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H, CONTROL OF NONLINEAR SYSTEMS WITH
NORM BOUNDED UNCERTAINTIES
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Abstract Previously obtained results of La-gain and Hs control via state feedback of nonlinear systems

are extended to a class of nonlinear system with uncertainties.

The required information about the

uncertainties is that the uncertainties are bounded in Euclidian norm by known functions of the system

state.

The conditions are characterized in terms of the corresponding Hamilton-Jacobi equations or

inequalities( HJEI). An algorithm for finding an approximate local solution of Hamilon-Jacobi equation is
given. This results and algorithm are illustrated on a numerical example.

Keywords L: gain, H control, Nonlinear systems, Norm bounded uncertainties

1. INTRODUCTION

The robust control problem is to decide under what con-
ditions there are feedback control laws for the uncertain
systems such that the closed-loop uncertain systems have
required stability and/or performance for all admissible un-
certainties, and then design the control law. There have
been a lot of research activities in robust control problem
for uncertain nonlinear systems, see for example, [3], [2],
[9]. There it is assumed that a known Lyapunov function
guarantees stability of a nominal system. The goal is to
construct a state feedback law which guarantees stability
for all admissible uncertainties. The uncertainties are deter-
ministic and the goal is to guarantee stability rather than
performance. )

Recently, the extension of linear Ho, theory to nonlinear
control systems has attracted many researchers’ attention,
see for example, [1], [5], [7], [12] [13]. Van der Schaft in [13]
showed that a sufficient condition for the H, control prob-
lem via state feedback can be given in terms of the related
HJEL In the case of measurement feedback case, Isidori and
Astolfi in [7] provided a sufficient condition, which can be
reduced to the solutions of two Hamilton-Jacobi equations.

In this paper, we propose an alternative approach to the
H, control problem via state feedback of a class of nonlinear
system with uncertainties. The required information about
the uncertainties is that the uncertainties are bounded in
Euclidian norm by known functions of the system state.
Sufficient conditions for the Ho control problem via state
feedback of nonliner systems with structured or unstruc-
tured uncertainties are given in terms of HJEI respectively.

In the state space H,, control problem of nonlinear sys-
tems with uncertainties or not, the conditions are basically
characterized in terms of the corresponding HJEIL There-
fore, one of the major concerns is how to solve these HJEIL.
Due to the nonlinear nature, it is rarely possible to find a
closed form solution of the HJEIL. Van der Schaft in [13] pro-
posed an approach to approximate a local solution of HIEL
A approximate polynominal solution and a special radial
solution of HJEI have been addressed Isidori and Kang in
[10] and Ji and Gao in [8] respectively.

In [11]. an approximation approach via Taylor series was
suggested and provided an algorithm and data structure in
[4). The results described in these paper were developed for
a specific case of the Hamilton-Jacobi equations. Whence,
we give an alternative approach via Taylor series for finding
approximate local solution of a general form of Hamilon-
Jacobi equation ,which is related with the H control prob-
lem for nonlinear systems with uncertainties or not. To the
end, we examine this methods with a numerical example.

For vector = and matrix Z, ||z]| denotes the Euclid-
ian norm and }|Z]|| denotes the matrix norm induced by
the Euclidian vector norm, ie., ||Z]] = [/\m“(ZTZ)]l/‘2
where Anax denotes the maximum eigenvalue. For differ-
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entiable function V(x) : R* — R we denote by & (z-) the
row vector of partial derivatives. For vector—va.lued func-
tion z(t) : [0,7] — R*, we say that z(¢) is in L2[0,T] if
j;]T ||2(t)||dt < co. The solution at time t of the system with

initial condition x(t¢) = ro and input u will be denoted by
z(t) = @(t, to, xo, u).

2. PRELIMENARY

In this section, the existing results of Ls-gain and H.
control problem via state feedback for nonlinear systems
are stated.

Consider a smooth nonlinear system described by

¢ = f(z) + G(z)u, y=h(z) 1

where, throughout this paper, z € R" is the state defined
on a neighborhood X of the origin, u € R™ is the input
and y € R? is the output. We assume the existence of an
equilibrinm 2 = 0 when u = 0, i.e., f(0) = 0. Without loss
of generality we assume that h(0) = 0.

Definition 1  The system (1) is called zero-state observ-
able if for all z € X
h(¢(t,0,2,0)) = 0= 4(¢,0,2,0)=0, Vt>0 (2)

Definition 2 Let v > 0. The system (1) is said to have
L; gain less than or equal to v if for all u € L,[0,T)

T ) T
/ ly(liPde < 42 / (o]t 3)
0 0
for all T > 0, with y(t) = h(4(¢,0,0, u)).

Theorem 1 13 The system (1) has L, gain less than
or equal to v if there exists a smooth solution V(z) > 0 (

V(0) = 0 ), defined in a neighborhood of z = 0, of the
HJEI
T @@+ g @006 0 5 @
+h' (2)h (x)=0(or <0 ®

Moreover, suppose that the system (1) is zero-state observ-
able, then the free system & = f(x) is asymptotically stable.

Now we consider the H, control problem via state feed-
back of a smooth noulinear system described by

= flx)+ G(@)u+ KN(z)d, y=h{z)+ J(z)u (5)



where d € R’ is the exogenous input or disturbance. We
assume that f(0) = 0 and A(0) = 0.

The purpose of the control is to find a state feedback
law such that asymptotic stability of the closed-loop system
with d = 0 is guaranteed and the closed-loop system has L,
gain less than or equal to a specific constant v.

Assumption 1 J7(z)J(z) > 0 for all z € X.

Theorem 2 6 Consider the system (5) with Assumption
1 and let 4 > 0. Assume that there exists a smooth solution
V(z) >0 ( V(0) =0 ), defined in a neighborhood of z = 0,
of the HIJEI

Y @) - G@M™ @)1 @h) + 12 ()

v
oz ()

+RT (@I - J(e)M 7 (2)J T (z)]h(z) =0 (or <0) (6)

: ;ﬂ-lf(z)KT(x) - G(z)M"mGT(z)]

Then, the closed-loop system with control input

T
Zl @+ @h@) ()

u= -3 M (@)IG ()

has L, gain less than or equal to vy, where M(z) =
JT(x)J(z). Moreover, if the closed-loop system is zero-
state observable, then the closed-loop system with d = 0
is asymptotically stable.

3. L, GAIN AND H, CONTROL OF
NONLINEAR SYSTEMS WITH
UNCERTAINTIES

Counsider a smooth nonlinear system described by
z = f(z) + Af(z) + G(z)u, y = h(z)+ Ah(z) (8)

where the existence of an equilibrium z = 0 when u = 0,
ie., f(0) = 0 and Af(0) = 0, and we assume that h(0) =0
and Ah(0) = 0.

Assumption 2 The uncertainties Af(-) and Ah(-) are
bounded in Euclidian norm by known functions;that is,
there are non-negative functions ps(z) and pn(z) such that

NAf(@N < ps(a), AR < palz)
for all x € X, with ps(0) =0, pn(0) =0.

We refer the uncertainties satisfying the assumption 2 as
the admissible uncertainties.

Theorem 3 Consider the system (8) with Assumption 2.
We assume that there exist positive constants é, 6 and e such

that the HJEI

oTv

18V
5 (©)

2 @@ +1% @) -

’—ylgG(z)GT(z) +1 }

5

+60%(z) + (14 ORT (z)h(z) + (1 + }g)pi(z) =0(or < 0) (9)

has a smooth solution V(z) > 0 ( V(0) = 0 ), defined in a
neighborhood of z = 0, then for all admissible uncertainties
the system has L, gain less than equal to y. Moreover, for all
admissible uncertainty, the system is zero-state observable
then the free system = = f(z) + Af(z) is asymptotically
stable.

Remark Consider the linear system described by

= (A4 AA())z+ Bu, y=(C+AC())z (10)
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with ||JAAC)]| < ea and ||AC()|| € ec. If V(x) take the
form V(z) = 27 Pz where P is symmetric semi-positive def-
inite matrix, then the HJEI reduce to the following Riccati
equation or inequality(REI)

PA+ AP+ P [%BBT + %I] P 46841

+(14+eCTC+(1+ %)ezcl =0(or <0)  (11)

Now, consider the H,, control problem of a smooth non-
linear system described by

z=f(z)+Af(x)+ {(G(x) + AG(z)}u + K(x)d (12)
y=h(x)+ Ah(z)+ {J(z) + AJ(x)}u

Assumption 3 There are non-negative functions pg(z)
and py(x) such that for all r € X

HAG(2)l} < pala), ||AT(2)]] < pulx)

Theorem 4 Consider system the (12) with Assumption
1,2 and 3 and let ¥ > 0. We assume that there exist positive
constants 8,6, €, 3 such that the HJEI

2@ () - (14 ) Gla) 7 (2) I () ()]

43 o @K@K (@) + 1 = GM (@)
T, 0TV T
@I T @)+ 1+ W@ -1+ 0 (2)

M~ z)J T (2)]h(z) + 6(1 + 8)p} (=)
HI+ DA+ 8)ph) =0 (or <0) (13)

has a smooth solution V(z) > 0 ( V(0) = 0 ), defined in a
neighborhood of z = 0, then for all admissible uncertainties
the closed-loop system with control input

aTv T

5 (z) + 21 + €)J " (z)h(z)] (14)
has L gain less than or equal to v where M(z) = (1 +
)T (2)J () +8(1+ 5)p&(x)I +(1+ 1)(14 §)p5(z) . More-
over, for all admissible uncertainties, the closed-loop system
is zero-state observable, then the closed-loop system (12),
(14) with d = 0 is asymptotically stable.

u= =2 M7 ()G ()

Remark Consider the linear system described by

= (A+ AA())x+ (B+AB(:))u+ Kd (15)
y=(C+AC( )+ (D+ AD()u

with [JAA()|| < ea, IAB(Q)|| < es, ||AC()|| < ec and
JAD()|| € ep. If V() takes the form V(z) = 27 Px where
P is symmetric semi-positive definite matrix, then the HJEI
reduces to the following REI

PA+ATP+P %I{I\’T + %I - BM-‘BT] P

+(1+eCTI -~ (1+ &) DM'DT|C + 6(1 + 6)4 1
+(1+ %)(1 + B8)etI =0 (or <0) (16)

where A = A~(14+€)BM™'DTC, M = (1+¢€)DTD+6(1+
1/0)e5I+(1+1/e)(1+1/8)€51. A control input such that
asymptotic stability of the closed-loop system with d = 0
is guaranteed and Ly gain of the closed-loop system is less
than and equal to v, for all admissible uncertainties, is

u=-MYBTP+(1+¢DTC) (17)

Next, we assume that the uncertainties satisfy the follow-
ing structure.



Assumption 4 The uncertainties Ah(-) = 0 and
AJ(-) = 0, and the uncertainties Af(-) and AG(-) have
the following structure

Af(z) = D{(z)AF(x)es(x), AG(z)= D(z)AF(x)Ec(x)

where D(z), Eg(z) and eg(z) are respectively known ma-
trices and a vector of appropriate dimensions which charac-
terize the structure of the uncertainties. AF(-) is bounded
as follows;for all r € X , ||AF(z)|| < 1.

Theorem 5 Consider the system (12) with Assumption
1 and 4, and let v > 0. We assume that there exists positive
constant é such that the following HJEI

W (@) — Gl R HEEE ey () + 1T
h(2)} + hT(2)h(z) + beF (z)es(x) + %‘Z_‘;(I)
-[%K(z)[x’T(x) + %D(I)DT(x) - G(z)R™'(x)

T, 0TV T T T
G ()] 72 (z) — {J7 (2)h(z) + SEG(x)es(x))]

RN (z)[JT(z)h(z) + 8EE(z)es(z)] = Oor < 0) (18)

has a smooth solution V(z) > 0(V(0) = 0), defined in a
neighborhood of x = 0, then, for all admissible uncertain-
ties, the closed-loop system with control input

_ 1y o 3TV T
u = -3R H(2)[G" (2) 5. (®) + 277 (2)h(z)

+26 B (x)es(x)] (19)

has L, gain less than or equal to y where R(z) =
JT(2)J(z) + 8EE(z)Eg(z). Moreover, for all admissible
uncertainties, the closed-loop system is zero-state observ-
able, then the closed-loop system (12), (19) with d = 0 is
asymptotically stable.

Remark Consider the linear system described by

i=(A+ DAF(-)Eas)z + (B+ DAF(-)Ep)u+ Kd

y=Cr+ Ju (20)

with ||AF()|| € 1. If V(z) takes the form V(z) = 27 Pz
where P is symmetric semi-positive definite matrix, then
the HJEI reduces to the following REI

PA+ATP+P | KKT+1DDT - BR'BT| P
Y

+6ELEA+CTC - [JTC + 6EEEA)R™
{JTC +6ELEA] = 0(or <0) (21)

where R=JTJ+6ELEs, A= A—-BR ' (8EEFEa+J7C).
And a control input such that asymptotic stability of the
closed-loop system with d = 0 is guaranteed and L gain
of the closed-loop system is less than or equal to v, for all
admissible uncertainties, is

u=—-R YBTP+JTC +6ELEA)x (22)

Remark The REI (21) has been already appeared in [14]
for the robust H, control problem of the linear system (20)

with JT[C J]=1{0 I].

4. AN APPROXIMATE SgLUTI8N
OF HAMILTON-JACOBI EQUATION

Consider the Hamilton-Jacobi equation of a general form
described by

aTv

57 (%) +h(zx)=0  (23)

W rf) + 2 )6

where f(0) = 0,h(0) = 0, g—é(O) = 0 and é(z) is symmetric.

(410113,

First, we have the following definition For matrix

Z, define Z® =1, 2V = Z and
ZW=2z92c - 02,

i—-1 times

1=2,3,--- (24)

where © stands for Kroneker product, and for vector x €
R™, define 2% =1, M =7 and

3 k=1 k—1 k=2 2 k-2
o™ = [zF ¥ 'a, Xy xp Y X3 T, L2y
k—2 k-2 2 kT
- xy ‘xToTn Ty T3 z, 1, k=3,4,--- (25)

Now, we consider that V(z) of a solution of (23) takes
the special form

V(z) = TPz + Zpkx[k] (26)

k=3

where P is a symmetric positive definite matrix.
The following algorithm is to generate all row vectors
pie(k =3,4,--4).
step 1 Let k = 3.
step 2 Find P satisfying the Riccati equation

PA, + 1P+ PG(O)P+C =0 (27)
where
550 722 (0)
~ 32h 8%h
_of 2 1| 73550 - 5 (0)
Al_@z(o)’ C'—2 : :
aZh-(0) 230

step 3 If for all 41,2, --,1x € {1,2,---,n} the equation
A+ A+ s+ A, #£0 (28)

is satisfied, then go to the next step, else if go to the previous
step, where A1, A2, -+ , An are eigenvalues of 4; + G(0)P.
step 4 Compute U as follows

k
Uk = My (E(Iﬁ:"” ® (A1 + G(0)P) ® If."")) Ne (29)

i=1

where M and N, are constant matrices whose elements are
only 1 or 0 ,such that ¥ = Mpg®, %) = Nezl¥,
step 5 Compute pi as follows

pe=—(Zc+ Fx + Ex + HONWURY, k>3 (30)

where Z3 = 0 and

1 N
Ze=7 Y rouw(SiGO)SIT), k2 4
i+j=k+2
i,j>23
1 - A j
Fo=g 2 ) rowllrew(SnGI'ISTD)
itmal=k+2 j=1
im2>2;0>1
1 8*h
Er = . Z row(SiAm), Hi = " '5';?(0)
i+m=k+1
Im>2

where S, = 2P, S,j is the jth column vector of S; and

N e a1 0
A = — —=(0), Si= Z (P; )T’ G-: = l—' —67(0)

w=1



where C’( ) is the jth column vector of G(z) and P* ¢
R"Xn

18

Pi..i1 P2 P,m
Pi.i2 Pro Pia2

P,‘w = . . (31)
Pl-uln Pl-~-2n annn

where Puiny.ony 15 (R1 X 12 X -+ X 1y )th row vector of the

block matrix which is made by partition p; M; into n* block

matrices;that is,
piMi =[Pr...1 Pi... - P
step 6 Let k =k + 1 and go to the step 3. .
5. A NUMERICAL EXAMPLE

Consider the second order system described by

(32)

=l el A [ 18]
y:[cé 002]I=CI

where a and b are the uncertain parameters such that; a —
bo<a<a+8, b—-8<b<L b+§b, where & and b are the
nominal values of a and b, 6, and é, are positive constants,
c1 and ¢ are penalties on z. The system (33) can be written
in the form of the system (12) with Ah(-) =0, J(-) =0 and
AJ() = 0;that is,

z = flz)+ Af(x) + {g(z) + Ag(z)}u+ kd, y=Cz (34)
fla) = [ ata.nzg }’ Af(z) = [ 6, tan xg ]

g(z)=[ ],Ag(x)=[ ],k=[ ]

where —8, < 8 < &, and —by < & < &. Let pp(z) =
§altanz;] and p,(z) = !cos: |, then the corresponding
Hamilton-Jacobi equation is as follows

Y 1@+ 1 @ew %
where G(z) ;-;kkT + %I — m N 2)g(x)gT(z) and
h zTCTCx +6(1 + 9)8% (tanz2)?, where m(x)
51 + 1/8) & (m;”)". A H, control law is
u —% m_l(a:) T(x) (:::) ——m 1(av)gT(z)(ZPI +
Ek 31”‘M’<Z I ®I ®x(k—|))

We will consxder ﬁndmg a six order approximate solu-
tion V(z) = zT Pa + E _ybxx (¥] of the Hamilton-Jacobi
equation (35). Accordmg to the algorithm of the previous

section, fma-—lb-lq =1l,e; = 1,6, = 0.2,
0.2, 7_15 § = 8,8 = 2 we obtain that;ps = 0,ps = 0 and

0

b 1

cos Tg

T

cos T3

(z) +h(z)=0 (35)

po [ 2364 1059
=1 1.059 1.669
[~0.1230 —0.00067 - 0.1274 0.05413 0.1392]

; [0.01291 0.01705 0.01892 0.004155 - 0.005292

0.009019 0.03667]

Figure 1 shows the time responses of z; for a perturbed
parameter a. = 1.2 and b = 0.8 when d(t) = 1if 0 <t <
10, d = 0 if otherwise, where the solid line is the response
by the control law obtained above and the dashed line is
the response by the control law designed for the nominal
nonlinear system using the same algorithm.

6. CONCLUSION

Sufficient conditions with respect to L, gain and Hoo con-
trol problem via the state feedback for nonlinear systems
with norm bounded uncertainties are given. And an al-
gorithm and data structure that generate a Taylor series
approximate local solution of the HJEI are given.
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Figure 1: Time response of z; with a step
disturbance(z;(0) = 0, 22(0) = 0)
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