• Title/Summary/Keyword: $H_2$ anneal

Search Result 33, Processing Time 0.027 seconds

Recrystallized poly-Si TFTs on metal substrate (금속기판에서 재결정화된 규소 박막 트랜지스터)

  • 이준신
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.30-37
    • /
    • 1996
  • Previously, crystallization of a-Si:H films on glass substrates were limited to anneal temperature below 600.deg. C, over 10 hours to avoid glass shrinkage. Our study indicates that the crystallization is strongly influenced by anneal temperature and weakly affected by anneal duration time. Because of the high temperature process and nonconducting substrate requirements for poly-Si TFTs, the employed substrates were limited to quartz, sapphire, and oxidized Si wafer. We report on poly-Si TFT's using high temperature anneal on a Si:H/Mo structures. The metal Mo substrate was stable enough to allow 1000.deg. C anneal. A novel TFT fabrication was achieved by using part of the Mo substrate as drain and source ohmic contact electrode. The as-grown a-Si:H TFT was compared to anneal treated poly-Si TFT'S. Defect induced trap states of TFT's were examined using the thermally stimulated current (TSC) method. In some case, the poly-Si grain boundaries were passivated by hydrogen. A-SI:H and poly-Si TFT characteristics were investigated using an inverted staggered type TFT. The poly -Si films were achieved by various anneal techniques; isothermal, RTA, and excimer laser anneal. The TFT on as grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. Some films were annealed at temperatures from 200 to >$1000^{\circ}C$ The TFT on poly-Si showed an improved $I_on$$I_off$ ratio of $10_6$, reduced gate threshold voltage, and increased field effect mobility by three orders. Inverter operation was examined to verify logic circuit application using the poly Si TFTs.

  • PDF

The influence of Si surface damage by Ar IBE on NiSi characteristics and the effect of $H_2$ anneal and TiN capping (Ar IBE에 의한 Si표면손상이 NiSi특성에 미치는 영향과 $H_2$ anneal 및 TiN capping에 의한 효과)

  • 안순의;지희환;이헌진;배미숙;왕진석;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.245-248
    • /
    • 2002
  • In this paper, the influence of Si surface damage on the NiSi formation has been characterized. The silicon surface is damaged using ion beam type spotter. Then, the effect of H2 anneal and TiN capping layer on the damaged has also been analyzed. The sheet resistance of NiSi formed on damaged Si increased rapidly as the damaging time increases while thermal stability of damaged NiSi was stabler than the undamaged one. In the case when H\ulcorner anneal and TiN capping layer were applied together, the characteristics of NiSi shows a little improvement of the sheet resistance.

  • PDF

Effects of Rapid Thermal Anneal on the Magnetoresistive Properties of Magnetic Tunnel Junction

  • Lee, K.I.;Lee, J.H.;K. Rhie;J.G. Ha;K.H. Shin
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.126-128
    • /
    • 2001
  • The effect of rapid thermal anneal (RTA) has been investigated on the properties of an FeMn exchange-biased magnetic tunnel junction (MTJ) using magnetoresistance and I-V measurements and transmission electron microscopy (TEM). The tunneling magnetoresistance (TMR) in an as-grown MTJ is found to be ∼27%, while the TMR in MTJs annealed by RTA increases with annealing temperature up to 300$\^{C}$, reaching ∼46%. A TEM image reveals a structural change in the interface of A1$_2$O$_3$layer for the MTJ annealed by RTA at 300$\^{C}$. The oxide barrier parameters are found to vary abruptly with annealing time within a few ten seconds. Our results demonstrate that the present RTA enhances the magnetoresistive properties of MTJs.

  • PDF

The dependence of NiSi for CMOS Technology on Surface Damage (CMOS 소자를 위한 NiSi의 surface damage 의존성)

  • Ji, Hee-Hwan;Bae, Mi-Suk;Lee, Hun-Jin;Oh, Soon-Young;Yun, Jang-Gn;Park, Sung-Hyung;Wang, Jin-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.167-170
    • /
    • 2002
  • The influence of Si surface damage on Ni-silicide with TiN Capping layer and the effect of $H_2$ anneal are characterized. Si surface is intentionally damaged using Ar Sputtering. The sheet resistance of NiSi formed on damaged silicon increased rapidly as Ar sputtering time increased. However, the thermal stability of Ni-Si on the damage silicon was more stable than that on at undamaged Si, which means that damaged region retards the formation of NiSi. It was shown that $H_2$ anneal and TiN capping is highly effective in reducing NiSi sheet resistance.

  • PDF

Anneal Temperature Effects on Hydrogenated Thin Film Silicon for TFT Applications

  • Ahn, Byeong-Jae;Kim, Do-Young;Yoo, Jin-Su;Junsin Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.7-11
    • /
    • 2000
  • a-Si:H and poly-Si TFT(thin film transistor) characteristics were investigated using an inverted staggered type TFT. The TFT an as-grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. The poly-Si films were achieved by using an isothermal and RTA treatment for glow discharge deposited a-Si:H films. The a-Si:H films were cystallized at the various temperature from 600$^{\circ}C$ to 1000$^{\circ}C$. As anneal temperature was elevated, the TFT exhibited increased g$\sub$m/ and reduced V$\sub$ds/. V$\sub$T/. The poly-Si grain boundary passivation with grain boundary trap types and activation energies as a function of anneal temperature. The poly-si TFT showed an improved I$\sub$nm//I$\sub$off/ ratio of 10$\^$6/, reduced gate threshold voltage, and increased field effect mobility by three orders.

  • PDF

Effect of Hydrogen Treatment on Electrical Properties of Hafnium Oxide for Gate Dielectric Application

  • Park, Kyu-Jeong;Shin, Woong-Chul;Yoon, Soon-Gil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Hafnium oxide thin films for gate dielectric were deposited at $300^{\circ}C$ on p-type Si (100) substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed in $O_2$ and $N_2$ ambient at various temperatures. The effect of hydrogen treatment in 4% $H_2$ at $350^{\circ}C$ for 30 min on the electrical properties of $HfO_2$for gate dielectric was investigated. The flat-band voltage shifts of $HfO_2$capacitors annealed in $O_2$ambient are larger than those in $N_2$ambient because samples annealed in high oxygen partial pressure produces the effective negative charges in films. The oxygen loss in $HfO_2$films was expected in forming gas annealed samples and decreased the excessive oxygen contents in films as-deposited and annealed in $O_2$ or $N_2$ambient. The CET of films after hydrogen forming gas anneal almost did not vary compared with that before hydrogen gas anneal. Hysteresis of $HfO_2$films abruptly decreased by hydrogen forming gas anneal because hysteresis in C-V characteristics depends on the bulk effect rather than $HfO_2$/Si interface. The lower trap densities of films annealed in $O_2$ambient than those in $N_2$were due to the composition of interfacial layer becoming closer to $SiO_2$with increasing oxygen partial pressure. Hydrogen forming gas anneal at $350^{\circ}C$ for samples annealed at various temperatures in $O_2$and $N_2$ambient plays critical role in decreasing interface trap densities at the Si/$SiO_2$ interface. However, effect of forming gas anneal was almost disappeared for samples annealed at high temperature (about $800^{\circ}C$) in $O_2$ or $N_2$ambient.

  • PDF

Mobility Determination of Thin Film a-Si:H and poly-Si

  • Jung, S.M.;Choi, Y.S.;Yi, J.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.483-490
    • /
    • 1997
  • Thin film Si has been used in sensors, radiation detectors, and solar cells. The carrier mobility of thin film Si influences the device behavior through its frequency response or time response. Since poly-Si shows the higher mobility value, a-Si:H films on Mo substrate were subjected to various crystallization treatments. Consequently, we need to find an appropriate method in mobility measurement before and after the anneal treatment. This paper investigates the carrier mobility improvement with anneal treatments and summarizes the mobility measurement methods of the a-Si:H and poly-Si film. Various techniques were investigated for the mobility determination such as Hall mobility, HS, TOF, SCLC, TFT, and TCO method. We learned that TFT and TCO method are suitable for the mobility determination of a-Si:H and poly-Si film. The measured mobility was improved by $2{\sim}3$ orders after high temperature anneal above $700^{\circ}C$ and grain boundary passivation using an RF plasma rehydrogenation.

  • PDF

Graphene Synthesis by Low Temperature Chemical Vapor Deposition and Rapid Thermal Anneal (저온 화학기상증착법 및 급속가열 공정을 이용한 그래핀의 합성)

  • Lim, Sung-Kyu;Mun, Jeong-Hun;Lee, Hi-Deok;Yoo, Jung-Ho;Yang, Jun-Mo;Wang, Jin-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1095-1099
    • /
    • 2009
  • As a substitute material for silicon, we synthesized few layer graphene (FLG) by CVD process with a 300-nm-thick nickel film deposited on the silicon substrate and found out the lowest temperature for graphene synthesis. Raman spectroscopy study showed that the D peak (wave length : ${\sim}1,350\;cm^{-1}$) of graphene was minimized and then the 2D one (wave length : ${sim}2,700\;cm^{-1}$) appeared when rapid thermal anneal is carried out with the $C_2H_2$ treated nickel film. This study demonstrates that a high quality FLG formed at a low temperature of $400^{\circ}C$ is applicable as CMOS devices and transparent electrode materials.

Degradation of electrical characteristics in Bio-FET devices by O2 plasma surface treatment and improving by heat treatment (O2 플라즈마 표면처리에 의한 Bio-FET 소자의 특성 열화 및 후속 열처리에 의한 특성 개선)

  • Oh, Se-Man;Jung, Myung-Ho;Cho, Won-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.199-203
    • /
    • 2008
  • The effects of surface treatment by $O_2$ plasma on the Bio-FETs were investigated by using the pseudo-MOSFETs on the SOI substrates. After a surface treatment by $O_2$ plasma with different RF powers, the current-voltage and field effect mobility of pseudo-MOSFETs were measured by applying back gate bias. The subthreshold characteristics of pseudo-MOSFETs were significantly degraded with increase of RF power. Additionally, a forming gas anneal process in 2 % diluted $H_2/N_2$ ambient was developed to recover the plasma process induced surface damages. A considerable improvement of the subthreshold characteristics was achieved by the forming gas anneal. Therefore, it is concluded that the pseudo-MOSFETs are a powerful tool for monitoring the surface treatment of Bio-FETs and the forming gas anneal process is effective for improving the electrical characteristics of Bio-FETs.

The Dependency of Surface Damage to NiSi for CMOS Technology (CMOS 소자를 위한 NiSi의 Surface Damage 의존성)

  • 지희환;안순의;배미숙;이헌진;오순영;이희덕;왕진석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.280-285
    • /
    • 2003
  • The influence of silicon surface damage on nickel-silicide (NiSi) has been characterized and H$_2$ anneal and TiN rapping has been applied to suppress the electrical, morphological deterioration phenomenon incurred by the surface damage. The substrate surface is intentionally damaged using Ar IBE (Ion beam etching) which can Precisely control the etch depth. The sheet resistance of NiSi increased about 18% by the surface damage, which is proven to be mainly due to the reduced silicide thickness. It is shown that simultaneous application of H: anneal and TiN capping layer is highly effective in suppressing the surface damage effect.