References
-
G. Albrecht and R. T. Farouki, Construction of
$C^{2}$ Pythagorean-hodograph interpolating splines by the homotopy method, Advances in Computational Mathematics 5(4) (1996), 417-442. - H. I. Choi, C. Y. Han, H. P. Moon, K. H. Roh and N. S. Wee, Medial Axis transform and offset curves by Minkowski Pythagorean hodograph curves, Computer-Aided Design 31 (1999), 52-72.
- H. I. Choi, D. S. Lee, and H. P. Moon, Clifford algebra, spin representation, and rational parameterization of curves and surfaces, Adv. Comput. Math. 17 (2002), 4-48.
- R. T. Farouki, Pythagorean-hodograph curves in practical uses. In Barnhill,R.E. (Ed.), Geometric Processing for Design and Manufacturing. SIAM,(1992), 3-33.
- R. T. Farouki, M. al-Kandari and T. Sakkalis, Hermite interpolation by rotation-invariant spiral Pythagorean-hodograph curves, Advances in computational Mathematics 17 (2002), 369-383. https://doi.org/10.1023/A:1016280811626
- R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean-hodograph quintics, Mathematics of Computation 64 (1995), 1589-1609. https://doi.org/10.1090/S0025-5718-1995-1308452-6
- R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Development 34 (1990), 736-752.
- R. T. Farouki and T. Sakkalis, Pythagorean-hodograph space cunes, Adv. Comput. Math. 2 (1994), 41-66. https://doi.org/10.1007/BF02519035
- R. T. Farouki and T. Sakkalis, Pythagorean-hodograph space curves, International J. Machine tools and Manufacture 39 (1999), 123-142. https://doi.org/10.1016/S0890-6955(98)00018-2
- R. T. Farouki and S. Shah, Real-time CNC interpolators for Pythagorean-hodograph curves, Comput. Aided Geom. Design 13 (1996), 583-600. https://doi.org/10.1016/0167-8396(95)00047-X
- B. Juttler, Hermite interpolation by Pythagorean-hodograph curves of degree seven, Mathematics of computation 70 (2001), 1089-1111.
- G. I. Kim, Higher dimensional PH curves, Proc. Japan Acad., 78 (2002) , Ser. A., 185-187.
-
G. I. Kim and M. H. Ahn,
$C^{1}$ Hermite interpolation using MPH quartic, Comput. Aided Geom. Design 20 (2003), 469-492. https://doi.org/10.1016/j.cagd.2003.06.001 - G. I. Kim, J. H. Kong and S. Lee, First order Hermite interpolation with spherical Pythagorean-hodograph curves, Journal of Applied Mathematics and computing 23 (2007), 73-86. https://doi.org/10.1007/BF02831959
- G.I. Kim and S. Lee, Higher dimensional Minkowski Pythagorean hodograph curves, J. Appl. Math. & Computing, 14 (2004), 405-413.
-
J. H. Kong, S. P. Jeong, S. Lee and G. I. Kim,
$C^{1}$ Hermite interpolation with simple planar P H curves bν speed reparametrization, Comput. Aided Geom. Design 25 (2008), 214-229. https://doi.org/10.1016/j.cagd.2007.11.006 - H. P. Moon, Minkowski Pythagorean hodographs, Comput. Aided Geom. Design 16 (1999), 739-753. https://doi.org/10.1016/S0167-8396(99)00016-3
- Z. Sir and B. Juttler, Eucidean and Minkowski Pythagorean hodograph curves over planar cubics, Comput. Aided Geom. Design 22 (2005), 753-770. https://doi.org/10.1016/j.cagd.2005.03.002