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HERMITE-TYPE EXPONENTIALLY FITTED

INTERPOLATION FORMULAS USING

THREE UNEQUALLY SPACED NODES
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Abstract. Our aim is to construct Hermite-type exponentially fitted
interpolation formulas that use not only the pointwise values of an ω-

dependent function f but also the values of its first derivative at three

unequally spaced nodes. The function f is of the form,

f(x) = g1(x) cos(ωx) + g2(x) sin(ωx), x ∈ [a, b],

where g1 and g2 are smooth enough to be well approximated by polyno-
mials. To achieve such an aim, we first present Hermite-type exponen-

tially fitted interpolation formulas IN built on the foundation using N

unequally spaced nodes. Then the coefficients of IN are determined by
solving a linear system, and some of the properties of these coefficients

are obtained. When N is 2 or 3, some results are obtained with respect

to the determinant of the coefficient matrix of the linear system which
is associated with IN . For N = 3, the errors for IN are approached the-

oretically and they are compared numerically with the errors for other
interpolation formulas.

1. Introduction

When a table of numerical values is derived from functions or experiments,
the data in the table can be interpolated using either Lagrange or Hermite
polynomials [1]. However, functions or data with severely vibrating proper-
ties may not be properly approximated by these classical polynomials. Fortu-
nately, exponentially fitted interpolation formulas (= EFIFs) can be used to
deal with these types of problems that the classical polynomials may not be
able to solve. The essence in constructing EFIFs originates from the expo-
nentially fitted techniques, which are explained by Ixaru [6]. In more detail,
Ixaru proposed methods to generate exponentially fitted formulas for differen-
tiation, quadrature, and multistep solvers for ordinary differential equations.
Since then, many papers have been published, and some of them are as fol-
lows. These methods have further been investigated and extended to dealing
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with differential equations [5,9], generating quadrature formulas [7,10,15], and
solving integral equations [2]. Some works on EFIFs were done in a situa-
tion where equally spaced nodes were selected. More specifically, [12] analyzed
EFIFs using not only the values of an ω-dependent function but also the values
of its derivatives up to the nth order at the equally spaced nodes, and [13]
contributed to formulating EFIFs for a function depending on two frequencies.
Error analysis about EFIFs was also considered as follows. [3] presented a the-
oretical approach to errors resulting from various types of formulas obtained
by exponentially fitted techniques. The approach was extended and applied to
investigate the errors for EFIFs when two or three equally spaced nodes are
selected [11, 14]. In particular, [11] suggested a method for generating EFIFs
after expressing three unequally spaced nodes by two parameters. The method
followed some procedures different from the ones we deal with in this paper.
In addition, the method was not investigated with regard to error analysis as
well as the existence of the coefficients of the associated formulas.

EFIFs built on the basis of using equally spaced nodes can not be used in any
situation where more than two unequally spaced nodes are given. To overcome
this problem, in this paper we first present Hermite-type EFIFs IN that satisfy
the following two conditions at a finite number of unequally spaced nodes:

(i) IN agrees with f ,
(ii) IN has the same slope as f,

where f is given in the abstract. Then we focus on analyzing IN for N =
3. In general, (i) and (ii) above are conditions imposed when Hermite-type
interpolation formulas are generated. However, in the first step of generating IN
in this paper, it is unknown whether IN satisfies the above two conditions at the
unequally spaced nodes. This is because we do not impose such two conditions
when generating IN . Fortunately, it is later found that IN satisfies the above
two conditions. Thus, IN indeed becomes a Hermite-type interpolation formula
to which exponentially fitted techniques are applied. It is demonstrated that
the error analysis for EFIFs built on the basis of using equally spaced nodes
can also be applied to the error analysis for IN=3 using three unequally spaced
nodes. The errors for IN=3, IN=2, and HN=3 are compared through some
numerical results where HN=3 is the classical Hermite polynomial of degree 5.
Consequently, it is shown that IN=3 is superior to IN=2 and HN=3 in accuracy.
Our new formula IN can be used even when the nodes are selected with equal
spacing. However, if the nodes are equally spaced, the procedures presented by
[11] are recommended.

This paper will be organized as follows. In Section 2, our formula IN ,
which approximates an ω-dependent function using a finite number of unequally
spaced nodes, is presented. The coefficients of IN are obtained by solving a
linear system AX = Y where A is the coefficient matrix, and both X and Y
are column vectors. In Section 3, we examine the values that IN has at N
unequally spaced nodes. As a result, IN becomes a Hermite-type EFIF. In
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Section 4, it is investigated how the determinant of the coefficient matrix A
with respect to IN behaves when N = 2 or 3. To explain the advantage of IN
by additional use of the first derivative information, a Lagrange-type EFIF,
denoted by ĨN , is introduced that uses only the pointwise function values. In
Section 5, the errors for IN=3 are compared numerically with the errors for
other interpolation formulas such as IN=2 and HN=3. In Section 6, the errors
resulting from IN=3 are approached theoretically and illustrated numerically.
In Section 7, the errors for IN=3, IN=2, and HN=3 are compared when another
example function is selected. Additionally, when [a, b] is partitioned into a fi-
nite number of subintervals, the errors for IN=3 and HN=3 are compared by
repeatedly applying the two formulas on each subinterval.

2. Determining the coefficients of IN

Assume that a function f depending on ω is given by

(1) f(x) = g1(x) cos(ωx) + g2(x) sin(ωx), x ∈ [a, b],

where g1 and g2 are smooth enough to be well approximated by polynomials.
The function form given in (1) above has been dealt with for a long time in
the field of numerical solutions of ordinary differential equations (see Chapter
1 of [8]). On the other hand, if the data showing strong vibration is related
to the function given in (1), exponentially fitted techniques can be applied
as a method of connecting the data. From now on, based on the techniques
presented in [6], we will look at how to connect data provided at unequally
spaced nodes.

To approximate f, we consider formula IN with coefficients cj and dj . This
formula uses not only the values of the function f but also the values of its first
derivative at x = xj on [a, b] in the form:

(2) f(x̄+ ht) ≈ IN (t) =

N∑
j=1

cjf(xj) + h

N∑
j=1

djf
(1)(xj), xj = x̄+ htj .

In (2), it is assumed that

(i) x̄ = (a+ b)/2, h = (b− a)/2, and −1 ≤ t ≤ 1,
(ii) N is an integer equal to or greater than 2,
(iii) a = x1 < x2 < x3 < · · · < xN = b,
(iv) once a set of nodes {xj}Nj=1 is randomly selected, set tj by xj = x̄+htj ,

(v) f(xj) and f (1)(xj) are known where j = 1, 2, . . . , N.

At this point we may ask why the first derivative information is used in the
formula IN . There may be cases where not only function values at some nodes
but also its first derivative values at the same nodes can be known. For example,
a second-order ordinary differential equation with boundary conditions may be
solved numerically by a method known as “shooting”. The ODE solvers used
at this time obtain not only function values but also its first derivative values at
the given nodes. Using the full information available in this way, it is expected
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that more accurate approximation formulas can be produced than formulas
using only function values. For this reason, the first derivative information is
used in IN .

To construct IN , a functional L is defined as

(3) L(f(x), h,K) = f(x+ ht)−
N∑
j=1

cjf(x+ htj)− h
N∑
j=1

djf
(1)(x+ htj),

where K = (c1, c2, . . . , cN , d1, d2, . . . , dN ). Then, the equations we are interested
in are

(4) L(xm exp(±iωx), h,K) = 0, m = 0, 1, 2, . . . , N − 1.

Now let’s see how the values of cj and dj can be obtained from (4). When
µ = iω and f(x) = exp(µx), (3) gives

L(exp(µx), h,K) = exp(µx)φ(µh,K),

where

(5) φ(u,K) = exp(ut)−
N∑
j=1

cj exp(utj)− u
N∑
j=1

dj exp(utj).

In a similar way, we obtain

L(exp(−µx), h,K) = exp(−µx)φ(−µh,K).

By introducing Z = u2 = (µh)2 = −ω2h2 and using (5) we define

Φ+(Z,K) =
1

2
(φ(u,K) + φ(−u,K)) and Φ−(Z,K) =

1

2u
(φ(u,K)− φ(−u,K)).

To get the expressions corresponding to Φ+ and Φ−, Ixaru functions ([6] or
Section 3.2 of [8]) are used and given as follows.

Definition 1.

(i)

η−1(Z) =

{
cos(|Z|1/2) if Z < 0,
cosh(Z1/2) if Z ≥ 0,

(ii)

η0(Z) =

 sin(|Z|1/2)/|Z|1/2 if Z < 0,
1 if Z = 0,

sinh(Z1/2)/Z1/2 if Z > 0,

(iii) for s = 1, 2, 3, . . . ,

(6) ηs(Z) =

{
(ηs−2(Z)− (2s− 1)ηs−1(Z))/Z if Z 6= 0,

2ss!/(2s+ 1)! if Z = 0.

The above functions also have the following properties about the power series
and differentiation:
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(i)

ηs(Z) = 2s
∞∑
q=0

gsqZ
q/(2q + 2s+ 1)!

with

gsq =

{
1 if s = 0,
(q + 1)(q + 2) . . . (q + s) if s = 1, 2, 3, . . . ,

(ii)

(7)
d

dZ
ηs(Z) =

1

2
ηs+1(Z), s = −1, 0, 1, . . . .

Then we have

(8) Φ+(Z,K) = η−1(Zt2)−
N∑
j=1

cjη−1(Zt2j )−
N∑
j=1

djtjZη0(Zt2j )

and

(9) Φ−(Z,K) = tη0(Zt2)−
N∑
j=1

cjtjη0(Zt2j )−
N∑
j=1

djη−1(Zt2j ).

If one of (i) or (ii) given in (10) below is established, the other is also established:

(10)
(i) L(exp(±µx), h,K) = 0,
(ii) Φ±(Z,K) = 0.

Using the above result and chain rule, it can be derived that (i) and (ii) given
in (11) below are equivalent to each other:

(11)
(i) L(xm exp(±µx), h,K) = 0, m = 0, 1, . . . , N − 1,

(ii) dm

dZm Φ±(Z,K) = 0, m = 0, 1, . . . , N − 1.

The mth derivative of Φ+ and Φ− are provided as follows.

Lemma 2. For m = 1, 2, 3, . . . ,

(12)

dm

dZm
Φ+(Z,K) =

1

2m

t2mηm−1(Zt2)−
N∑
j=1

cjt
2m
j ηm−1(Zt2j )

−
N∑
j=1

djt
2m−1
j

(
ηm−2(Zt2j ) + ηm−1(Zt2j )

)
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and

(13)

dm

dZm
Φ−(Z,K) =

1

2m

t2m+1ηm(Zt2)−
N∑
j=1

cjt
2m+1
j ηm(Zt2j )

−
N∑
j=1

djt
2m
j ηm−1(Zt2j )

 .
Proof. Using (8), (7), and (6), we have

d

dZ
Φ+ =

d

dZ

η−1(Zt2)−
N∑
j=1

cjη−1(Zt2j )−
N∑
j=1

djtjZη0(Zt2j )


=

1

2
t2η0(Zt2)− 1

2

N∑
j=1

cjt
2
jη0(Zt2j )−

N∑
j=1

djtj

(
η0(Zt2j )+

1

2
Zt2jη1(Zt2j )

)

=
1

2

t2η0(Zt2)−
N∑
j=1

cjt
2
jη0(Zt2j )−

N∑
j=1

djtj
(
η−1(Zt2j ) + η0(Zt2j )

) ,
d2

dZ2
Φ+ =

1

22

t4η1(Zt2)−
N∑
j=1

cjt
4
jη1(Zt2j ) −

N∑
j=1

djt
3
j

(
η0(Zt2j ) + η1(Zt2j )

) ,
...

dm

dZm
Φ+ =

1

2m

t2mηm−1(Zt2)−
N∑
j=1

cjt
2m
j ηm−1(Zt2j )

−
N∑
j=1

djt
2m−1
j

(
ηm−2(Zt2j ) + ηm−1(Zt2j )

) .
Similarly, the result for dm

dZm Φ− is obtained by differentiating Φ− given in (9)
m times. �

From the results of (12) and (13), it can be found that the system given in
(ii) of (11) is linear in cj and dj . Therefore, this linear system can be expressed
as

(14) AX = Y,

where A is the coefficient matrix of size 2N×2N, and both X and Y are column
vectors with 2N components. The detailed forms of X, Y, and A are given as
follows.

Theorem 3. X, Y, and A are given as
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(i) for m = 1, 2, . . . , N,

X(m) = cm, X(N +m) = dm,

Y (m) = t2(m−1)ηm−2(Zt2), Y (N +m) = t2(m−1)+1ηm−1(Zt2),

(ii) for m = 1, 2, . . . , N and j = 1, 2, . . . , N,

A(m, j) = A(N +m,N + j) = t
2(m−1)
j ηm−2(Zt2j ),

A(N +m, j) = t
2(m−1)+1
j ηm−1(Zt2j ),

(iii) for m = 1, 2, . . . , N − 1 and j = 1, 2, . . . , N,

A(1, N + j) = tjZη0(Zt2j ),

A(m+ 1, N + j) = t
2(m−1)+1
j

(
ηm−2(Zt2j ) + ηm−1(Zt2j )

)
.

Proof. First apply (8), (9), and the results of Lemma 2 to (ii) given in (11).
Then transform the resulting equations into the linear system as in (14). As a
result, X,Y, and A are obtained. �

Finally, the coefficients of IN , cj and dj , are determined by solving the
linear system obtained. Note that cj and dj depend on ω, h, t, and {tj}Nj=1.
Nevertheless, we will continue to use the notations cj and dj for simplicity,
instead of cj

(
ω, h, t, {tj}Nj=1

)
and dj

(
ω, h, t, {tj}Nj=1

)
.

3. Properties of cj and dj

Based on the results of the previous section, cj and dj are determined in
a way that satisfies the equations given in (ii) of (11). At this point, we do
not know if IN has the same values as f at the nodes. That is, we can not
guarantee

(15) [f(x)]x=x̄+htj
= [IN (t)]x=x̄+htj

, j = 1, 2, . . . , N.

This is because we did not impose the above conditions when cj and dj were
determined. However, we will see in Theorem 5 that not only the conditions
given in (15) but also the other conditions given in (16) below are satisfied:

(16)

[
d

dx
f(x)

]
x=x̄+htj

=

[
d

dx
IN (t)

]
x=x̄+htj

, j = 1, 2, . . . , N.

Therefore, IN will truly be a Hermite-type interpolation formula, not just an
approximation of f. To achieve such an end, we need some results given in
Lemma 4.

Lemma 4. For j, k = 1, 2, . . . , N,

(i)

cj =

{
1 if t = tj
0 if t = tk (k 6= j)

and
d

dt
cj = 0 if t = tk,
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(ii)

dj = 0 if t = tk and
d

dt
dj =

{
1 if t = tj ,
0 if t = tk (k 6= j) .

Proof. From A and Y given in Theorem 3, we get

(i) for m = 1, 2, . . . , N and j = 1, 2, . . . , N,

[Y (m)]t=tj
= A(m, j) and [Y (N +m)]t=tj

= A(N +m, j),

(ii)

d

dt
Y (1) =

d

dt
η−1(Zt2) = tZη0(Zt2),

(iii) for m = 1, 2, . . . , N − 1,

d

dt
Y (m+ 1) =

d

dt
t2mηm−1(Zt2)

= 2mt2m−1ηm−1(Zt2) + t2m+1Zηm(Zt2) (use (7))

= t2(m−1)+1
(
ηm−2(Zt2) + ηm−1(Zt2)

)
, (use (6))

(iv) using (7) and (6) similarly as in (iii) above,

d

dt
Y (N +m) =

d

dt
t2(m−1)+1ηm−1(Zt2)

= (2(m− 1) + 1)t2(m−1)ηm−1(Zt2) + t2(m−1)+2Zηm(Zt2)

= t2(m−1)ηm−2(Zt2), where m = 1, 2, . . . , N.

From the above results, we have that, for j = 1, 2, . . . , N,

(17) A(·, j) = [Y (·)]t=tj

and

(18) A(·, N + j) =

[
d

dt
Y (·)

]
t=tj

.

Using (17) and (18), not only the values of cj and dj , but also their first
derivative values are given at t = tk as follows. Apply Cramer’s rule to the
linear system, AX = Y. Then, for j = 1, 2, . . . , N,

cj =
det(Aj)

det(A)
and dj =

det(AN+j)

det(A)
,

where Ai is a matrix A with its ith column replaced by Y. Finally, Lemma 4
is proved from the following property for the determinant of a matrix: if two
columns of a square matrix are equal, its determinant is equal to zero. For
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example, let’s find out the values of c1 and d
dtc1 at t = tk for N = 2. When N

is 2, the coefficient matrix A has size 4× 4 and is given by

A =


η−1(Zt21) η−1(Zt22) t1Zη0(Zt21) t2Zη0(Zt22)
t21η0(Zt21) t22η0(Zt22) t1(η−1(Zt21) + η0(Zt21)) t2(η−1(Zt22) + η0(Zt22))
t1η0(Zt21) t2η0(Zt22) η−1(Zt21) η−1(Zt22)
t31η1(Zt21) t32η1(Zt22) t21η0(Zt21) t22η0(Zt22)

.
We also have

X =
[
c1 c2 d1 d2

]T
and

Y =
[
η−1(Zt2) t2η0(Zt2) tη0(Zt2) t3η1(Zt2)

]T
.

Applying Cramer’s rule to AX = Y, we have c1 = det(A1)
det(A) where

A1 =


η−1(Zt2) η−1(Zt22) t1Zη0(Zt21) t2Zη0(Zt22)
t2η0(Zt2) t22η0(Zt22) t1(η−1(Zt21) + η0(Zt21)) t2(η−1(Zt22) + η0(Zt22))
tη0(Zt2) t2η0(Zt22) η−1(Zt21) η−1(Zt22)
t3η1(Zt2) t32η1(Zt22) t21η0(Zt21) t22η0(Zt22)

.
Then we get

(i) [c1]t=t1
= 1, because [det(A1)]t=t1

= det(A),

(ii) [c1]t=t2
= 0, because [A1(·, 1)]t=t2

= A1(·, 2),

(iii)
[
d
dtc1

]
t=t1

= 0, because
[
d
dtA1(·, 1)

]
t=t1

= A1(·, 3),

(iv)
[
d
dtc1

]
t=t2

= 0, because
[
d
dtA1(·, 1)

]
t=t2

= A1(·, 4). �

Now we conclude this section as follows.

Theorem 5. For j = 1, 2, 3, . . . , N, we have

(i)

[f(x)]x=x̄+htj
= [IN (t)]x=x̄+htj

,

(ii) [
d

dx
f(x)

]
x=x̄+htj

=

[
d

dx
IN (t)

]
x=x̄+htj

.

Proof. For j = 1, 2, 3, . . . , N , (i) and (ii) are proved as follows:
(i)

[IN (t)]x=x̄+htj

= [IN (t)]t=tj
(use x = x̄+ ht)

=

N∑
k=1

[ck]t=tj
f(x̄+ htk) + h

N∑
k=1

[dk]t=tj
f (1)(x̄+ htk) (see (2))

= [cj ]t=tj
f(x̄+ htj) = 1 · f(x̄+ htj) (see Lemma 4)

= [f(x)]x=x̄+htj
.
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(ii) [
d

dx
IN (t)

]
x=x̄+htj

=

[
d

dt
IN (t)

]
t=tj

· 1

h
(use chain rule)

=

(
N∑

k=1

[
d

dt
ck

]
t=tj

f(x̄+ htk) + h

N∑
k=1

[
d

dt
dk

]
t=tj

f (1)(x̄+ htk)

)
· 1

h

=

(
h

[
d

dt
dj

]
t=tj

f (1)(x̄+ htj)

)
· 1

h

= 1 · f (1)(x̄+ htj) (see Lemma 4)

=

[
d

dx
f(x)

]
x=x̄+htj

.
�

Thus, Theorem 5 says that IN agrees with f at x = x̄+htj , j = 1, 2, . . . , N,
and it has the same slope as f at the nodes. It is therefore expected that IN
will provide an approximation to interpolate f at the nodes with considerable
accuracy over the interval of interest.

4. About the determinant of A where N is 2 or 3

To obtain the values of cj and dj , the determinant of A must not be zero
in the linear system AX = Y. Thus, we examine the determinant of A for the
cases where N is 2 or 3. To eliminate ambiguity, if N = 2, 3, then A in the
linear system is denoted by AN=2, AN=3, respectively. First, for N = 2, the
determinant of A is given as follows.

Lemma 6. When t1 = −1 and t2 = 1, we have

det(AN=2) =
cos 4v + 8v2 − 1

2v4
,

where v = ωh.

Proof. From Theorem 3, AN=2 has size 4 × 4. First substitute t1 = −1 and
t2 = 1 into AN=2 and then evaluate the determinant of AN=2. Next, using the
definition of ηs and v = ωh, we have

det(AN=2) = 4
(
2η2
−1(Z)η2

0(Z)− η3
−1(Z)η1(Z)− η2

−1(Z)η0(Z)η1(Z)− Zη4
0(Z)

)
=

cos 4v + 8v2 − 1

2v4
.

�

Now, for v > 0, it can be seen that the determinant of AN=2 is positive.
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Theorem 7. If the same conditions as in Lemma 6 are assumed, then

(19) det(AN=2) =
cos 4v + 8v2 − 1

2v4
> 0, v > 0.

Proof. Define a function p for v ≥ 0 by

p(v) = cos 4v + 8v2 − 1.

Notice that p corresponds to the numerator in the determinant of AN=2. It is
clear that p(0) = 0 and p′(v) > 0 for v > 0. This result gives

p(v) > 0 for v > 0.

Therefore, we can conclude that det(AN=2) > 0 for v > 0. �

Let’s take a moment to consider another interpolation formula ĨN to only
use the values of f at the nodes, not using its first derivative information:

(20) f(x̄+ ht) ≈ ĨN (t) =

N∑
j=1

c̃jf(x̄+ htj).

The linear system for ĨN ,

(21) ÃX̃ = Ỹ ,

can be obtained by similarly performing the procedure in Section 2 as the linear
system for IN was obtained by (14). When N = 2, we denote Ã given in (21)

as ÃN=2. Then, if the same conditions as in Lemma 6 are assumed, it can be
seen that

(22) det(ÃN=2) =
sin(2v)

v
, v > 0.

Therefore, as v increases, the determinant of ÃN=2 repeatedly becomes zero.
Next, let’s examine the cases for N = 3.

Lemma 8. When t1 = −1, t2 = x, and t3 = 1, we have

det(AN=3) = 4G(v, x)/v9,

where −1 < x < 1, v = ωh, and

(23)

G(v, x)

= v3x4 − 2v3x2 − 3v cos2(v) + v cos4(v)− 2 cos3(v) sin(v) + v3

− 2v cos2(vx) + 4v cos2(vx) cos2(v) + 2 cos2(vx) cos(v) sin(v)

+ 2x2 cos3(v) sin(v)− 2vx2 cos2(vx)− 2vx2 cos4(v)− vx4 cos2(v)

+ vx4 cos4(v)− 2x2 cos2(vx) cos(v) sin(v) + 4vx2 cos2(vx) cos2(v)

+ 8vx cos(vx) sin(vx) cos(v) sin(v).
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Proof. From Theorem 3, AN=3 has size 6× 6. First substitute t1 = −1, t2 = x,
and t3 = 1 into AN=3 and then express ηs in AN=3 by v. Thus the determinant
of AN=3 becomes a function of two variables v and x. Matlab [16] is used to
obtain G(v, x) given in (23). �

Note that G(v,−1) = G(v, 1) = 0. Therefore, when x = −1 or 1, det(AN=3)
= 0 for v > 0. Using ηs(Z) at Z = 0 given in Definition 1, we get

(24) det(AN=3) =
16(x2 − 1)4

135
at v = 0.

We also have

(25) lim
v→0

det(AN=3) = lim
v→0

4G(v, x)/v9 =
16(x2 − 1)4

135
,

which is exactly the same result as (24). To obtain the final result in (25),
apply l’Hospital’s rule nine times. When 0 ≤ v ≤ 3 and −1 ≤ x ≤ 1, the graph
of z = det(AN=3) is given by Fig. 1, where the values of the determinant of
AN=3 are less than 0.12 and are positive for −1 < x < 1. As v ≥ 3 increases,
the values of the determinant of AN=3 decrease consistently while the sign
of the determinant never changes and remains positive for −1 < x < 1. For
example, when 13 ≤ v ≤ 16 and −1 < x < 1, the values of the determinant of
AN=3 are positive and are less than 10−6 as shown in Fig. 2. Eventually, when
27 ≤ v ≤ 30 and −1 < x < 1, the values of the resulting determinant are still
positive and are less than 1.2 × 10−8 as shown in Fig. 3. Even if v ≥ 30, the
determinant of AN=3 is expected to show a consistently decreasing behavior in
a similar manner as above.

Figure 1. z = det(AN=3), 0 ≤ v ≤ 3,−1 ≤ x ≤ 1
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Figure 2. z = det(AN=3), 13 ≤ v ≤ 16,−1 ≤ x ≤ 1

Figure 3. z = det(AN=3), 27 ≤ v ≤ 30,−1 ≤ x ≤ 1

Based on these observations, the sign of the determinant of AN=3 is given
as follows.

Proposition 9. If the same conditions as in Lemma 8 are assumed, then

(26) det(AN=3) > 0,

where 0 ≤ v ≤ 30 and −1 < x < 1.
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In the above proposition, the range of v is given as 0 ≤ v ≤ 30. However,
the values of ω and h can be selected more diversely because v = ωh. Next,
when N = 3, we denote Ã given in (21) as ÃN=3. Then ÃN=3 is obtained from
the following three equations,

(27)

L̃(1, h, K̃) = 1−
3∑

j=1

c̃j = 0,

Φ̃+(Z, K̃) = η−1(Zt2)−
3∑

j=1

c̃jη−1(Zt2j ) = 0,

Φ̃−(Z, K̃) = tη0(Zt2)−
3∑

j=1

c̃jtjη0(Zt2j ) = 0,

where K̃ = (c̃1, c̃2, c̃3). To construct ĨN for N = 3, three unknowns c̃1, c̃2,
and c̃3 must be determined. So it is necessary to add one more equation to
Φ̃±(Z, K̃) = 0. This is why the first equation in (27) is added newly to the last
two equations in (27). For further details, refer to [6]. If the same conditions
as in Lemma 8 are assumed, then

(28) det(ÃN=3) =
2 sin(v)(cos(vx)− cos(v))

v
, v > 0.

Therefore, as v increases, the determinant of ÃN=3 repeatedly becomes zero.
As seen in (22) and (28), there are some critical values in v where the de-

terminant of Ã becomes zero. However, if the first derivative information is
additionally used as in IN , such critical values disappear as shown in (19) and

(26). Therefore, IN can be used more flexibly than ĨN when N is 2 or 3.
In general, when N > 3, the determinant of A in the linear system AX = Y

involves three or more variables. However, once the values of v (or Z) and
{tj}Nj=1 are set, the determinant of A, if it exists, can be evaluated by referring
to Theorem 3 and used to generate IN .

5. Error comparison

To investigate the error generated by IN , we will proceed as follows.

(a) Present an example function f for the investigation.
(b) When N = 2 or 3, denote IN given in (2) as IN=2 or IN=3, respectively.
(c) Provide numerical results regarding f − IN .

First, the example function f is presented by

(29) f(x) = cos(x) cos(ωx)− sin(x) sin(ωx), ω = 100,

on the domain [0, 0.1]. Note that the function f is of the form (1) when g1(x) =
cos(x) and g2(x) = − sin(x). Assume three unequally spaced nodes in [0, 0.1]
are chosen as

(30) x = 0, 0.0375, 0.1.
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Then our new formula IN=3 using three unequally spaced nodes given in (30)
is provided by

(31) IN=3(t) =

3∑
j=1

cjf(0.05 + 0.05tj) + 0.05

3∑
j=1

djf
(1)(0.05 + 0.05tj),

where t1 = −1, t2 = −1/4, and t3 = 1. Meanwhile, in order for our current
situation of using those three unequally spaced nodes to be approached under
the framework of EFIFs using equally spaced nodes, EFIFs using only two
nodes, say ĨN=2 or IN=2, have to be used to approximate f. In other words,
in the above situation where three unequally spaced nodes are selected, EFIFs
using three equally spaced nodes cannot be used. Therefore, if the above sit-
uation proceeds by EFIFs using equally spaced nodes, IN=2 can be applied to
approximate f on [0, 0.1] as follows. First, divide the interval [0, 0.1] into two
subintervals,

[0, 0.1] = [0, 0.0375] ∪ [0.0375, 0.1],

and then apply IN=2 on each subinterval. Therefore the values of x̄, h, and
{tj}2j=1 in IN=2,

(32) IN=2(t) =

2∑
j=1

cjf(x̄+ htj) + h

2∑
j=1

djf
(1)(x̄+ htj),

are set as follows:

(i) x̄ = 0.01875 and h = 0.01875 in the first subinterval [0, 0.0375],
(ii) x̄ = 0.06875 and h = 0.03125 in the second subinterval [0.0375, 0.1],
(iii) t1 = −1 and t2 = 1 in both subintervals.

As for the errors with respect to IN=2 and IN=3 described in (32) and (31),
respectively, numerical results are illustrated and compared in Fig. 4. As seen
in Fig. 4, IN=3 approximates f more accurately than IN=2 even if IN=2 is
applied on each of the two subintervals and the error for IN=2 has values
between −2 × 10−4 and 6 × 10−4. The error for IN=3 looks like the x-axis
because the error for IN=3 is relatively less than that for IN=2. In fact, the
error for IN=3 in Fig. 4 is given by

(33) |f − IN=3| < 1.4× 10−5 on [0, 0.1].

Let us consider a classical Hermite polynomial (see Chapter 3 of [1]), denoted
by HN=3, of degree 5 agreeing with f and f (1) at three nodes x1, x2, and x3.
Then HN=3 is given by

(34) HN=3(x) =

3∑
j=1

f(xj)H3,j(x) +

3∑
j=1

f (1)(xj)H̄3,j(x),

where
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Figure 4. Error = f − IN

(i)

H3,j(x) =
(

1− 2(x− xj)L(1)
3,j(xj)

)
L2

3,j(x), H̄3,j(x) = (x− xj)L2
3,j(x),

(ii)

L3,1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
,

L3,2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
,

L3,3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

When x1, x2, and x3 in (34) are selected as three unequally spaced nodes given
in (30), the error for HN=3 is illustrated in Fig. 5 and it is given by

(35) |f −HN=3| < 0.95 on [0, 0.1].

Thus, (33) and (35) give the following result:

(36) max
x∈[0,0.1]

|f(x)− IN=3(t)| ≈ 1.47× 10−5 max
x∈[0,0.1]

|f(x)−HN=3(x)| .

As can be seen from (36), the error for IN=3 is much less than the error for
HN=3.

6. Error analysis

The errors generated by IN can be theoretically approached. This approach
is achieved by extending the studies of Coleman and Ixaru [3] and Ghizzetti
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Figure 5. Error = f −HN=3

and Ossicini [4]. In fact, the errors for exponentially fitted interpolation formu-
las using either two nodes or equally spaced nodes were investigated in [11,14].
These investigations also make it possible to analyze the errors for IN using
unequally spaced nodes. Therefore, the procedure for finding a formula re-
garding the errors for IN begins as follows. Ghizzetti and Ossicini considered
quadrature formulas QN,m with coefficients Ck,j of the form,

(37)

∫ b

a

f(r)g(r)dr = QN,m + E[f ]

=

N∑
j=1

m−1∑
k=0

Ck,j
dkf(rj)

drk
+ E[f ],

where a ≤ r1 < r2 < · · · < rN ≤ b. In the above, E[f ] corresponds to the error
term and it is equal to zero if f is a solution of a linear differential equation
Lr[f ] = 0 of order m. The differential operator Lr is given by

Lr =

m∑
k=0

εk(r)
dm−k

drm−k

with ε0(r) = 1. Here it is assumed that the conditions required for f, g, and εk
are satisfied. Refer to Chapters 1 and 2 of [4] for detailed conditions for f, g,
and εk. If the end points of the integration interval are not quadrature nodes,
set r0 = a and rN+1 = b. Theorem 2.4.1 of [4] suggests that the error term is
given by

(38) E[f ] =

∫ b

a

Ψ(r)Lr[f(r)]dr.
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In (38), Ψ satisfies that, for i = 0, 1, . . . , N,

(i)

Ψ(r) = ψi(r), ri ≤ r ≤ ri+1,

(ii)

(39) ψi(r) = −
∫ r

a

S(z, r)g(z)dz +

m−1∑
k=0

i∑
j=1

Ck,j

[
∂k

∂zk
S(z, r)

]
z=rj

,

where the sum does not appear for i = 0. In (39), S(z, r) is the solution of
Lz[S] = 0 such that

(40)

[
∂k

∂zk
S(z, r)

]
z=r

= δk,m−1, k = 0, 1, . . . ,m− 1,

where

δp,q =

{
1, if p = q,
0, if p 6= q.

At this point, our concern is to construct a formula that corresponds to the
error term generated by IN . Therefore, consider g in (37) when g is given by

g = g(x, r) =

{
∞, if x = r,
0, otherwise.

Then we have

f(x) =

N∑
j=1

m−1∑
k=0

Ck,j(x)
dkf(rj)

drk
+ E[f ](x), a ≤ x ≤ b.

The error term is expressed by

(41) E[f ](x) =

∫ b

a

Ψ(x, r)Lr[f(r)]dr,

where

(i)

Ψ(x, r) = ψi(x, r) for ri ≤ r ≤ ri+1, i = 0, 1, . . . , N,

(ii)

ψi(x, r) = −S(x, r)U(r − x) +

m−1∑
k=0

i∑
j=1

Ck,j(x)

[
∂k

∂zk
S(z, r)

]
z=rj

,

(iii) S is the solution of Lz(S) = 0 and it satisfies the conditions given in
(40),

(iv) U is the unit step function defined by

U(τ) =

{
1, τ ≥ 0,
0, τ < 0.
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Thus, if Ck,j(x) are known for any value x in [a, b], the corresponding error
term can be evaluated by (41).

When f is presented as (29), let’s find the error term E[f ](x) for our new
formula IN=3 given in (31). Since IN=3 is exact for f(x) = xm exp(±iωx),
m = 0, 1, 2, we have

Lr =

(
d2

dr2
+ ω2

)3

.

Based on (iii) of (41), we obtain

S(z, r) =
3

8ω5
sin(ω(z − r))− 3

8ω4
(z − r) cos(ω(z − r))

− 1

8ω3
(z − r)2 sin(ω(z − r)).

When k = 2, 3, 4, 5 and j = 1, 2, 3, set

C0,j(x) = cj , C1,j(x) = hdj , and Ck,j(x) = 0.

Then the error term becomes

(42)

E[f ](x) =

∫ 0.1

0

Ψ(x, r)Lr[f(r)]dr

=

∫ r2

r1

ψ1(x, r)Lr[f(r)]dr +

∫ r3

r2

ψ2(x, r)Lr[f(r)]dr,

where r1 = 0, r2 = 0.0375, and r3 = 0.1. In (42) we have

(i)

ψ1(x, r) = −S(x, r)U(r − x) + c1S(r1, r) + hd1

[
∂

∂z
S(z, r)

]
z=r1

,

(ii)

ψ2(x, r) = ψ1(x, r) + c2S(r2, r) + hd2

[
∂

∂z
S(z, r)

]
z=r2

.

Finally, the error term E[f ] derived in (42) is calculated at x = 0.0005k, k =
0, 1, 2, . . . , 200, and illustrated in Figure 6, where f is given in (29). When the
graph given in Figure 6 was obtained, Matlab’s symbolic operations were used.
As can be expected, magnifying the error (= solid line) corresponding to N = 3
in Figure 4 shows the same result as the error given in Figure 6. Therefore, it
is verified that the error term E[f ](x) given in (42) is derived correctly.

7. Another example and conclusion

Another example function f̃ is presented by

(43) f̃(x) = exp(x) cos(ωx) + exp(−x) sin(ωx), ω = 100,

on the domain [0, 0.1]. In the situation of Section 5 where the errors (= f −
IN , f −HN=3) regarding f given in (29) are obtained, if we apply f̃ given in
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Figure 6. Error = E[f ](x)

(43) instead of f, we get the results in Figures 7 and 8 where the same three
nodes as (30) are used. In details, the errors for IN=3, IN=2, and HN=3 on
[0, 0.1] are given by

(i)

(44)
∣∣∣f̃ − IN=3

∣∣∣ < 1.4× 10−5,

(ii)

(45)
∣∣∣f̃ − IN=2

∣∣∣ < 7.5× 10−4,

(iii)

(46)
∣∣∣f̃ −HN=3

∣∣∣ < 1.85.

From (44) and (46), we have

(47) max
x∈[0,0.1]

∣∣∣f̃(x)− IN=3(t)
∣∣∣ ≈ 0.76× 10−5 max

x∈[0,0.1]

∣∣∣f̃(x)−HN=3(x)
∣∣∣ .

From (44), (45), and (47), it is clearly seen that the error for our formula IN=3

is relatively less than the errors for IN=2 and the classical Hermite polynomial
HN=3.

If more than three nodes are randomly selected on [a, b], the functions can
be interpolated by first dividing the interval [a, b] into a finite number of subin-
tervals and then applying IN=3 on each subinterval. For example, suppose that
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Figure 7. Error = f̃ − IN
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Figure 8. Error = f̃ −HN=3

21 nodes including both endpoints are randomly selected on [0, 1] as follows:

p1 = 0, p2 = 0.0377, p3 = 0.0987, p4 = 0.1366,
p5 = 0.1978, p6 = 0.2919, p7 = 0.3154, p8 = 0.3655,
p9 = 0.4574, p10 = 0.5342, p11 = 0.5721, p12 = 0.6038,
p13 = 0.6797, p14 = 0.7150, p15 = 0.7791, p16 = 0.7962,
p17 = 0.8537, p18 = 0.8852, p19 = 0.9133, p20 = 0.9680,
p21 = 1.
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Figure 9. Error = f̃ − IN=3
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Figure 10. Error = f̃ −HN=3

First, divide [0, 1] into 10 subintervals,

[0, 1] = [p1, p3] ∪ [p3, p5] ∪ [p5, p7] ∪ · · · ∪ [p19, p21].

Next, apply IN=3 given in (2) on each subinterval [p2(j−1)+1, p2(j−1)+3] for
j = 1, 2, 3, . . . , 10, where

(i) x1, x2, and x3 on each subinterval are given by

(48) x1 = p2(j−1)+1, x2 = p2(j−1)+2, and x3 = p2(j−1)+3,
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(ii) f is given by f̃ in (43).

As a result, the error (= f̃ − IN=3) on [0, 1] is obtained as shown in Figure 9.
Therefore we have

(49)
∣∣∣f̃ − IN=3

∣∣∣ < 6.5× 10−5 on [0, 1].

In the above procedure, instead of applying IN=3 on each subinterval [p2(j−1)+1,
p2(j−1)+3] if the classical Hermite polynomial HN=3 given in (34) is applied on
[p2(j−1)+1, p2(j−1)+3], the error regarding HN=3 is obtained as shown in Figure
10. Thus we have

(50)
∣∣∣f̃ −HN=3

∣∣∣ < 11 on [0, 1].

Now (49) and (50) give

(51) max
x∈[0,1]

∣∣∣f̃(x)− IN=3(t)
∣∣∣ ≈ 0.59× 10−5 max

x∈[0,1]

∣∣∣f̃(x)−HN=3(x)
∣∣∣ .

As can be seen from (51), our new formula IN=3 with respect to the function f̃
given in (43) provides much better accuracy than the classical Hermite polyno-
mial HN=3. If six nodes, p1, p2, . . . , p6, are randomly selected, divide the whole
interval [p1, p6] into three subintervals,

[p1, p6] = [p1, p3] ∪ [p3, p5] ∪ [p5, p6].

Then it would be a good choice to apply IN=3 on the first and second subin-
tervals, and IN=2 on the last subinterval, respectively.

This paper shows that even if the ω-dependent function f is changed, our
new formula IN=3 consistently provides a relatively more accurate approxima-
tion than IN=2 or HN=3. All computational results are obtained from Matlab
[16]. Our research may provide a cornerstone for constructing more general
formulas involving derivatives with orders greater than one.
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