DOI QR코드

DOI QR Code

THE ${\bar{\partial}}$-PROBLEM WITH SUPPORT CONDITIONS AND PSEUDOCONVEXITY OF GENERAL ORDER IN KÄHLER MANIFOLDS

  • Saber, Sayed (Mathematics Department Faculty of Science Beni-Suef University)
  • Received : 2014.12.15
  • Published : 2016.11.01

Abstract

Let M be an n-dimensional $K{\ddot{a}}hler$ manifold with positive holomorphic bisectional curvature and let ${\Omega}{\Subset}M$ be a pseudoconvex domain of order $n-q$, $1{\leq}q{\leq}n$, with $C^2$ smooth boundary. Then, we study the (weighted) $\bar{\partial}$-equation with support conditions in ${\Omega}$ and the closed range property of ${\bar{\partial}}$ on ${\Omega}$. Applications to the ${\bar{\partial}}$-closed extensions from the boundary are given. In particular, for q = 1, we prove that there exists a number ${\ell}_0$ > 0 such that the ${\bar{\partial}}$-Neumann problem and the Bergman projection are regular in the Sobolev space $W^{\ell}({\Omega})$ for ${\ell}$ < ${\ell}_0$.

Keywords

References

  1. O. Abdelkader and S. Saber, Solution to $\overline{\partial}$-equations with exact support on pseudoconvex manifolds, Int. J. Geom. Methods Mod. Phys. 4 (2007), no. 3, 339-348. https://doi.org/10.1142/S0219887807002090
  2. A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Etudes Sci. Publ. Math. (1965), no. 25, 81-130.
  3. B. Berndtsson and Ph. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1-10. https://doi.org/10.1007/s002090000099
  4. H. P. Boas and E. J. Straube, Equivalence of regularity for the Bergman projection and the $\overline{\partial}$-Neumann problem, Manuscripta Math. 67 (1990), no. 1, 25-33. https://doi.org/10.1007/BF02568420
  5. J. Cao and M. C. Shaw, The $\overline{\partial}$-Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in ${\mathbb{CP}^n}$ with n $\geq$ 3, Math. Z. 256 (2007), no. 1, 175-192. https://doi.org/10.1007/s00209-006-0064-5
  6. J. Cao, M. C. Shaw, and L. Wang, Estimates for the $\overline{\partial}$-Neumann problem and nonexistence of $C^2$ Levi-flat hypersurfaces in ${\mathbb{C}P^n}$, Math. Z. 248 (2004), no. 1, 183-221. https://doi.org/10.1007/s00209-004-0661-0
  7. S. C. Chen and M. C. Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19, (American Mathematical Society, Providence, RI and International Press, Boston, MA, 2001.
  8. J.-P. Demailly, Complex analytic and differential geometry, https://www-fourier.ujfgrenoble.fr/demailly/manusripts/agbook.pdf.
  9. M. Derridj, Regularite pour $\overline{\partial}$ dans quelques domaines faiblement pseudo-convexes, J. Differential Geometry 13 (1978), no. 4, 559-576. https://doi.org/10.4310/jdg/1214434708
  10. K. Diederich and J. E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math. 82 (1985), no. 2, 291-305. https://doi.org/10.1007/BF01388805
  11. M. G. Eastwood and G. V. Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv. 55 (1980), no. 3, 413-426. https://doi.org/10.1007/BF02566697
  12. O. Fujita, Domaines pseudoconvexes d'ordre general et fonctions pseudoconvexes d'ordre general, J. Math. Kyoto Univ. 30 (1990), no. 4, 637-649. https://doi.org/10.1215/kjm/1250519954
  13. P. S. Harrington, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett. 15 (2008), 485-490. https://doi.org/10.4310/MRL.2008.v15.n3.a8
  14. P. S. Harrington and M.-C. Shaw, The Strong Oka's lemma, bounded plurisubharmonic functions and the $\overline{\partial}$-Neumann problem, Asian J. Math. 11 (2007), no. 1, 127-139. https://doi.org/10.4310/AJM.2007.v11.n1.a12
  15. J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81 (1965), 451-472. https://doi.org/10.2307/1970624
  16. L. Hormander, $L^2$-estimates and existence theorems for the $\overline{\partial}$-operator, Acta Math. 113 (1965), 89-152. https://doi.org/10.1007/BF02391775
  17. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Springer, Berlin Heidelberg New York, 1972.
  18. K. Matsumoto, Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kahler manifolds, J. Math. Soc. Japan 48 (1996), no. 1, 85-107. https://doi.org/10.2969/jmsj/04810085
  19. T. Ohsawa, and N. Sibony, Bounded P.S.H. functions and pseudoconvexity in Kahler manifolds, Nagoya Math. J. 149 (1998), 1-8. https://doi.org/10.1017/S0027763000006516
  20. S. Saber, Solution to $\overline{\partial}$ problem with exact support and regularity for the $\overline{\partial}$-Neumann operator on weakly q-convex domains, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 1, 135-142. https://doi.org/10.1142/S0219887810003963
  21. S. Saber, The $L^2$ $\overline{\partial}$-Cauchy problem on weakly q-pseudoconvex domains in Stein manifolds, Czechoslovak Math. J. 65 (2015), no. 3, 739-745. https://doi.org/10.1007/s10587-015-0205-2
  22. S. Saber, The $\overline{\partial}$ Cauchy-Problem on weakly q-convex domains in the complex projective space, preprint.
  23. M.-C. Shaw, Local existence theorems with estimates for $\overline{\partial}_b$ on weakly pseudo-convex boundaries, Math. Ann. 294 (1992), no. 4, 677-700. https://doi.org/10.1007/BF01934348
  24. Y. T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom. 17 (1982), no. 1, 55-138. https://doi.org/10.4310/jdg/1214436700
  25. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Math. Series 30, Princeton University Press, Princeton, New Jersey, 1970.
  26. G. Vigna Suria, q-pseudoconvex and q-complete domains, Composito. Math. 53 (1984), 105-111.
  27. G. Zampieri, Complex analysis and CR geometry, University Lecture Series, 43. American Mathematical Society, Providence, RI, 2008.