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C! HERMITE INTERPOLATION WITH MPH QUARTICS
USING THE SPEED REPARAMETRIZATION METHOD

GWANG-IL KIM

ABSTRACT. In this paper, we propose a new method to obtain C!' MPH
quartic Hermite interpolants generically for any C' Hermite data, by using
the speed raparametrization method introduced in [16]. We show that, by

this method, without extraordinary processes (C 3 Hermite interpolation
introduced in [13]) for non-admissible cases, we are always able to find C*
Hermite interpolants for any C' Hermite data generically, whether it is
admissible or not.
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1. Introduction

In 1999, Pythagorean hodograph (PH) curves were introduced by Farouki
and Sakkalis [7], which have their roots in the rational parametrization of curves
and surfaces. They have been widely studied for applications [4, 9, 10] in the
fields of Computer Aided Geometric Design (CAGD). Also, there have been
several researches from the formal representation of them [3, 7, 12, 15] to several
interpolation schemes using them [1, 5, 6, 8, 11, 14, 16].

Minkowsi Pythagorean hodograph (MPH) curves was introduced by Moon
in [17]. They also have their roots in the rational parametrization of curves
and surfaces, for example, the rational parametrization of the offset given by a
polynomial spine curve and a polynomial distance function. They are also use
to compute the medial axis transform (MAT) of a domain [2].

The characterization and classification of MPH curves were studied in [3,
13, 15]. The interpolation schemes using MPH curves were done in [2, 13, 18]
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respectively; G' Hermite interpolation was studied with MPH cubics in [2], and
C' Hermite interpolation was done with MPH quartics in [13]. Especially in
[13], for an admissible C'! Hermite data, it is shown that there generically exist
MPH quartic interpolants satisfying the given data. Moreover, for an arbitrary
C' Hermite data, it is also shown that there generically exist C3 interpolants
which consist of two MPH quartics.

In this paper, using the speed reparametrization method introduced in [16], we
propose another method to solve C' Hermite interpolation problems with MPH
quartics, whether the given C! Hermite data is admissible for interpolation or
not: We show that a C' Hermite data is to be admissible, if MPH velocities in
the data are suitably small. In addition, we show that, according to the speed
reparametrization method, in solving an interpolation problem for an arbitrary
C' Hermite data, it is sufficient to solve an interpolation problem only for an
admissible C'! Hermite data with suitably small velocities in the same directions
of ones in the original data.

2. Preliminaries

In this section, we introduce some fundamental definitions and theorems for
our main result.

Definition 1. A polynomial curve a(t) = (a:(t), y(t), z(t)) in R?! is a Minkowski
Pythagorean hodograph (MPH) curve if there is a polynomial o(t) such that
(62 +y () -2 (t)° =o(t)?, equivalently |jo/()|2 = o(t)?,

where || - ||, denotes the Minkowski norm in R>!. The plane curve d,(t) =
(z(t), y(t)), the projection of a(t) into R?, is called the spine curve of a(t).

Throughout this paper, considering MPH curves in R, we stand on two fun-
damental cornerstones: one is the complex representation of plane curves, and
the other is the fundamental theorem of algebra. By the complex representation
of plane curves, a planar real polynomial curve (z(t), y(¢)) can be identified
with a complex polynomial (¢) + y(¢)i over the complex number field C. By
the fundamental theorem of algebra, the complex polynomial can be rewritten
in the completely factorized form k (t — ¢;) -+ (t — ¢,), where k, ¢, -+, ¢, € C.
This means that a planar real polynomial curve can be completely character-
ized by some characteristic complex numbers; one is the leading coefficient of
the complex representation of the curve and the others are the roots of the
polynomial.

In the following, we show that a MPH curve in R%! can be characterized with
the complex roots of the hodograph of the spine curve.

Definition 2. Two numbers z;,2; € C are said to be semiequal if z; = z3 or
z1 = 72, (denote by z; &~ z5). If 21,2y are not semiequal, they are said to be
distinct up to conjugate.
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Definition 3. For a real polynomial h(t) such that h(t) > 0 with ¢ € R, by
[A(¢)], we denote the set of all polynomial curves (t) = (x(t), y(t))) satisfying
z(t)? +y(t)? = h(t), ie, [y(t)II2 = h(t), where |- is the complex norm in C.

A polynomial f(t) is called a component of [h(t)] if there exists a polynomial
g(t) such that the curve (f(t), g(t)) or (g(t), f(2)) € [h(t)].

Let a(t) = (x(t),y(t),z(t)) be a polynomial curve in R?!. Then, by Def-
inition 1, we can easily obtain that a(t) is a MPH curve if and only if z/(t)
is a component of [z/(t)? + ¢/(t)%]. This implies that the component functions
of the hodograph of a(t) are strongly related to the speed function of the spine
curve: the speed function of the spine curve of a(t), the speed function of a(t) in
R*! and 2'(t) are a Pythagorean triple, i.e., ||(z'(t), ' (t)|12 = 2'(£)2 + ¢/ (£)? =
2% + [l ()3

By the following theorem, we can characterize a MPH curve in R?! with the
complex roots of the hodograph of its spine curve, and also we can explain how
many MPH curves can be obtained for the speed function of a spine curve.

Theorem 1 ([13]). Suppose a(t) = (z(t),y(t),z(t)) is a polynomial curve in

R*1. Let r;(1 < i < ki) and ¢;(1 < j < ko) be respectively a real root and

a non-real complex root of the complex representation of the hodograph of the
k2

spine curve of a(t); 8, (t) = kﬁ(t - 1) H(t —¢;) for a complex number k.
Then a(t) is a MPH curve if ani; 1only if z’](ztil is the real (or imaginary) part of
another complez polynomial £(t) = k ﬁ(t —7;) ﬁ(t —cj), where k is a complex
number with ||k|| = ||k and c; is seTiL:itlaqual to ]cjlfor i=1... ks

Example 1. Consider a quadratic curve a(t) = (m(t),y(t), z(t)) in R?1! with
x(t)=t>—tand y(t) = t— 1. Then the hodograph of the spine curve of a(t), i.e.
8a'(t), has a complex root 5% in the complex representation. Assume that o(t) is
a MPH curve. Then, by Theorem 1, we have 2/(t) = Re (2-eai-(t—d)) or Z/(t) =
: 1—3

Im(2 el (t— d)), where 8 € R and d is semiequal to L That’s, for a given
real number ¢, there are four possibilities; z(t) = cosf - (t*> —t) —sinf - t + hg,
z(t) = sin@ - (> — t) + cos@ - t + ho, 2(t) = cosf - (t2 — t) + sinf - t + hg and
z(t) =sin@ - (t* —t) — cos @ - t + hg, where hg is an arbitrary real constant.

3. MPH quartics revisited and speed reparametrization

C! Hermite interpolation with MPH quartics was studied in [13]. In the
paper, it is shown that, for a C' Hermite data, if the data is admissible (see
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Definition 5 in this section), then MPH quartic interpolants satisfying the data
generically exist, and if else, using the C 3 interpolation method, double MPH
quartic interpolants can be obtained.

In this section, for our main result in the next section, we summarize C*
Hermite interpolation with MPH quartics when the given C' Hermite data is
admissible, and prove that there always exists a speed reparmetrization between
any two C! Hermite data with exactly same data only except speeds at both
end points in R%!,

Let HL = {Po, P, Dy, Dl} be a C! Hermite data in R%!, and let a(t) be a

MPH interpolant satisfying H.. Then we have
05(0) = P(), a(l) = Pl, a'(O) = D(), Ot/(l) = Dl. (1)

If a(t) is a MPH quartic satisfying H}, then there exist four polynomials
z(t), y(t), 2(t), w(t) of maximal degree 4 such that '(t)?+y/ (t)? = 2'(t)2+w'(¢)?,
and for a(t) = (z(t), y(t), z(t)), Eq. (1) hold. Recall the fact that a MPH curve

in R*! can be characterized with the complex roots of the hodograph of its
spine curve. This fact implies that we can re-state a C' Hermite interpolation
problem in R*!, using the complex representation, into two coupled C' Hermite
interpolation problems R? as follows.

First, suppose that P; = (z;,y;,2;), D; = (d}”,dg,ej) where D; are space-

like (i.e., [D]I2 > 0 for j = 0, 1). Note that MPH property is invariant
under parallel translation. Here, for computational convenience, we assume that
Py = (2o, ¥0, 20) =(0,0,0). Next, we define four complex numbers defined by
s; =;+y;iand dj = df +d}i for j =0, 1. Here, assume that the hodograph
of the spine curve s(t) = x(t) + y(t) ¢ is given by

s'(t) = k(t — c1)(t — e2)(t — c3)
and let 3(¢) = 2z(t) + w(t) 7. Then, by Theorem 1, the hodograph of 3(t) is given
by

§'(t) =kt — f)(t - c3)(t—¢3)
with k = ?%.k and c; is semiequal to ¢; for each j = 1,2, 3, and moreover, z'(t) =
Re(3'(t)) or Im(8' (t)) (in fact, since Im(§'(t)) = Re(—i-§'(t)) and ||i-k| = ||kl
it is sufficient to state z’(t) = Re(§'(t))). Thus, consequently from Eq. (1), we
have the following constraints;

1 1 1
’81 = k(z—551+552—53)7 (2)
dO = _kS37 (3)
d; = k(1-51+85—83), (4)
)

- ’ 1 1 1 N
51) = €%k (Z — 55{‘ + 53’5 - S§) +5(0), (5
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dg = -€"-kS3, (6)
d = ' k1-5r+85-853), (7)

where § € R, d; = ¢; + iy/lld;l12 — €7 and S; (S;) is the j-th symmetric
polynomial over {c;} ({c}}), respectively for j = 0, 1. Next, by solving Eq. (2)
- Eq. (7) together with respect to four complex numbers kK, ¢1, ¢2, ¢3 and one
real number ¢, we might finally obtain the target interpolants satisfying H}, if
they exist. By the way, in the system of constraint equations, depending on the
choices of ¢;, there are four possible cases as follows:

(i) ¢j =c¢;for j=1,2,3, (@8) ¢ =¢; for j=1,2,3,

(iii) ¢f =% and ¢} = ¢; for j =2,3, (iv) ¢j=¢ forj=1,2 and cj = c3.
In [13], it is shown that, while Case (i) and Case (ii) are singular, Case (iii)
and Case (iv) are generic (in fact, Case (iv) is covered by Case (iii)). Moreover,
in the generic cases, by the solvability of a special quadratic equation in a real
variable, the existence of target interpolants is entirely determined. For the
given C' Hermite data H/, the characteristic quadratic equation is expressed

; -6
as follows: Let a; = %, 0; = arg(a;) for j = 0,1 and let n = 61—2—(1. Then

the equation is given by

mar? + mar +mo =0, 7N
where r denote || ~— (or = ! ; “ ||), and
1
2mg = —6z; + Re(agl(ﬁsl +dje % — dl)),
2my = 12z cos(n) + Re(agl(dle_i" — 12817 — dle_Bi"))
+2Im(dy) sin(n),
2mp = —6z + Re(aal(dg —doe™ %" + 6516_%’7),

where z; = Re(5(1) — 3(0)) = 2(1) — 2(0) = 2(1). (See Appendix in [13] for
derivation).

If Eq. () is solvable for the real variable r, using Eq. (2) - (7), we can obtain
k, c1, ¢2, c3 and 4, i.e. equivalently the interpolants satisfying H{..

Definition 4. For a C'* Hermite data Héw = {Po, P, D§, D’{}, the C'! Hermite

data given by {0, P,—Py, D¢, D*{} is called the normalization of Hé, in symbol,

NIHE].

Definition 5. A C' Hermite data H¢ is said to be admissible if the discriminant
A =mi — dmymy of Eq. () for N[H}| satisfies A > 0.
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Example 2. Consider a C' Hermite data HL = {Po,Pl, Dg, D’l‘} given by
Py = (1,1,0.5), P, = (2,2,0.5), D) = (4,4,4) and D} = (1,3,2).

Then, the discriminant A for N'(H}) is negative for any possible d; from N (Hg).
Thus, H{ is not admissible. Whereas, if Py = (1,1,0.5), P; = (2,2,1), D} =
(4,4,2) and D} = (1,3,1), the Hermite data is always admissible, since A for
N(H() is not negative for each possible d; from NV (H}). Moreover, in this
case, according to the choices for Elj, we can obtain maximally eight possible
interpolants satisfying HE, by using the solutions of Eq. ().

Remark 1. Note that MPH property is invariant under parallel translation.
Thus, for an admissible C! Hermite data H} = {PO,Pl,Dg, D?[}, we au-

tomatically the interpolants satisfying H} from those satisfying N(H}), only
by parallel-translating: Let o(t) be an interpolant satisfying N (H}). Then
a(t) + Py is obviously that satisfying HZ.

Theorem 2 ([13]). If « C' Hermite data H} = {Po, P,,D;, D’{} is admissible,
then there generically exist eight MPH quartic interpolants satisfying H.

Proof. For details, see Section 3 in [13].

Now, we consider the speed reparametrization of MPH curves. The speed
reparametrization is defined by handling specially the current speed of the time
variable as follows:

Definition 6. Let a(f) be a curve with (0) = po, (1) = p1, a’(0) = ¥ and
a’(1) = v1. For two vectors vy and v,, which are parallel to ¥ and v; without
direction reversion respectively, a speed reparametrization of a(t) is defined by a
monotone increasing real valued function ¢ = ¢(t) with a(¢(0)) = po, a(¢(1)) =

p1, ¢'(0) - & (6(0)) = wo and ¢'(1) - &/ ($(1)) = 1.
Remark 2. Let H} = {PO,Pl,Dg,D’{} and HL, = {PO,Pl,Do,Dl} be two

C' Hermite data in R%! with Dy = D and D; = ¢;D?. If a monotone
increasing function i = ¢(t) satisfies $(0) = 0, ¢(1) = 1, ¢'(0) = ¢ and

¢'(1) = €1, then ¢(t) is called a speed reparametrization from H}, to HL.
For the interpolant satisfying H(, the curve &(t) = a(¢(t)) is called the

speed-reparametrized interpolant satisfying H}. Also, note that, throughout
this paper, we assume that €y and ¢; are positive, i.e., we exclude the direction
reversion of velocity vectors in the speed reparametrization.

Note that the speed reparametrization works, independently of the shape of
curves, as a speed fitting for two selected Hermite data without changing the
direction of time variable. This means that the speed reparametrization for
MPH Hermite interpolants is also to be possible naturally:
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Theorem 3. Let H: = {PO,PI, S,Df} and ETE = {PQ,Pl,Do,Dl} be two
C' Hermite data in R*>' with Dy = ¢D} and D) = DY for €g,¢; € R,
There exist a speed reparametrization t = ¢(t) from HY to HS.

Proof. Whether the given data are in an Euclidean space or in a Minkowski
space, it is sufficient only to show that there exists a monotone increasing func-
tion t = ¢(t) such that #(0) = 0, ¢(1) = 1, ¢'(0) = ¢ and ¢'(1) = 1. By
Theorem 17 in [16], we are always able to obtain such a function.

Remark 3. The previous theorem implies that, for any two C! Hermite data
in R?! given as in the theorem, if we find an interpolant satisfying one of two
data, we can simultaneously obtain another interpolant satisfying the other data:
That's, let a() be an interpolant satisfying H}.. Then the curve a(¢(t)) is also
an interpolant satisfying H}, if by £ = ¢(t) is a speed reparametrization from
H} to H.

4. Interpolation with MPH quartics using speed reparametrization

As stated in the previous section, the interpolation with MPH quartics is
not always possible for arbitrary C! Hermite data; only for admissible Hermite
data, it is possible. Especially, for non-admissible data, we need another special
technique called C#? Hermite interpolation [13].

In this section, as our main result, we propose a new method to obtain C!
MPH quartic Hermite interpolants generically for any arbitrary C! Hermite data,
by using the speed raparametrization method introduced in [16]. We will see
that, by this method, without extraordinary processes related to C'z Hermite
interpolation in non-admissible cases, we are always able to find ¢! Hermite
interpolants for any C' Hermite data generically, whether it is admissible or
not.

Theorem 4. Let HY = {Po,Pl,Dg,D‘{} be o C' Hermite data in R*! with

Py —Poli2 > 0. If ||doll and ||d1|| are sufficiently small, there generically exist
MPH gquartic interpolants satisfying HE.

Proof. Recall that MPH property is invariant under parallel translation. Thus,
without loss of generality, we can assume that Py = (0,0,0). This means that,
to complete this theorem, it is sufficient to show the generic solvability of the
quadratic equation Eq. () for N{H}), equivalently the given data is generically
admissible.
Thus we show that, if ||dq|| and ||d1|| are sufficiently small, the discriminant
. ~ d
A for N(H],) is generically non-negative. First, using a; = ape®” and dg = ;9,
0
we rewrite the coefficients of Eq. () follows:
s 1 d d
my = =321+ (3Re(—1) — ZRe(=: — —l)> )
ag 2 ag a
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my = 62z cos(n) — (6Re(s—16_”i) - lRe((ﬁ - gl)e"’") Im(d ) sin{n)
agp ai

ag
do
mo = —321+ 3Re( )+ R( a—) .
1
Here, assume that ||do|| and ||d;|| are sufficiently small. Then, for {§, = —62; +

6 (—Si> and §; = —62; +6 (ﬂ), we get
ag aj

mo = §Re(£o), my = —§R€(§0€‘m +&ie™), me = §Re(§1)’

and the discriminant A of Eq. () for N(H}) is to be computed as follows;

A = mf—4mom2

2
~ (3lee(e_”i + em) — 3Re( 51 e=ni 4 s—le"i)>

—4 (—3z1 + 3Re(;§)) <—3z1 + 3Re(a£—i)) .

Let u

i

Re(l—?) and v = Im(zo) Then, we have

% = ((zl — u) cos(n) — vsin(n) g (71 —u)- (z1 —ucos(2n) — Usin(217))
= (u—z1)?cos®(n) + v?sin%(n) — (u — 21 )ucos(2n) + z1(u — z1)
(22 — u?) cos?®(n) + v? sin®(n) +u? — 27

(u? +v* — 22)sin’(n).

i

S 2
Note that u? + v? — 2% = Ha—1” — 22 = ||s1]|> = 22 = |P4]|?. Consequently,
0

we obtain A ~ 36sin(n)||P1]|2. Thus, since |P; — Po||2 = [|P4]|2 > 0 by
assumption, for sufficiently small ||do|| and ||d;||, the C* Hermite data H} is
generically admissible, i.e. by Theorem 2, there generlca,lly exist eight MPH
quartic interpolants satisfying H}.

Theorem 5. Let H} = {Pg,Pl,DS,D’{} be a C' Hermite data in R*'. As-
sume that [Py — Pol|2 > 0 and ||do|| and ||d1|| are sufficiently small. There
generically exist infinitely many C' interpolants satisfying H}, each of which is
given by the speed reparametrization of a MPH quartic.

Proof. First, we modify the given C! Hermite data H} to another C' Hermite
data Hé. = {Po,Pl,Do,Dl}, where Dg = eng and D; = ¢, Dj for some
sufficiently small positive real numbers ¢y and €;. Then, bﬂheorem 4, there
generically exist eight MPH quartic interpolants satisfying H}.. In addition, by
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Theorem 3, there exists a speed reparametrization from H} to HE. Thus, we
can obtain eight speed reparametrized interpolants satisfying H.

Example 3. Recall the non-admissible C' Hermite data H, é used in Example
2. As shown in the proof of Theorem 4, by handling €y and €;, we can obtain
suitably an admissible C! Hermite data Hé = {Py, P1,D¢, D1} where Dy =
oDy and Dy = ;D7 for ¢p, €1 € RT.

1 1
For this Hermite data H, é, it is sufficient to assign ¢y = 3 and €; = 3 for

which /}-I\g is admissible. Then, by Theorem 2, we can obtain eight MPH quartic
interpolants «;(t) = (:cj(t),yj (t), zj(t)) for j=1,---,8, as follows:

r1 = —17.92139524t* + 36.34279050¢> — 19.42139526t> + 2.000000000t + 1,
1 = 15.38644617t* — 29.27289235¢> + 12.88644618¢ + 2.000000000¢ + 1,

21 = —14.79453532t* + 32.58907056¢> — 19.79453521¢ + 2.000000000¢ + 0.5,
zo = —0.9348766928t% + 2.369753385t° — 2.434876692¢2 + 2.000000000¢ + 1,
Yo = 18.76809818t* — 36.03619635t + 16.26809816t> + 2.000000000t + 1,

7 = 2.248080164t* — 1.496160367t% — 2.751919778¢2 + 2.000000000¢ + 0.5,
3 = —9.500747940t* + 19.50149588¢ — 11.00074794¢> + 2.000000000¢ + 1,
ys = —2.596409998t* + 6.692819997¢> — 5.096410000¢> + 2.000000001¢ + 1,

2z = 0.7914037095¢* + 1.417192576t> — 4.208596282¢% + 2.000000000¢ + 0.5,

zy = —12.08160094t* + 24.66320189¢> — 13.58160094¢t> + 2.000000000¢ + 1,
ys = 8.894921560t* — 16.28984312t> + 6.394921566t + 2.000000000¢ + 1,

24 = 11.98777284t* — 20.97554568¢> + 6.987772831¢2 + 2.000000000¢ + 0.5,
5 = —2.497386161¢* + 5.494772321¢° — 3.997386161¢% 4- 2.000000000¢ + 1,
ys = —3.308128658t + 8.116257315¢> — 5.808128657¢% + 1.999999999¢ + 1,
25 = —3.336346155¢* + 9.672692311¢3 — 8.336346157t + 2.000000000¢ + 0.5,
re = —0.8107982478* + 2.121596495¢> — 2.310798247¢* + 2.000000000¢ + 1,
ye = 2.156235740t* — 2.812471480t° — 0.3437642609t + 2.000000000¢ + 1,
7 = 1.270068909¢* + 0.459862182¢° — 3.729931090¢% 4 2.000000000¢ + 0.5,

z7 = —0.1014349368t* + 0.7028698740t> — 1.601434938¢> + 2.000000000 + 1,
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= —6.157326852¢* + 13.81465371¢% — 8.657326853¢> + 2.000000000¢ + 1,
= —4.968413565¢" + 12.93682713t% — 9.968413573t2 + 2.000000000¢ + 0.5,

= 3.520774458t" — 6.541548915¢° + 2.020774458¢2 + 1.999999999¢ + 1,
= —1.081623640t" + 3.663247280° — 3.581623639¢2 -+ 2.000000000¢ + 1,
= 0.6625911992t* + 1.674817602¢3 — 4.337408802¢2 + 2.000000000¢ + 0.5.

In addition, by Theorem 3, there exist a speed reparametrization form H} to

11

H}, and moreover, since (A, A;) = ( , ) = (2,2) lies in the solvable region
€ €

for the speed reparametrization, as shown in the proof of Theorem 17 in [16],
we obtain the speed reparametrization ¢ = ¢(t) given by ¢(t) = 23 — 312 + 2¢.
Consequently, we can construct eight MPH quartic C! Hermite interpolants
a;(4(t)) satisfying Hf, for j = 1,---,8, as shown in Figure 1.

FIGURE 1. Eight MPH quartic interpolants satisfying H}, given
in Remark 2. The MPH quartic interpolants are denoted by the
thick solid curves and their spine curves are denoted by the thin
dotted curves.
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