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Abstract: This paper proposes shape design of frame structures for vibration suppression and weight reduction. The H1

norm of the transfer function from disturbance sources to the output points where vibration should be suppressed, is adopted

as the performance index to represent the magnitude of vibration transfer. The design parameters are the node positions of

the frame structure, on which constraints are imposed so that the structure achieves given tasks. For computation of Pareto

optimal solutions to the two-objective design problem, a number of linear combinations of the H1 norm and the total weight of

the structure are considered and minimized. For minimization of the scalared objective function, a Lagrange function is de�ned

by the objective function and the imposed constraints on the design parameters. The solution for which the Lagrange function

satis�es the Karush-Kuhn-Tucker condition, is searched by the sequential quadratic programming (SQP) method. Numerical

examples are presented to demonstrate the e�ectiveness of the proposed design method.
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1. INTRODUCTION

In high-precision machines, vibration at the positioning

parts has to be suppressed, which is caused by and trans-

ferred from other moving parts. On the other hand, re-

duction of the weight of a machine is commonly required

for saving manufacturing and transportation costs. Since

weight reduction generally contradicts vibration suppression,

we need to deal with a two-objective design problem, which

is practically very important.

In this context, we consider shape design of a frame struc-

ture. The design parameters are the node positions of the

structure, on which constraints are imposed so that the struc-

ture achieves given tasks. We use the �nite element method

(FEM) to obtain the equation of motion of the structure.

To evaluate the vibration suppression property, we adopt

the H1 norm of the transfer function from the disturbance

sources to the displacement outputs, which we want to sup-

press. The H1 norm has been used as a performance index

in structural design [1]�[5]. Since the H1 norm is the max-

imum amplitude of the frequency response function, it can

express the worst vibration transfer. This measure is suit-

able when the frequency range of the disturbance is broad.

If the frequency of the disturbance is restricted in a speci�c

band, a frequency-dependent weight should be introduced in

the measure.

To compute Pareto optimal solutions to the two-objective

design problem, we consider a number of linear combinations

of the H1 norm and the total weight as the objective func-

tions to be minimized. For minimization of the scalared ob-

jective function, we deal with a Lagrange function de�ned

by the objective function and imposed constraints on the

design parameters. We search the solution for which the La-

grange function satis�es the Karush-Kuhn-Tucker condition,

by the sequential quadratic programming (SQP) method [6].

Since the derivative of the H1 norm with respect to the

node positions of the frame structure cannot be calculated

analytically, we compute the derivative numerically from the

di�erence of H1 norms for small changes of node positions.

In the SQP method, we need to compute the H1 norm

at each iteration. The computation time is long when the

dimension of the model of the structure is high. For this

reason, we �rst eliminate a large number of modes, which

do not much contribute to the input-output relation, and

then employ the balanced realization approach for model

reduction [7].

Examples are presented to demonstrate the e�ectiveness

of the proposed design method.

2. SYSTEM DESCRIPTION

We start modeling of a frame structure with the equation

of motion obtained by FEM as(
M �q(t) +D _q(t) +Kq(t) = Nw(t)

z(t) = Hq(t)
(1)

where q is the node displacement vector, w is the disturbance

input vector, and z is the displacement output vector which

we want to suppress. The matricesM , D, andK respectively

denote mass, damping, and sti�ness, which are positive de�-

nite real symmetric matrices. We derive the matricesM and

K in Section 4.

We assume that the damping matrix D is proportional to

the mass and sti�ness matrices as

D = �M + �K (2)

where � and � are positive constants. This is a common

assumption in mechanical structures [8]. In Eq.(1), the ma-

trix N is de�ned by the locations and directions of the dis-

turbance inputs, and H is de�ned by those of displacement

outputs.



2.1. H1 Norm

To compute the H1 norm of the transfer function from

the disturbance w to the output z, we transform Eq.(1) to

the state equation (
_x(t) = Ax(t) +Bw(t)

z(t) = Cx(t)
(3)
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The transfer function, denoted byG(s), is expressed as C(sI�

A)�1B and its H1 norm is de�ned by

kG(s)k1 = sup
!

� fG(j!)g (4)

where � denotes the maximum singular value of the indi-

cated matrix.

2.2. Model Reduction

Generally, state-space models Eq.(3) of structures are high-

dimensional and it takes very much time to compute H1

norms of high-dimensional systems. Therefore, we consider

model reduction.

The most popular technique of model reduction applicable

to state equations is the one that uses the balanced realiza-

tion [7]. However, it also takes much time to compute bal-

anced realizations for high-dimensional state equations. For

this reason, we propose elimination of insigni�cant modes

in mode equations before we apply the balanced realization

technique in the state space. Since mode equations are eas-

ily obtained from the equation of motion, this approach is

eÆcient.

To do this, we diagonalize M and K in Eq.(1) so that

T TMT = I

T TKT = diagf�1; �2; � � �; �mg , �
(5)

where T is a nonsingular matrix and m is the dimension of

the displacement vector q. Since M and K are positive de�-

nite real symmetric matrices, such a T always exists. Using

this T , we transform Eq.(1) to(
�̂q(t) + D̂ _̂q(t) + �q̂(t) = N̂w(t)

z(t) = Ĥq̂(t)
(6)

q̂ = T
�1
q; D̂ = T

T
DT; N̂ = T

T
N; Ĥ = HT:

From Eq.(6), the transfer function from w to z is written

as
G(s) = Ĥ(s2I + sD̂ + �)�1N̂

=
mX
i=1

ĥi(s
2 + d̂is+ �i)

�1
n̂i

(7)

where ĥi, n̂i denote the i-th column and row of Ĥ, N̂ , re-

spectively, and D̂ = diagfd̂1; d̂2; � � �; d̂mg, d̂i = �+ ��i (i =

1; 2; � � �;m). In this expression, the norm of the i-th compo-

nent Gi(s) = ĥi(s
2 + d̂is+ �i)

�1n̂i in the frequency domain

is

kGi(j!)k =

q
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and its maximum with respect to ! is computed as

kGi(j!)kmax =
2
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If this is large, the i-th mode re
ects in theH1 norm of G(s).

If it is small, we delete the i-th mode from Eq.(6) to obtain a

reduced order model. In this way, we can practically delete

a large number of modes and obtain a signi�cantly low order

model.

We note however that even if kGi(j!)kmax is not so large,

if there is another mode nearby, then the total input-output

properties of the two modes would re
ect in the H1 norm

of G(s). Therefore, if there are modes, which are close and

their maximum norms de�ned by Eq.(9) are not small, we

do not delete them.

3. OPTIMAL DESIGN

Generally, a multi-objective optimization problem does

not have an optimal solution. Instead, it has so-called Pareto

optimal solutions, which have the property that it is impos-

sible to reduce any objective function without increasing at

least one of the other objective functions. In this paper, a

Pareto optimal solution means that the H1 norm and the

total weight determined by the solution are not simultane-

ously worse than those of any other solutions. They exist on

the boundary of the region of feasible solutions and are not

unique.

We formulate the two-objective structural optimization

problem with the design parameters vector p composed of

the changes of node positions from the nominal ones in the

x, y and z directions. We impose upper and lower bounds on

the changes of node positions so that the resultant structure

does not violate the given task of the structure.

To compute a Pareto optimal solution, we consider a lin-

ear combination of the H1 norm kG(s; p)k1 and the total

weight w(p) which are normalized by their nominal values.

We write p explicitly to indicate that these quantities depend

on the parameter. Thus, the problem is formulated as

min
p

f(p) = 
1
kG(s; p)k

1

kG(s; 0)k
1

+ 
2
w(p)

w(0)

s.t. �p+ p � 0; p� p � 0

(10)

where 
1, 
2 are positive numbers such that 
1 + 
2 = 1,

and p, p are the lower and upper bound vectors for p. We

obtain Pareto optimal solutions of the original two-objective

problem by computing the optimal solutions of the scalared

objective function Eq.(10) for various sets of the coeÆcients


1 and 
2.



3.1. KKT Condition

To compute the optimal solution of Eq.(10), we consider

a Lagrange function

L(p; �) = f(p) + �
T

"
�p+ p

p� p

#
(11)

where � is a Lagrange multiplier vector. Then, the opti-

mization problem Eq.(10) is reduced to that of searching the

parameter value p for which Eq.(11) satis�es the Karush-

Kuhn-Tucker (KKT) condition [6].

rpL(p; �) = rf(p) + diagf�I; I g� = 0

r�L(p; �) =

"
�p+ p

p� p

#
� 0

� � 0

�
T

"
�p+ p

p� p

#
= 0

(12)

3.2. SQP Method

We search the parameter value p satisfying the KKT con-

dition by the SQP method for Eq.(11). At each iteration, we

solve a quadratic programming (QP) problem

min
�p

�
1

2
�pTr2

f(p)�p+rf(p)T�p

�

s.t. � p+ p��p � 0; p� p+�p � 0

(13)

to determine the direction vector �p, where r2f(p) is equal

to the Hesse matrix rp
2L(p; �) of the Lagrange function

L(p; �) with respect to p. When the solution �p of Eq.(13) is

0, the design parameter vector p satis�es the KKT condition

Eq.(12) and it is the optimal solution of Eq.(10). We employ

the Goldfarb-Idnani method [6] to solve the QP problem

Eq.(13).

In the SQP method for Eq.(11), computation ofr2f(p) at

each iteration is ineÆcient. Therefore, we employ the Pow-

ell's modi�ed Broyden-Fletcher-Goldfarb-Shanno update [6]
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which gives an approximation Bk of r2f(p), where the sub-

script k means the k-th iteration. As the initial values, we

assume that B0 is the unit matrix and p0 = 0.

We note that we need rf(p) to compute Eqs.(13) and

(14), but it cannot be computed analytically. Therefore, we

compute the gradient rf(p) numerically by the di�erence of

f(p) for small changes of the node displacement vector p.

To apply the SQP method practically, we need to deter-

mine the step size in the direction �p, which represents the

size of variations of design parameters. If it is too small, a

lot of iterations are needed to reach the optimal solution. If

it is too large, the optimal solution may be missed. There-

fore, the step size should be large, but has to decrease the

objective function and satisfy the constraint.

In this paper, to �nd such a suitable step size, we adopt

the idea of Armijo [6]. That is, we employ the `1 exact

penalty function

P (p; �) = f(p) + �
X
i

max(0; �pki + p
i
; pki � pi) (15)

as the merit function, where � is a positive number and pki,

p
i
, pi are the i-th components of pk, p, p, respectively. Then,

we introduce the inequality

P (pk + Æk�pk; �) � P (pk; �)� �Æk�pk
TBk�1�pk (16)

to determine a large step size Æk satisfying this inequality,

where � is a constant such that 0 � � � 1. Using this Æk, we

determine the design parameter vector pk+1 by

pk+1 = pk + Æk�pk: (17)

4. FEM MODELING

To illustrate the FEM modeling of the structure, we con-

sider a �ve-stories Rahmen structure. Fig.1 shows the nomi-

nal shape of the structure, which is taken as the initial shape

in the iterative optimization. We consider deformation of the

structure by changing the node positions. The structure is

�xed at nodes N1�N4 on the 
oor in all directions. Then,

the displacement vector q is composed of the translations x,

y, z and rotations �x, �y, �z of nodes N5�N24. The direc-

tions x, y, z are indicated in Fig.1.

We assume that the cross-sections of frame members are

all square with the same size and denote the area by a. In

this paper, we do not change the cross-sectional areas of

frame members. Then, the total mass matrixM(p) and total

sti�ness matrix K(p) are described as

M(p) =WcWp(p)M̂(p)W�1
p (p)W T

c (18)

K(p) =WcWp(p)K̂(p)W�1
p (p)W T

c (19)
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where

M̂(p) = diagfm1; m1; m2; m2; � � �; m40; m40g
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K̂(p) = diagf�1; �2; � � �; �40g (21)
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are the member-level mass and sti�ness matrices both in the

local coordinate system. In Eqs.(20) and (21), � is the den-

sity of the material of frame members, `i(p) (i = 1; 2; � � � ; 40)

is the length of the i-th member, e is the Young's modulus,

and � is the Poisson's ratio. In (18) and (19), Wp(p) is the

transformation matrix from the local coordinate system to

the global coordinate system, and Wc is the constraint ma-

trix de�ned by the connections of members. We note that

the length `i(p) of members and the transformation matrix

Wp(p) are dependent on the node positions.

5. EXAMPLE

In this section, we present examples to demonstrate the

e�ectiveness of the proposed design method.

5.1. Design Condition

We consider the nominal frame structure depicted in Fig.1

with the following non-dimensional constants. The lengths

of beams in the x direction, beams in the y direction, and

columns are 500, 300 and 200, respectively, which de�ne the

initial node positions of the iterative structural design. The

cross-sectional areas are all 400. The density � is 7:8�10�6,

the Young's modulus e is 2:1 � 105, and Poisson ratio � is

0.33. The coeÆcients � and � of the proportional damping

matrix D in Eq.(2) are supposed to be 10�6.

We design the structure in the following situation. The

disturbance input excites node N5 in the y = x direction as

shown in Fig.2. Displacements of nodes N21�N24 in the x,

y and z directions are the outputs, which we want to sup-

press. We deal with a structure in symmetry in the x and

y directions. The heights of the nodes on the same story

are equal. We do not change the positions of nodes N1�N4
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Fig. 2. Input and output points

and N21�N24. The lower bounds of the position changes of

nodes N5�N20 from the nominal ones in the x, y and z di-

rections are -100, -60 and -40, and the corresponding upper

bounds are 100, 60 and 40, respectively.

5.2. Design Result

Let us �rst consider the case of the coeÆcients 
1 = 
2 =

0:5 in Eq.(10), which we call Case 1. Fig.3 illustrates the

design result, where the dash-dotted lines show the nominal

structure and the solid lines show the optimized structure.

The total weight of the nominal structure is 37.4 and the

optimized structure is 35.6. The reduction ratio is 4.8%.

Fig.4 gives the frequency responses of the structures. The

H1 norm of the nominal structure is 2.92 (9.31dB) at 149.2

(rad/sec) and that of the optimized structure is 0.21 (-13.46dB)

at 440.8(rad/sec). The reduction ratio is 92.7%. We have

achieved a signi�cant improvement.

Design results depend on the coeÆcients in Eq.(10). We

consider two other cases, that is, Case 2: 
1 = 0:1, 
2 = 0:9

and Case 3: 
1 = 0:9, 
2 = 0:1. Figs.5 and 7 illustrate

the design results of Cases 2 and 3, respectively and Figs.6

and 8 give the corresponding frequency responses. The total

weight of the optimized structure of Case 2 is 32.8 and that

of Case 3 is 35.9. The reduction ratios are 12.4 % and 4.2%,

respectively. The H1 norm of the optimized structure of

Case 2 is 0.50 (-5.94dB) at 188.6 (rad/sec) and that of Case

3 is 0.19 (-14.51dB) at 434.1(rad/sec). The reduction ratios

are 82.7 % and 93.6%, respectively.

We see that as the coeÆcient 
1 for the H1 norm in-

creases relatively to the coeÆcient 
2 for the total weight

in Eq.(10), the H1 norm decreases and the total weight in-

creases in the optimization. Therefore, the H1 norm and

the total weight of any case are not simultaneously better

or worse than other cases. These solutions are actually the

Pareto optimal solutions.

The optimized shapes also depend on the choice of 
1 and


2. However, there are two common features. First, the �rst

and the second stories are lower than the nominal ones. It
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may be supposed that such a shape increases the sti�ness at

the input point. Second, on the �rst story, the beams in the

x direction are shorter than those of the y direction. This

shape also may increase the sti�ness by compensating the

shape de�ned by N1�N4 on the �xed 
oor where beams in

the x direction are longer than those of the y direction.

6. CONCLUSION

We have proposed two-objective design of frame struc-

tures for vibration suppression and weight reduction. The

design parameters are the node positions of the structure.

The Pareto optimal solutions are computed by dealing with

a number of linear combinations of the H1 norm of the
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transfer function from disturbance inputs to displacement

outputs and the total weight.

We have employed the SQP method to solve the opti-

mization problem and demonstrated the e�ectiveness of the

proposed design method by numerical examples.

To reduce the computation time for the H1 norm of

high-dimensional systems, we have proposed elimination of

modes, which appear insigni�cantly in the input-output prop-

erty. We have applied the balanced realization technique for

model reduction as well.
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