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A NEW CLASS OF INTERPOLATORY HERMITE

SUBDIVISION SCHEMES REPRODUCING POLYNOMIALS

Byeongseon Jeong

Abstract. In this paper, we present a new class of interpolatory Hermite

subdivision schemes of order 2 reproducing polynomials. Each member in

this class, denoted by Hn for n ≥ 1, preserves polynomials of degree up
to 4n + 1 admitting the approximation order of 4n + 2. Furthermore, it

has free parameters which provide flexibility in designing curves/surfaces.

H1, the simplest and the most attractive scheme in this class, achieves C4

smoothness with the parameters in certain ranges, and its performance is

demonstrated with numerical examples.

1. Introduction

Interpolatory subdivision schemes are recursive algorithms generating smooth
curves/surfaces which pass through the initially given discrete data. In appli-
cations such as motion control, Hermite interpolatory subdivision schemes are
very desirable since they simultaneously refine additional quantities such as
velocities, acceleration, and even higher derivatives associated with the initial
positions. Hermite interpolatory subdivision schemes are first introduced and
analyzed in [10] and in [5, 6]. Afterwards, many researchers have investigated
their properties [8, 11], found tools to analyze them [1, 7, 12, 13], and con-
structed some with useful properties [3, 9, 15, 16]. As it is still young in the
literature, Hermite interpolatory subdivision schemes possess promising poten-
tial yet to be investigated.

This paper presents a rich class of interpolatory Hermite subdivision schemes
reproducing polynomials by acting on a sequence of vectors consisting of two
elements corresponding to values of a function and its first derivative. The
reproducing property guarantees the convergence of the scheme as well as the
smoothness and the approximation order of its limit curves. Each subdivision
scheme, dented by Hn for n ≥ 1, in this class provides the approximation order
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4n + 2. Moreover, it has free parameters which provide flexibility in designing
curves/surfaces in that we can edit the shape while not deviating from the
initially given control points, and retaining all important properties including
smoothness and approximation order. For instance, H1, the simplest and the
most attractive scheme in this new class, achieves C4 with parameters in certain
ranges.

We start by introducing some notations and definitions related to Hermite
subdivision schemes in Section 2, and then construct the proposed interpola-
tory Hermite subdivision schemes in Section 3. In Section 4, focusing on H1,
the smoothness of its limit function is analyzed. In Section 5 is analyzed the
approximation order of members in this new class. Finally, the performance of
the proposed scheme is demonstrated with numerical examples in Section 6.

2. Preliminaries

Let `2(Z) be the linear space of all sequences of 2-vectors. Given an initial
sequence f [0] ∈ `2(Z), a Hermite subdivision scheme of order 2 generates new
data f [k] ∈ `2(Z) by iteratively applying the refinement rule

Dk+1f [k+1](i) =
∑
j∈Z

A(i− 2j)Dkf [k](j), (1)

where D := diag(1, 2−1). We call the sequence of coefficient matrices A :=
{A(i) ∈ R2×2 : i ∈ Z} the subdivision mask. Only finitely many elements of
the subdivision mask are assumed to be nonzero matrices. Using the notation
HA for the Hermite subdivision operator, we can formally express the relation
(1) as

Dk+1f [k+1] = HADkf [k].

The i-th vector f [k](i) of the sequence f [k] is usually assigned to the value τki =
2−ki.

Definition 1. A Hermite subdivision scheme HA is convergent if for any ini-
tial sequence f [0], there exists a uniformly continuous function f = [f0 f1]T ∈
C(R,R2) such that for an arbitrary compact subset Ω ∈ R,

lim
k→∞

sup
i∈2kZ∩Ω

‖f [k](i)− f(τki )‖∞ = 0,

and f 6= 0 for an initial sequence f [0]. Furthermore, HA is said to be CN -
convergent for N ≥ 1 if f0 ∈ CN (R) and f ′0 = f1.

Definition 2. A Hermite subdivision scheme HA reproduces a function f if for
the initial data f [0] = {f [0](i) = [f(τ0

i ) f ′(τ0
i )]T : i ∈ Z}, it generates the refined

data f [k] satisfying f [k](i) = [f(τki ) f ′(τki )]T for i ∈ Z.
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3. Interpolatory Hermite subdivision schemes

In this section, we construct the proposed Hermite subdivision schemes, de-
noted by Hn for n ≥ 1. To this end, we employ the same construction technique
used in [15]. Let qj(x) = xj/j! for j = 0, 1, . . . , 4n+ 1, which spans π4n+1, the
space of polynomials of degree less than or equal to 4n + 1. Then we find the
mask A of Hn such that for the initial data f [0] := {f [0[(i) = [qj(τ

0
i ) q′j(τ

0
i )]T :

i ∈ Z}, Hn produces the refined data f [k] satisfying f [k](i) = [qj(τ
k
i ) q′j(τ

k
i )]T for

k ∈ Z+ and i ∈ Z, i.e., Hn reproduces polynomials in π4n+1. From the refine-
ment equation (1), this property can be formulated as follows. For ν = 1, 2, the
entries in the ν-th row of the odd mask {A(1− 2i) ∈ R2×2 : i = −n, . . . , n+ 1}
are obtained by solving the system

21−νq
(ν−1)
j ( 1

2 ) =

n+1∑
i=−n

Aν1(1− 2i)qj(i) +

n+1∑
i=−n

Aν2(1− 2i)q′j(i) (2)

for j = 0, 1, . . . , 4n+1. Since this is an underdetermined system of 4n+2 linear
equations with 4n + 4 unknowns for each ν, we set two free parameters λ and
µ as

A11(±(2n+ 1)) = 2−4n+2λ, A22(±(2n+ 1)) = 2−4n+1µ. (3)

Similarly, the even mask {A(2i) ∈ R2×2 : i = −n, . . . , n} is determined by
solving the system

21−νq
(ν−1)
j (0) =

n∑
i=−n

Aν1(−2i)qj(i) +

n∑
i=−n

Aν2(−2i)q′j(i) (4)

with j = 0, 1, . . . , 4n + 1 for ν = 1, 2. This system has a unique solution since
there are 4n+2 equations with 4n+2 unknowns for each ν. In order to derive the
solutions of the above systems explicitly, we use the following notations. Let Fi
and Gi, i = −n, . . . , n, be the fundamental Hermite interpolating polynomials
given by

Fi(x) := `i(x)2(1− 2`′i(i)(x− i)), Gi(x) := `i(x)2(x− i) (5)

for the Lagrange basis polynomials

`i(x) :=

n∏
α=−n
α 6=i

x− α
i− α

. (6)

Then we have for i = −n, . . . , n,

Fi(0) = δi,0, F ′i (0) = 0, Gi(0) = 0, G′i(0) = δi,0 (7)

The following properties of the Lagrange basis polynomial are useful for deriva-
tion of the mask of the proposed Hermite schemes.

Lemma 3.1. The Lagrange basis polynomial `−n given in (6) satisfies the fol-
lowing properties:
(a) `−n(n+ 1) = 1
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(b) `′−n(n+ 1) = −`′−n(−n) =
∑2n
α=1

1
α

(c) `−n( 1
2 ) = (−1)n

24n

(
2n
n

)
(d) `′−n( 1

2 ) = 0

Proof. A direct calculation yields the first identity `−n(n+ 1) = 1. Next, since

`′−n(x) = `−n(x)

n∑
α=−n+1

1

x− α
, (8)

it follows that

`′−n(n+ 1) =

n∑
α=−n+1

1

n+ 1− α
=

2n∑
α=1

1

α

and

`′−n(−n) =

n∑
α=−n+1

1

−n− α
= −

2n∑
α=1

1

α .

Thirdly, using the relation
∏n
α=1(2α− 1) = (2n)!

2nn! , we derive

`−n( 1
2 ) =

1

22n

n∏
α=−n+1

1− 2α

−n− α
=

(−1)n

22n(2n)!

(
n∏
α=1

(2α− 1)

)2

=
(−1)n

24n

(
2n

n

)
.

Lastly, since the integer set {−n + 1, ..., n} is symmetric about 1
2 , we see that∑n

α=−n+1
1

1/2−α = 0. It follows from (8) that `′−n( 1
2 ) = 0. �

Now, we derive the explicit form of our mask A in terms of the matrix-valued
function U[i] given by

U[i](x) :=

[
Fi(x) Gi(x)
F ′i (x) G′i(x)

]
with Fi and Gi in (5).

Theorem 3.2. Let {A(α) : α = −2n−1, . . . , 2n+1} be the coefficient matrices
in the systems (2) and (4). Suppose that λ and µ are the free parameters given
in (3). For sm :=

∑m
α=1

1
α , define a matrix W by

W := 2−4n+2

 λ
(2n

n )
2

24n+4s2n
− λ

2s2n
(2n

n )
2

24n+3(2n+1) − s2n+1µ
µ
2

 . (9)

Then the mask of the proposed Hermite subdivision scheme Hn can be expressed
as

A(1− 2i) = DU[i]( 1
2 )−WU[i](n+ 1) and A(−2n− 1) = W,

A(2i) = δi,0D,
(10)

for i = −n, . . . , n.
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Proof. For the derivation of the odd mask, denoting by Aj(i) the j-th column
of the coefficient matrix A(i), let

Ā :=
[
A1(2n+ 1) . . .A1(−2n+ 1) A2(2n+ 1) . . .A2(−2n+ 1)

]
∈ R2×(4n+2).

Then the system (2) can be written in the matrix form

D

[
q(0)( 1

2 )
q(1)( 1

2 )

]
= Ā

[
Q(0)

Q(1)

]
+ A(−2n− 1)

[
q(0)(n+ 1)
q(1)(n+ 1)

]
(11)

where the vector-valued function q(γ) is defined as

q(γ)(x) =
[
q

(γ)
j (x) : j = 0, . . . , 4n+ 1

]
∈ R1×(4n+2), (12)

and the matrix Q(γ) is given by

Q(γ) :=
[
q

(γ)
j (i) : i = −n, . . . , n, j = 0, . . . , 4n+ 1

]
∈ R(2n+1)×(4n+2).

The Hermite interpolation of polynomials yields the identity

U(x) =

[
q(0)(x)
q(1)(x)

] [
Q(0)

Q(1)

]−1

(13)

where

U(x) :=
[
U

[−n]
1 (x) . . .U

[n]
1 (x) U

[−n]
2 (x) . . .U

[n]
2 (x)

]
∈ R2×(4n+2).

Plugging (13) into the system (11), we have

Ā = DU( 1
2 )−A(−2n− 1)U(n+ 1). (14)

For simplicity, put

A(−2n− 1) =

[
θ1 η1

θ2 η2

]
.

Then by comparing both sides of (14), we obtain the relation

A11(2n+ 1) = F−n( 1
2 )− θ1F−n(n+ 1)− η1F

′
−n(n+ 1),

A22(2n+ 1) = 2−1G′−n( 1
2 )− θ2G−n(n+ 1)− η2G

′
−n(n+ 1).

(15)

Due to our setting in (3), we have

A11(2n+ 1) = θ1, A22(2n+ 1) = η2. (16)

Using Lemma 3.1, it can be easily checked that F ′−n(n+1) 6= 0 and G−n(n+1) 6=
0. Thus, the identities (15) are equivalent to

η1 =
F−n( 1

2 )

F ′−n(n+ 1)
− 1 + F−n(n+ 1)

F ′−n(n+ 1)
θ1,

θ2 =
2−1G′−n( 1

2 )

G−n(n+ 1)
−

1 +G′−n(n+ 1)

G−n(n+ 1)
η2.
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A direct calculation with Lemma 3.1 yields

η1 = −
`−n( 1

2 )2

4`′−n(−n)
+

1

2`′−n(−n)
θ1,

θ2 =
`−n( 1

2 )2

4n+ 2
+

(4n+ 2)`′−n(−n)− 2

2n+ 1
η2.

Moreover, using Lemma 3.1(b) and (c) together with the setting (3), we obtain
the explicit formula (9) for A(−2n− 1). This together with (14) completes the
derivation of the odd mask in (10). The even mask is uniquely determined by
solving the system (4), which formulates the evaluation of the Hermite interpo-
lation at x = 0. Thus, it follows from the property (7) that

A(−2i) = δi,0D, i = −n, . . . , n,
which completes the proof. �

Remark 1. Using the same method in the proof of [15, Theorem 3.5], we can
easily show that the mask A constructed by solving the systems (2) and (4)
fulfills the symmetry A(−i) = SA(i)S, i = 1, . . . , 2n+1, where S := diag(1,−1).

For specific choices of the free parameters, the proposed scheme Hn reproduces
polynomials of higher degrees.

Theorem 3.3. Let Hn be the proposed Hermite subdivision scheme with the
mask in (10). Choose the free parameters λ and µ of Hn as

λ = −
(
2 + (2n+ 1)s2n

)
µ and µ = −2−4n−4

(
2n

n

)2

. (17)

Then Hn reproduces polynomials of degree up to 4n+ 3.

Proof. We can add two more equations for j = 4n+ 2, 4n+ 3 to the system (2).
Then the system is uniquely solvable. The solution is obtained by evaluating
the Hermite interpolating polynomial for the given points {−n, . . . , n + 1} at
x = 1/2. This induces the identity

A(−2n− 1) = D

[
F̃n+1( 1

2 ) G̃n+1( 1
2 )

F̃ ′n+1( 1
2 ) G̃′n+1( 1

2 )

]
,

where F̃i and G̃i, the fundamental Hermite interpolating polynomials, are de-
fined as the same manner in (5) with the following Lagrange basis polynomial

˜̀
i(x) :=

n+1∏
α=−n
α 6=i

x− α
i− α

.

Now we determine the parameters λ and µ such that

W = D

[
F̃n+1( 1

2 ) G̃n+1( 1
2 )

F̃ ′n+1( 1
2 ) G̃′n+1( 1

2 )

]
,
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for the matrix W given in (9). This can be done by setting

λ = 24n−2F̃n+1( 1
2 ), µ = 24n−2G̃′n+1( 1

2 ), (18)

and showing that

W12 = G̃n+1( 1
2 ) and W21 = 2−1F̃ ′n+1( 1

2 ). (19)

As in the proof of Lemma 3.1, it can be easily shown that

˜̀′
n+1(n+ 1) =

1

2n+ 1
+ s2n, ˜̀

n+1( 1
2 ) =

(−1)n

24n+1

(
2n

n

)
, ˜̀′

n+1( 1
2 ) =

2˜̀
n+1( 1

2 )

2n+ 1
.

Then a direct computation with these identities induces the formulas (17), by
which the relations (19) can be easily verified. The uniqueness of the solution
to the system (2) completes the proof. �

Remark 2. In [15], the authors introduced a parametric family of primal Hermite
schemes reproducing polynomials in π4m−1 for m ≥ 1. Each member of this
family becomes interpolatory when its parameters are chosen to be zero. In
fact, for m ≥ 2, it is a special case of the proposed Hermite scheme Hm−1 with
the choice (17).

Example 3.4. For practical applications, H1 may be the most attractive scheme
among all the interpolatory Hermite subdivision schemes in the proposed class.
It reproduces polynomials in π5 for any choice of free parameters. The mask A
of H1 is supported in [−3, 3]∩Z, and the explicit form of the odd mask is given
as

A(1) =

[
1
2 −

λ
4

17
128 + λ

4

− 99
128 + 9µ

8 − 9
64 + 9µ

8

]
,A(3) =

[
λ
4 − 1

384 + λ
12

− 1
384 + 11µ

24
µ
8

]
,

A(−i) = SA(i)S, i = 1, 3,

where S := diag(1,−1). According to Theorem 3.3, if we choose λ = 3
128 and

µ = − 1
64 , then H1 reproduces polynomials in π7.

4. Analysis of smoothness

In this section, we investigate the regularity of the limit function generated by
the proposed Hermite subdivision scheme. The primary target of our analysis
is the scheme H1. We adopt the analysis framework based on the factorization
of subdivision operators given in [1]. For the detailed description, readers are
referred to [1, 2]. The factorization is performed in terms of the symbol

A(z) :=
∑
α∈Z

A(α)zα, z ∈ C

associated with the mask A. We start by factoring the symbol of H1. As shown
in [2], the polynomial reproducing property of H1 induces the factorization of
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its associated symbol A(z) as

A(z) =
1

2
(T (z))−1B(z)T (z2),

where

T (z) =

[
z−1 − 1 −1

0 1

]
,

and the entries of B(z), so-called the Taylor symbol of H1, are

B11(z) =
(
(96λ+ 176µ− 1)z3 − 96λz2 + (608µ− 106)z + 192 + (176µ− 96λ− 1)z−1

+ 96λz−2)/192,
B12(z) =

(
(64λ+ 128µ)z3 − (64λ+ 1)z2 + (176µ− 96λ− 103)z + (96λ+ 51)

+ (104− 256µ)z−1 − 51z−2 + (32λ− 48µ− 1)z−3 + (1− 32λ)−4)/192,
B21(z) =

(
(1− 176µ)z3 + (298− 608µ)z + (1− 176µ)z−1)/192,

B22(z) =
(
(1− 128µ)z3 + (244− 176µ)z + 192 + (256µ− 53)z−1 + 48µz−3)/192.

In order to factor the Taylor symbol B(z), we compute the joint-1 eigenvector
v of two matrices Be :=

∑
j∈ZB(2j) and Bo :=

∑
j∈ZB(2j + 1), i.e., Bev =

Bov = v. In our case, we obtain v = [0 1]T . For e := [1 0]T , let

V(z) := diag(z−1 − 1, 1)[v e]−1. (20)

Then B(z) is factored as

B(z) =
1

2
(V(z))−1B(1)(z)V(z2),

with symbol B(1)(z) consisting of the following components

B(1)
11 (z) =

(
(1− 128µ)z3 + (128µ− 1)z2 + (245− 304µ)z + (304µ− 53)− 48µz−1

+ 48µz−2)/96,
B(1)

12 (z) =
(
(176µ− 1)z3 + (1− 176µ)z2 + (608µ− 298)z + (298− 608µ)

+ (176µ− 1)z−1 + (1− 176µ)z−2)/96,
B(1)

21 (z) =
(
− (64λ+ 128µ)z3 + (64λ+ 1)z2 + (32λ− 304µ+ 103)z − (32λ+ 50)

+ (32λ− 48µ− 1)z−1 + (1− 32λ)z−2)/96,
B(1)

22 (z) =
(
(96λ+ 176µ− 1)z3 − 96λz2 + (608µ− 106)z + 192 + (176µ− 96λ− 1)z−1

+ 96λz−2)/96.
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Similarly, the factorization of B(1)(z) with the joint-1 eigenvector v = [2 1]T of

B
(1)
e and B

(1)
o yields B(2)(z) whose entries are

B(2)
11 (z) =

(
− (32λ+ 80µ+ 1)z3 + (64λ+ 80µ+ 3)z2 + (97− 80µ)z + (80µ− 64λ− 5)

+ (32λ+ 2)z−1)/48
B(2)

12 (z) =
(
(64λ+ 128µ)z3 − (128λ+ 128µ+ 1)z2 + (32λ+ 304µ− 102)z + (64λ− 304µ

+ 153) + (48µ− 64λ− 49)z−1 + (64λ− 48µ− 2)z−2 + (1− 32λ)z−3)/48
B(2)

21 (z) =
(
− (64λ+ 80µ+ 3)z3 + (64λ− 80µ+ 5)z2 + (64λ− 80µ+ 5)z − 64λ− 80µ

− 3
)
/48

B(2)
22 (z) =

(
(128λ+ 128µ+ 1)z3 + (128µ− 128λ− 3)z2 + (304µ− 64λ+ 39)z + (64λ

+ 304µ+ 47) + (48µ− 64λ+ 2)z−1 + (64λ+ 48µ− 2)z−2)/48
The joint-1 eigenvector v = [3 1]T of B

(2)
e and B

(2)
o leads us to obtain B(3)(z)

with entries

B(3)
11 (z) =

(
− (32λ+ 56µ+ 4)z3 + (64λ+ 10)z2 + (32µ+ 17)z + (2− 64λ)

+ (32λ+ 24µ− 1)z−1)/12
B(3)

12 (z) =
(
(64λ+ 80µ+ 3)z3 − (128λ+ 8)z2 + (128λ+ 8)− (64λ+ 80µ+ 3)z−1)/24

B(3)
21 (z) = (−(160λ+ 224µ+ 21)z3 + (128λ− 448µ+ 28)z2 + (192λ− 96µ− 48)z

+ (4− 192µ− 128λ) + (1− 32λ)z−1)/24

B(3)
22 (z) = ((80λ+ 80µ+ 4)z3 + (160µ− 64λ− 6)z2 + (80µ− 96λ+ 41)z + (64λ+ 160µ+ 2)

+ (16λ+ 1)z−1)/12

Finally, utilizing the joint-1 eigenvector v = [3 1]T of B
(3)
e and B

(3)
o , we get the

B(4)(z) whose components are

B(4)
11 (z) =

(
− (64µ+ 13)z3 + (29− 64µ)z2 + (128µ+ 5)z + 3

)
/12

B(4)
12 (z) =

(
(160λ+ 224µ+ 21)z3 + (224µ− 288λ− 49)z2 + (76− 352µ− 64λ)z

+ (320λ+ 96µ− 52) + (3− 192µ− 96λ)z−1 + (1− 32λ)z−2)/12
B(4)

21 (z) =
(
− (8µ+ 2)z3 + (1− 32µ)z2 − (8µ+ 2)z

)
/3

B(4)
22 (z) =

(
(96λ+ 112µ+ 13)z3 + (448µ− 8)z2 + (160µ− 192λ+ 82)z + 192µ

+ (96λ+ 48µ− 3)z−1)/12
According to the theory in [1, 2], if the N -th difference scheme 1

2HB(N) associ-

ated with the symbol B(N)(z) is contractive, i.e.,

‖( 1
2HB(N))L‖∞ < 1

for some number L ≥ 1, then the corresponding Hermite scheme is CN . In
our case, with the aid of MATLAB software, we see that ‖( 1

2HB(4))15‖∞ < 1
for λ ∈ [0.135, 0.145] and µ ∈ [−0.08,−0.06]. Therefore, the proposed Hermite
scheme is C4 for this range of parameter values.
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5. Order of approximation

The approximation capability of a Hermite subdivision scheme is usually
expressed in terms of the approximation order. It measures how much the limit
function obtained by the subdivision scheme with the initial data sampled from
a given function, is close to the original function. In this paper, we consider the
approximation of functions in the Sobolev space

WN
∞(Ω) =

{
f : R→ R : ‖f‖N,Ω :=

N∑
r=0

‖f (r)‖L∞(Ω) <∞

}
, N ∈ Z+.

Then the following estimation given in [15] holds for Hermite subdivision schemes
reproducing polynomials.

Theorem 5.1. [15] A Cγ-convergent Hermite subdivision scheme HA of order
γ + 1 reproducing polynomials in πm for m ≥ γ satisfies the estimate

‖f (ν) − f (ν)
∞ ‖L∞(Ω) ≤ C‖f‖m+1,Ω2−k(m+1−ν), ν = 0, . . . , γ,

for a compact subset Ω ⊂ R and a constant C > 0 independent of k and f .

According to this theorem, our Hermite scheme is (4n+ 2)-th order accurate.

Corollary 5.2. The proposed interpolatory Hermite subdivision scheme Hn

achieves the approximation order 4n+ 2.

6. Numerical examples

In this section, we present some numerical examples of the proposed scheme
H1 whose mask is given in Example 3.4. Figure 1 shows the limit functions
f∞ and g∞ generated by H1 with the initial data f [0] = δi,0[1 0]T and g[0] =
δi,0[0 1]T for i ∈ Z, respectively. For this example, we chose λ = 0.13775
and µ = −0.06725. The derivatives of f∞ and g∞ are presented in Figures 2
and 3, which verify that the limit curve of H1 is C4. Figure 4 illustrates the
limit curves produced from the same initial polygon with different parameter
values. The arrow indicates the gradient at each vertex. In this case, we set
(λ, µ) = (0.13775,−0.06725) + β(0.1, 0.05) for β = −2, . . . , 2.
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