Composito. Math. 53 (1984), 105-111.
- G. Zampieri, Complex analysis and CR geometry, University Lecture Series, 43. American Mathematical Society, Providence, RI, 2008.