• Title/Summary/Keyword: $C^1[C^2]$ Hermite interpolation

Search Result 8, Processing Time 0.03 seconds

HERMITE INTERPOLATION USING PH CURVES WITH UNDETERMINED JUNCTION POINTS

  • Kong, Jae-Hoon;Jeong, Seung-Pil;Kim, Gwang-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.175-195
    • /
    • 2012
  • Representing planar Pythagorean hodograph (PH) curves by the complex roots of their hodographs, we standardize Farouki's double cubic method to become the undetermined junction point (UJP) method, and then prove the generic existence of solutions for general $C^1$ Hermite interpolation problems. We also extend the UJP method to solve $C^2$ Hermite interpolation problems with multiple PH cubics, and also prove the generic existence of solutions which consist of triple PH cubics with $C^1$ junction points. Further generalizing the UJP method, we go on to solve $C^2$ Hermite interpolation problems using two PH quintics with a $C^1$ junction point, and we also show the possibility of applying the modi e UJP method to $G^2[C^1]$ Hermite interpolation.

$C^1$ HERMITE INTERPOLATION WITH MPH QUARTICS USING THE SPEED REPARAMETRIZATION METHOD

  • Kim, Gwang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.131-141
    • /
    • 2010
  • In this paper, we propose a new method to obtain $C^1$ MPH quartic Hermite interpolants generically for any $C^1$ Hermite data, by using the speed raparametrization method introduced in [16]. We show that, by this method, without extraordinary processes ($C^{\frac{1}{2}}$ Hermite interpolation introduced in [13]) for non-admissible cases, we are always able to find $C^1$ Hermite interpolants for any $C^1$ Hermite data generically, whether it is admissible or not.

C1 HERMITE INTERPOLATION WITH MPH CURVES USING PH-MPH TRANSITIVE MAPPINGS

  • Kim, Gwangil;Kong, Jae Hoon;Lee, Hyun Chol
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.805-823
    • /
    • 2019
  • We introduce polynomial PH-MPH transitive mappings which transform planar PH curves to MPH curves in ${\mathbb{R}}^{2,1}$, and prove that parameterizations of Enneper surfaces of the 1st and the 2nd kind and conjugates of Enneper surfaces of the 2nd kind are PH-MPH transitive. We show how to solve $C^1$ Hermite interpolation problems in ${\mathbb{R}}^{2,1}$, for an admissible $C^1$ Hermite data-set, by using the parametrization of Enneper surfaces of the 1st kind. We also show that we can obtain interpolants for at least some inadmissible data-sets by using MPH biarcs on Enneper surfaces of the 1st kind.

FIRST ORDER HERMITE INTERPOLATION WITH SPHERICAL PYTHAGOREAN-HODOGRAPH CURVES

  • Kim, Gwang-Il;Kong, Jae-Hoon;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.73-86
    • /
    • 2007
  • The general stereographic projection which maps a point on a sphere with arbitrary radius to a point on a plane stereographically and its inverse projection have the pythagorean-hodograph (PH) preserving property in the sense that they map a PH curve to another PH curve. Upon this fact, for given spatial $C^1$ Hermite data, we construct a spatial PH curve on a sphere that is a $C^1$ Hermite interpolant of the given data as follows: First, we solve $C^1$ Hermite interpolation problem for the stereographically projected planar data of the given data in $\mathbb{R}^3$ with planar PH curves expressed in the complex representation. Second, we construct spherical PH curves which are interpolants for the given data in $\mathbb{R}^3$ using the inverse general stereographic projection.

HERMITE-TYPE EXPONENTIALLY FITTED INTERPOLATION FORMULAS USING THREE UNEQUALLY SPACED NODES

  • Kim, Kyung Joong
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.303-326
    • /
    • 2022
  • Our aim is to construct Hermite-type exponentially fitted interpolation formulas that use not only the pointwise values of an 𝜔-dependent function f but also the values of its first derivative at three unequally spaced nodes. The function f is of the form, f(x) = g1(x) cos(𝜔x) + g2(x) sin(𝜔x), x ∈ [a, b], where g1 and g2 are smooth enough to be well approximated by polynomials. To achieve such an aim, we first present Hermite-type exponentially fitted interpolation formulas IN built on the foundation using N unequally spaced nodes. Then the coefficients of IN are determined by solving a linear system, and some of the properties of these coefficients are obtained. When N is 2 or 3, some results are obtained with respect to the determinant of the coefficient matrix of the linear system which is associated with IN. For N = 3, the errors for IN are approached theoretically and they are compared numerically with the errors for other interpolation formulas.

APPROXIMATE TANGENT VECTOR AND GEOMETRIC CUBIC HERMITE INTERPOLATION

  • Jeon, Myung-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper we introduce a discrete tangent vector of a polygon defined on each vertex by a linear combination of forward difference and backward difference, and show that if the polygon is originated from a smooth curve then direction of the discrete tangent vector is a second order approximation of the direction of the tangent vector of the original curve. Using this discrete tangent vector, we also introduced the geometric cubic Hermite interpolation of a polygon with controlled initial and terminal speed of the curve segments proportional to the edge length. In this case the whole interpolation is $C^1$. Experiments suggest that about $90\%$ of the edge length is the best fit for the initial and terminal speeds.

A NEW CLASS OF INTERPOLATORY HERMITE SUBDIVISION SCHEMES REPRODUCING POLYNOMIALS

  • Jeong, Byeongseon
    • East Asian mathematical journal
    • /
    • v.38 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • In this paper, we present a new class of interpolatory Hermite subdivision schemes of order 2 reproducing polynomials. Each member in this class, denoted by Hn for n ≥ 1, preserves polynomials of degree up to 4n + 1 admitting the approximation order of 4n + 2. Furthermore, it has free parameters which provide flexibility in designing curves/surfaces. H1, the simplest and the most attractive scheme in this class, achieves C4 smoothness with the parameters in certain ranges, and its performance is demonstrated with numerical examples.

PYTHAGOREAN-HODOGRAPH CURVES IN THE MINKOWSKI PLANE AND SURFACES OF REVOLUTION

  • Kim, Gwang-Il;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.121-133
    • /
    • 2008
  • In this article, we define Minkowski Pythagorean-hodograph (MPH) curves in the Minkowski plane $\mathbb{R}^{1,1}$ and obtain $C^1$ Hermite interpolations for MPH quintics in the Minkowski plane $\mathbb{R}^{1,1}$. We also have the envelope curves of MPH curves, and make surfaces of revolution with exact rational offsets. In addition, we present an example of $C^1$ Hermite interpolations for MPH rational curves in $\mathbb{R}^{2,1}$ from those in $\mathbb{R}^{1,1}$ and a suitable MPH preserving mapping.

  • PDF