Browse > Article
http://dx.doi.org/10.7858/eamj.2022.024

A NEW CLASS OF INTERPOLATORY HERMITE SUBDIVISION SCHEMES REPRODUCING POLYNOMIALS  

Jeong, Byeongseon (Major in Mathematics, College of Natural Science, Keimyung University)
Publication Information
Abstract
In this paper, we present a new class of interpolatory Hermite subdivision schemes of order 2 reproducing polynomials. Each member in this class, denoted by Hn for n ≥ 1, preserves polynomials of degree up to 4n + 1 admitting the approximation order of 4n + 2. Furthermore, it has free parameters which provide flexibility in designing curves/surfaces. H1, the simplest and the most attractive scheme in this class, achieves C4 smoothness with the parameters in certain ranges, and its performance is demonstrated with numerical examples.
Keywords
Interpolation; Hermite subdivision schemes; Smoothness; Polynomial reproduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Cotronei, C. Moosmuller, T. Sauer, N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and wavelets, Constr. Approx. 50 (2019), 341-366.   DOI
2 S. Dubuc, J.-L. Merrien, Hermite subdivision schemes and Taylor polynomials, Constr. Approx. 29 (2009), 219-245.   DOI
3 C. Conti, J.-L. Merrien, L. Romani, Dual Hermite subdivision schemes of de Rham-type, BIT Numer. Math. 54 (2014), 955-977.   DOI
4 N. Dyn, D. Levin, Analysis of Hermite-type subdivision schemes, in: C.K. Chui, L.L. Schumaker (Eds.), Approximation Theory VIII, Wavelets and Multilevel Approximation, vol.2, College Station, TX, World Sci., River Edge, NJ, (1995), 117-124.
5 B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets, J. Approx. Theory 110 (2001), no. 1, 18-53.   DOI
6 J.-L. Merrien, T. Sauer, A generalized Taylor factorization for Hermite subdivision schemes, J. Comput. Appl. Math. 236 (2011), no. 4, 565-574.   DOI
7 L. Romani, A circle-preserving C2 Hermite interpolatory subdivision scheme with tension control, Comput. Aided Geom. D. 27 (2010), 36-47.   DOI
8 J.-L. Merrien, T. Sauer, From Hermite to stationary subdivision schemes in one or several variables, Adv. Comput. Math. 36 (2012), 547-579.   DOI
9 M. K. Jena, A Hermite interpolatory subdivision scheme constructed from quadratic rational BernsteinBezier spline, Math. Comput. Simulat. 187 (2021), 433-448.   DOI
10 B. Jeong and J. Yoon, Construction of Hermite subdivision schemes reproducing polynomials, J. Math. Anal. Appl. 451 (2017), 565-582.   DOI
11 M. Charina, C. Conti, T. Sauer, Regularity of multivariate vector subdivision schemes, Numer. Algorithms 39 (2005), 97-113.   DOI
12 C. Conti, L. Romani, M. Unser, Ellipse-preserving Hermite interpolation and subdivision, J. Math. Anal. Appl. 426 (2015), 211-227.   DOI
13 N. Dyn, D. Levin Analysis of Hermite-interpolatory subdivision schemes, in: S. Dubuc, G. Deslauriers (Eds.), Spline Functions and the Theory of Wavelets, Am. Math. Soc., Providence, RI, (1999), 105-113.
14 N. Guglielmi, C. Manni, D. Vitale, Convergence analysis of C2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas, Linear Algebra Appl. 434 (2011), 884-902.   DOI
15 J.-L. Merrien, A family of Hermite interpolants by bisection algorithms, Numer. Algorithms 2 (1992), 187-200.   DOI
16 C. Manni, M.-L. Mazure, Shape constraints and optimal bases for C1 Hermite interpolatory subdivision schemes, SIAM J. Numer. Anal. 48 (2010), no. 4, 1254-1280.   DOI