• Title/Summary/Keyword: $H_\infty$-norm

Search Result 145, Processing Time 0.026 seconds

Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems (디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계)

  • Choe, Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.483-490
    • /
    • 2004
  • The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

Reliable $H_\infty$ control for descriptor systems with actuator failures (구동기 고장을 가지는 특이시스템의 신뢰 $H_\infty$ 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.135-138
    • /
    • 2003
  • In this paper, we provide a reliable few controller design method for descriptor systems satisfying asymptotic stability with $H_\infty$ norm bound and all actuator failures occurred within the pre-specified subset. The proper condition for the existence of a reliable $H_\infty$ controller and the controller design method are proposed by linear matrix inequality(LMI), Schur complements, and singular value decomposition. All solutions can be obtained simultaneously because the presented sufficient condition can be expressed as an LMI form.

  • PDF

An $H_{\infty}$ Controller Design for linear Systems with Input Time Delay (제어 입력에 시간 지연을 갖는 선형 시스템의 $H_{\infty}$ 설계)

  • Kim, Hong-Rak;Yoo, Seog-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.42-45
    • /
    • 1996
  • This paper presents a solution of the $H_{\infty}$ control problem for linear systems with input time delay. $H_{\infty}$ norm bounded condition is obtained as a sufficient condition for linear systems with input time delay. Based upon this sufficient condition, an $H_{\infty}$ controller design method which involves the solutions of linear matrix inequalities via convex optimization is developed.

  • PDF

Design of $H_{\infty}$ Controller with Different Weighting Functions Using Convex Combination

  • Kim Min-Chan;Park Seung-Kyu;Kwak Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.193-197
    • /
    • 2004
  • In this paper, a combination problem of controllers which are the same type of $H_{\infty}$ controllers designed with different weighting functions. This approach can remove the difficulty in the selection of the weighting functions. As a sub-controller, the Youla type of $H_{\infty}$ controller is used. In the $H_{\infty}$ controller, Youla parameterization is used to minimize $H_{\infty}$ norm of mixed sensitivity function by using polynomial approach. Computer simulation results show the robustness improvement and the performance improvement.

Feedback Control for Multidimensional Linear Systems and Interpolation Problems for Multivariable Holomorphic Functions

  • Malakorn, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1847-1852
    • /
    • 2004
  • This article provides the connection between feedback stabilization and interpolation conditions for n-D linear systems (n > 1). In addition to internal stability, if one demands performance as a design goal, then there results an n-D matrix Nevanlinna-Pick interpolation problem. Application of recent work on Nevanlinna-Pick interpolation on the polydisk yields a solution of the problem for the 2-D case. The same analysis applies in the n-D case (n > 2), but leads to solutions which are contractive in a norm (the "Schur-Agler norm") somewhat stronger than the $H^{\infty}$ norm. This is an analogous version of the connection between the standard $H^{\infty}$ control problem and an interpolation problem of Nevanlinna-Pick type in the classical 1-D linear time-invariant systems.

  • PDF

Shape Design of Frame Structures for Vibration Suppression and Weight Reduction

  • Hase, Miyahito;Ikeda, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2246-2251
    • /
    • 2003
  • This paper proposes shape design of frame structures for vibration suppression and weight reduction. The $H_{\infty}$ norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto optimal solutions to the two-objective design problem, a number of linear combinations of the $H_{\infty}$ norm and the total weight of the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is defined by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function satisfies the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical examples are presented to demonstrate the effectiveness of the proposed design method.

  • PDF

$H{\infty}$ CONTROL OF NONLINEAR SYSTEMS WITH NORM BOUNDED UNCERTAINTIES

  • Jang, S.;Araki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.412-415
    • /
    • 1995
  • Previously obtained results of L$_{2}$-gain and H$_{\infty}$ control via state feedback of nonlinear systems are extended to a class of nonlinear system with uncertainties. The required information about the uncertainties is that the uncertainties are bounded in Euclidian norm by known functions of the system state. The conditions are characterized in terms of the corresponding Hamilton-Jacobi equations or inequalities (HJEI). An algorithm for finding an approximate local solution of Hamilton-Jacobi equation is given. This results and algorithm are illustrated on a numerical example..

  • PDF

$H^{\infty}$ Optomal Control Using the Lagrange Multiplier Method (Lagrange 승산자 방법을 이용한$H^{\infty}$최적제어)

  • 전재완;윤한오;박홍배;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.40-45
    • /
    • 1991
  • This paper deals with the design of feedback controllers which minimize the $H^{\infty}$-norm of the weighted sensitivity function. Using the Lagrange multiplier method and the Nevanlinna-Pick interpolation theory, an algorithm which stabilizes a plant and makes the output to track the reference signal is proposed..

  • PDF

Robust and Reliable H$\infty$ State-Feedback Control : A Linear Matrix Inequality Approach

  • Kim, Seong-Woo;Kim, Byung-Kook;Seo, Chang-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2000
  • We present a robust and reliable H$\infty$ state-feedback controller design for linear uncertain systems, which have norm-bounded time-varying uncertainty in the state matrix, and their prespecified sets of actuators are susceptible to failure. These controllers should guarantee robust stability of the systems and H$\infty$ norm bound against parameter uncertainty and/or actuator failures. Based on the linear matrix inequality (LMI) approach, two state-feedback controller design methods are constructed by formulating to a set of LMIs corresponding to all failure cases or a single LMI that covers all failure cases, with an additional costraint. Effectiveness and geometrical property of these controllers are validated via several numerical examples. Furthermore, the proposed LMI frameworks can be applied to multiobjective problems with additional constraints.

  • PDF

Input Constrained Receding Horizon $H_{\infty}$ Control : Quadratic Programming Approach

  • Lee, Young-Il
    • 전기의세계
    • /
    • v.49 no.9
    • /
    • pp.9-16
    • /
    • 2000
  • A receding horizon $H_{\infty}$ predictive control method is derived by solving a min-max problem in non-recursive forms. The min-max cost index is converted to a quadratic form which for systems with input saturation can be minimized using QP. Through the use of closed-loop prediction the prediction of states the use of closed-loop prediction the prediction of states in the presence of disturbances are made non-conservative and it become possible to get a tighter $H_{\infty}$ norm bound. Stability conditions and $H_{\infty}$ norm bounds on disturbance rejection are obtained in infinite horizon sence. Polyhedral types of feasible sets for sets and disturbances are adopted to deal with the input constraints. The weight selection procedures are given in terms of LMIs and the algorithm is formulated so that it can be solved via QP. This work is a modified version of an earlier work which was based on ellipsoidal type feasible sets[15].

  • PDF