• Title/Summary/Keyword: $B({\xi})$

Search Result 209, Processing Time 0.021 seconds

Characteristics of Submarine's Turbulent Wake using Analytical Solution of B(ξ) for the given λ (임의 λ에 대한 근사해 B(ξ)를 이용한 잠수함 난류항적 특성 연구)

  • Lee, Yong-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1604-1610
    • /
    • 2017
  • Using analytical solution of $B({\xi})$, I could find out the characteristics of Submarine's turbulent wake for the given various ${\lambda}$, which were unknown facts before. As the results, $B({\xi}){\approx}{\frac{B({\xi})_{max}}{2}}$ and ${{\int}_{0}^{{\approx}0.6}}B({\xi})d{\xi}{\approx}0.85{{\int}_{0}^{1}}B({\xi})d{\xi}$ in the vicinity ${\xi}{\approx}0.6$, there was some dependencies on the given ${\lambda}$ though. The values of ${\lambda}$, in the range of $4{\leq}{\lambda}{\leq}8$, are more suitable to describe submarine's turbulent wake realistically, due to the bases on the quasi equilibrium state of turbulent wake. ${\lambda}$ mainly affects on the radius and detection range of the submarine's turbulent wake on the surface, however, the speed of submarine mainly affect on the duration of the wake rather than shape. If $7{\leq}{\lambda}{\leq}8$, it can be expected that the turbulent wake can be seen on the surface in the West sea, however, snorkeling(or snorkeled) submarine's wake can be found easily in the East sea.

CLASS-PRESERVING AUTOMORPHISMS OF CERTAIN HNN EXTENSIONS OF BAUMSLAG-SOLITAR GROUPS

  • Kim, Goansu;Zhou, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1033-1041
    • /
    • 2016
  • We show that, for any non-zero integers ${\lambda}$, ${\mu}$, ${\nu}$, ${\xi}$, class-preserving automorphisms of the group $$G({\lambda},{\mu},{\nu},{\xi})={\langle}a,b,t:b^{-1}a^{\lambda}b=a^{\mu},t^{-1}a^{\nu}t=b^{\xi}{\rangle}$$ are all inner. Hence, by using Grossman's result, the outer automorphism group of $G({\lambda},{\pm}{\lambda},{\nu},{\xi})$ is residually finite.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR INTEGRODIFFERENTIAL EQUATIONS

  • Choi, J.R.;Kwun, Y.C.;Sung, Y.K.
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.173-181
    • /
    • 1995
  • Our objective is to investigate approximate controllability of a class of partial integrodifferential systems. This work continuous the investigations of [8]. As a model for this class one may take the equation $\frac{\partialy(t,\;\xi)}{\partialt}\;=\;\frac{\partial}{\partial\xi}(a(t,\;\xi\frac{\partialy(t,\;\xi)}{\partial\xi})\;+\;F(t,\;y(t\;-\;r,\;\xi),\;{{\int_0}^t}\;k(t,\;s,\;y(s\;-\;r,\;\xi))ds)\;+\;b(\xi)u(t),\;0\;\leq\;\xi\;\leq\;1,\;\leq\;t\;\leq\;T$ with initial-boundary conditions y(t,\;0)\;=\;y(t,\;1)\;=\;0,\;0\;\leq\;t\;\leq\;T,\;y(t,\;\xi)\;=\;\phi(t,\;\xi),\;0\;\leq\;1,\;-r\;\leq\;t\;\leq\;0$.(omitted)

  • PDF

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

A PROPERTY OF COFUNCTORS SF(X,A)

  • So, Kwang Ho
    • Kyungpook Mathematical Journal
    • /
    • v.13 no.2
    • /
    • pp.235-240
    • /
    • 1973
  • A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

  • PDF

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF

OBSERVATIONS ON A FURTHER IMPROVED ($\frac{G}{G}$) - EXPANSION METHOD AND THE EXTENDED TANH-METHOD FOR FINDING EXACT SOLUTIONS OF NONLINEAR PDES

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.253-264
    • /
    • 2012
  • In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in the mathematical physics via the (1+1)-dimensional Boussinesq equation by using the following two methods: (i) A further improved ($\frac{G}{G}$) - expansion method, where $G=G({\xi})$ satisfies the auxiliary ordinary differential equation $[G^{\prime}({\xi})]^2=aG^2({\xi})+bG^4({\xi})+cG^6({\xi})$, where ${\xi}=x-Vt$ while $a$, $b$, $c$ and $V$ are constants. (ii) The well known extended tanh-function method. We show that some of the exact solutions obtained by these two methods are equivalent. Note that the first method (i) has not been used by anyone before which gives more exact solutions than the second method (ii).

REAL HYPERSURFACES OF TYPE B IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE REEB VECTOR

  • Lee, Hyun-Jin;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.551-561
    • /
    • 2010
  • In this paper we give a new characterization of real hypersurfaces of type B, that is, a tube over a totally geodesic $\mathbb{Q}P^n$ in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, where m = 2n, with the Reeb vector $\xi$ belonging to the distribution $\mathfrak{D}$, where $\mathfrak{D}$ denotes a subdistribution in the tangent space $T_xM$ such that $T_xM$ = $\mathfrak{D}{\bigoplus}\mathfrak{D}^{\bot}$ for any point $x{\in}M$ and $\mathfrak{D}^{\bot}=Span{\xi_1,\;\xi_2,\;\xi_3}$.

PERTURBATION OF WAVELET FRAMES AND RIESZ BASES I

  • Lee, Jin;Ha, Young-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.119-127
    • /
    • 2004
  • Suppose that $\psi{\;}\in{\;}L^2(\mathbb{R})$ generates a wavelet frame (resp. Riesz basis) with bounds A and B. If $\phi{\;}\in{\;}L^2(\mathbb{R})$ satisfies $$\mid$\^{\psi}(\xi)\;\^{\phi}(\xi)$\mid${\;}<{\;}{\lambda}\frac{$\mid$\xi$\mid$^{\alpha}}{(1+$\mid$\xi$\mid$)^{\gamma}}$ for some positive constants $\alpha,{\;}\gamma,{\;}\lambda$ such that $1{\;}<1{\;}+{\;}\alpha{\;}<{\;}\gamma{\;}and{\;}{\lambda}^2M{\;}<{\;}A$, then $\phi$ also generates a wavelet frame (resp. Riesz basis) with bounds $A(1{\;}-{\;}{\lambda}\sqrt{M/A})^2{\;}and{\;}B(1{\;}+{\;}{\lambda}\sqrt{M/A})^2$, where M is a constant depending only on $\alpha,{\;}\gamma$ the dilation step a, and the translation step b.

ON C-BOCHNER CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD

  • KIM, JEONG-SIK;TRIPATHI MUKUT MANI;CHOI, JAE-DONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.713-724
    • /
    • 2005
  • We prove that a (k, $\mu$)-manifold with vanishing E­Bochner curvature tensor is a Sasakian manifold. Several interesting corollaries of this result are drawn. Non-Sasakian (k, $\mu$)­manifolds with C-Bochner curvature tensor B satisfying B $(\xi,\;X)\;\cdot$ S = 0, where S is the Ricci tensor, are classified. N(K)-contact metric manifolds $M^{2n+1}$, satisfying B $(\xi,\;X)\;\cdot$ R = 0 or B $(\xi,\;X)\;\cdot$ B = 0 are classified and studied.