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OBSERVATIONS ON A FURTHER IMPROVED (%) -
EXPANSION METHOD AND THE EXTENDED
TANH-METHOD FOR FINDING EXACT SOLUTIONS OF
NONLINEAR PDES

E.M.E. ZAYED

ABSTRACT. In the present article, we construct the exact traveling wave
solutions of nonlinear PDEs in the mathematical physics via the (141)-
dimensional Boussinesq equation by using the following two methods: (i)
A further improved (%) - expansion method, where G = G(§) satisfies the
auxiliary ordinary differential equation [G’(€)]? = aG2(€)+bG*(€)+cGO(¢),
where £ = x — V¢ while a,b,c and V are constants. (ii) The well known
extended tanh- function method. We show that some of the exact solutions
obtained by these two methods are equivalent. Note that the first method
(i) has not been used by anyone before which gives more exact solutions
than the second method (ii).
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1. Introduction

In recent years, the exact solutions of nonlinear PDEs have been investigated
by many authors( see for example [1-49] ) who are interested in nonlinear physi-
cal phenomena. Many powerful different methods have been presented by those
authors. For integrable nonlinear differential equations, the inverse scattering
transform method [2], the Hirota method [10], the truncated Painleve expan-
sion method [43], the Backlund transform method [19,21] and the exp-function
method [4,9,36,44,45] are used in looking for the exact solutions. Among non-
integrable nonlinear differential equations there is a wide class of the equations
that referred to as the partially integrable, becaues these equations become inte-
grable for some values of their parameters. There are many different methods to
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look for the exact solutions of these equations. The most famous algorithms are
the truncated Painleve expansion method [14], the Weierstrass elliptic function
method [13], the tanh- function method [1,7,8,32,34,39,46] and the Jacobi ellip-
tic function expansion method [6,16,18,30,37,38,40]. There are other methods
which can be found in [12, 23-28].

Wang et al [30] have introduced a simple method which is called the (%)
- expansion method to look for traveling wave solutions of nonlinear PDEs,
where G = G(¢) satisfies the second order linear ordinary differential equation
G (&) + NG (&) + pG(€) = 0, where € = & — Vit while V,\and p are arbitrary
constants. For further references see the articles [3,5,7,20,41,42,48,49]. Recently
El-Wakil et al [7] and Parkes [20] have shown that the extended tanh- function
method proposed by Fan [8 | and the basic (%) - expansion method proposed
by Wang et al [30] are entirely equivalent in as much as they deliver exactly the
same set of solutions to a given evolution equation. This observation has been
pointed out recently by Kudryashov [15].

In this article, we introduce an alternative approach which is called a further
improved (%) - expansion method to find the exact traveling wave solutions of
some nonlinear PDEs, where G = G(§) satisfies the auxiliary ordinary differen-
tial equation [G'(€)]? = aG?(§) + bG*(€) + cG®(€), where a,b,c are constants.
This approach has not been used by anyone before. It will play an important
role in constructing many exact traveling wave solutions for the nonlinear PDEs
via the (141)- dimensional Boussinesq equation .

The objective of this article is to show that the exact solutions of this equation
obtained by using the further improved (%) - expansion method and the well
known extended tanh- function method are equivalent.

2. Description of a further improved (&) - expansion method

Suppose we have the following nonlinear partial differential equation

F(u, g, Uy, Uy, Uty Uggt, o) = 0, (1)
where u = u(x,t) is an unknown function, F is a polynomial in u(z,t) and its
partial derivatives in which the highest order derivatives and the nonlinear terms
are involved. In the following we give the main steps of a further improved (%)
- expansion method:

Step 1 . The traveling wave variable

’LL((E,t) = ’U,(é-) ) §=z-Vi, (2)
where V' is a constant, permits us reducing Eq. (1) to an ODE for u = u(§) in
the form

P(u,u',u",u",...) =0, (3)

I d
where =%
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/Step 2. Suppose the solution of Eq.(3) can be expressed by a polynomial in
( G

&) as follows
W= () (W
i=0

where G = G(€) satisfies the following auxiliary equation

[G"(€)]” = aG?(&) + bG* (&) + ¢G°(¢), (5)

where «; ,a,b,c and V' are arbitrary constants to be determined provided «,, #
0. The positive integer "n” can be determined by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms appearing

in Eq (1) or (3) . More precisely, we define the degree of u(§) as D[u(§)] = n

which gives rise to the degree of other expressions as follows

diu diu
Dl =n+a. DG

0 )] =np+s(qg+n). (6)

Therefore, we can get the value of n in (4).

Step 3. Substituting (4) into (3) and using Eq (5), we obtain polynomials in
GI(&) , G'(&GI(€) (j = 0,41,42,...). Equating each coefficient of the resulted
polynomials to zero, yields a set of algebraic equations for «; ,a,b,c and V' which
can be solved by Maple or Mathematica.

Step 4 . The general solutions of the auxiliary equation (5) have been well
known (see for example [35,47] ) which can be writen in the form:

No G(9) No G(&)

1/2 1/2
—a b sech?(Vag) —a sec?(v/=a€)
—ac<1+ecanh<f§>)2} »a>0 8 b+2e\/77actdn(\/—7a§)i| ,a<0,c>0

a b csch?(Vag) _a csch?(Vag)
b2 —ac(1+ecoth(v/ag))? ’ b+2ev/ac coth(+/at)

1/2 2 172
/,a>07A>0. 10 [ __—acse(V—al) ] ,a<0,c>0

1

2
2 a>0,c>0

a>0 9

b+2ey/—accot(v/—af)
4 (1 4 etanh(%v@)]'’?,a > 0,A =0
% 1+ ecoth(L/ag)]'?,a>0,A=0

___aczevae VP
(e26VaE _44)2 _64ac ’ ’

_ cae2¢Vag
1— 64a(’e45\/75

2
ercoﬁ(QJTa&) b] »a<0,A>0 1

P
Asmh(zfg) b ,a>0,A<0| 12

1/2
,a<0,A>0 13

G

|
e

|

[——

|

efsm(ZH&) b]

1/2
—a sech?(Vag)
7 |:b+25\/ﬁtanh(\/5§)} a>0,c>0 14

where A = b2 — 4ac and € = +1.

/2
:| ,a>0,b=0

Step 5. Substituting «;, V' and the general solution of Eq (5) into (4) we
have many exact traveling wave solutions of the nonlinear partial differential
equation (1).
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3. Some applications

In this section, we apply the further improved (%) - expansion method to
construct the exact traveling wave solutions for the (141)- dimensional Boussi-
nesq equation which are very important nonlinear evolution equations in the
mathematical physics and have been paid attention by many researchers.

3.1. Example 1. On solving the Boussinesq equation by a further
improved (%) - expansion method. We start with the (141)- dimensional
Boussinesq equation [11,22,29,33] in the form

Utt — Uga — (u2)zz + Uggzr = 0. (7)
This equation was proposed by Boussinesq for a model of nonlinear dispersive
waves. It describes the propagation of long waves in shallow water. It also arises
in other physical applications such as nonlinear lattice waves, iron sound waves
in a plasma and in vibrations in nonlinear string. Moreover, it was applied to
problems in the percolation of water in porous subsurface strata. In the recent
years, a lot of research work on Boussinesq equation has invested. For example
, its solitary wave solutions, shock wave solutions, periodic and other types of
solutions are found in [33]. The relations between a nonlinear lattice Boussinesq
equation and the KdV equation are studied in [22].
Let us now solve Eq. (7) by the proposed method. To this end, we see that
the traveling wave variable (2) permits us converting Eq. (7) into the following
ODE:

(V2 —Du—u?+u" =0, (8)
with zero constants of integration. Considering the homogeneous balance be-
tween the highest order derivative and the nonlinear term in (8), we deduce

from (6) that D(u") = D (u?). Therefore n + 2 = 2n and hence n =2 . Thus,
we get

N\ 2
G G
U(é-) = g (G) + a1 (G) + «p. (9)
From (5) and (9) we deduce that
u = as [a+bG2+cG4] + GG + ay, (10)

U = 205G" [bG + 2¢G%] + a1 [bG? + 2¢GY), (11)

u" =205 [2abG? + (8ac + 30%)G* + 14bcG° + 12¢°G®] + 201G [bG + 4c¢G?],
(12)
and so on.
Substituting (10) and (9) into (8) we have the following polynomial:
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G¥24a9¢® — a3c?) + GO[28agbe — 2a3ch]+

G*[16azac + 6asb® 4+ aac(V? — 1) — a3b? — 2a3ac — 2apazc — aic)+
G?[4aab + aab(V? — 1) — 2a3ba — 2agazb — a3b]+

GG [Bage — 2a1a0¢] + GG'[2a1b — 2001 crob] +

GG (V2 — 1) — 2apa; — 202010+

(V2 = 1)(aas + ag) — ada® — o} — 2apaza — afa = 0.

Equating each coefficient of the polynomial (13) to zero , we have a system of
algebraic equations which can be solved by Maple or Mathematica to obtain the
following two sets of solutions:

The set 1.
as =24, a1 =0, ap=-8a, V=+£v1+16a, b=0. (14)
The set 2.

ag =24, o1 =0, ag=—-24a, V ==4v1-16a, b=0. (15)

For the set 1, we have the following solution:

u(€) =24 <g>2 — 8a, (16)

where
E=zFt 1+ 16a, (17)

while for the set 2, we have the following solution:

w(€) =24 (g>2 — 24a, (18)

where
E=xFtV1-16q, (19)
According to the step 4 of section 2, we have the following families of exact
solutions
Family 1. If a > 0, A > 0,then the solution of Eq. (5) has the form

2a 1/2

¢© = evV/A cosh(2y/ag) — b

Since b = 0, then ¢ < 0. In this case we have the ratio

G

G = —\/a tanh(2v/af). (21)

Consequently, we have the following traveling wave solutions
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For the set 1, we have

u(€) =24a tanh®(2y/af) — 8a, (22)
while for the set 2, we have
u(§) = —24a sech®(2v/af), (23)
where
E=xzFV1+16at. (24)
respectively.

Family 2. If a < 0, A > 0,then the solution of Eq. (5) has the form

2a 1/2 2a 1/2
G(§) = or  G(§) = :
eV Acos(2v/—a&) — b eV Asin(2y/—af) — b
(25)
Since b = 0, then ¢ > 0. In this case we have the ratio
g =+v—a tan(2y/—a&) or g = — V—a cot(2v/—af) (26)

Consequently, we have the following traveling wave solutions
For the set 1, we have

u(§) = —24a tan®(2y/—af) —8a or w(€) = —24a cot?(2v/—a&)—8a (27)
while for the set 2, we have
u(€) = —24a tan®(2y/—a&) —24a  or  w(f) = —24a csc?(2v/—a&)  (28)
where
E=xFV1x16at. (29)
respectively.
Family 3. If a > 0, A < 0,then the solution of Eq. (5) has the form

% 1/2
¢&) == sinh(2y/a) — b (30)
Since b = 0, then ¢ > 0. In this case we have the ratio
g = —v/a coth(2y/af). (31)
Consequently, we have the following traveling wave solutions
For the set 1, we have
u(€) = 24a coth?(2v/a€) — 8a, (32)
while for the set 2, we have
u(€) =24a csch®(2v/af), (33)
where

E=zFV1+16a t. (34)



Observations on a further improved (%) - expansion method 259
respectively

Family 4. If a > 0,c¢ > 0,then the solution of Eq. (5) has the form

B —a sech®(y/a&) bz B a csch?(y/af) bz
GO = [T aevactann(vagy] & 99 = [T 2evaccotn(ag)
Since b = 0, then we have the ratio
G =3V lnh(Va) + coth(vag)]  or G =~ [ (Vag)] (0

Consequently, we have the following traveling wave solutions
For the set 1, we have

u(§) = 6a [tanh(y/a€) +coth(v/ag)]? —8a, or w(f) = %cseh‘l(\/ag) —8a
(37)
while for the set 2, we have

u(€) = G ftanh(vae) + coth(VaE) ~24a, or u(€) = " cseh(vag) - 24a,

(38)
where
t=axFVIEtibat. (39)
respectively.
Family 5. If a < 0,c¢ > 0,then the solution of Eq. (5) has the form
ale) = [ —asecv=ag) o a(e) = [eecva) "
b+ 2ey/—actan(v/—af) b+ 2ev/—accot(v/—af)
(40)
Since b = 0, then we have the ratio
G 1
o = gV [tan(v/ —a&) — cot(v/—af)]. (41)
Consequently, we have the following traveling wave solutions
For the set 1, we have
u(§) = —6a [tan(v/—a&) — cot(v/—a&)]* — 8a, (42)
while for the set 2, we have
u(§) = —6a [tan(v/—af) — cot(v/—a&)]? — 24a, (43)
where
¢=zFVIL16at. (44)
respectively.

Family 6. If a>0,b=0 then the solution of Eq. (5) has the form
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(45)

cae2eVas 12
1 — 64acetevag

G() = [

Consequently we have the ratio
G € €
— = ——=coth(—= 46
G = 5o ) (46)
where 64ac = 1. Consequently, we have the following traveling wave solutions
For the set 1, we have

h(

u(€) =24a coth?(2v/aef) — 8a (47)
while for the set 2, we have
u(€) =24a coth®(2v/aef) — 24a, (48)
where
¢ =z F+1+16at . (49)

respectively. Similarly, we can write down the other families of exact solutions
of Eq. (7) which are omitted for convenience.

3.2. Example 2. On solving the Boussinesq equation by the extended
tanh-function method. With reference to the well known extended tanh-
function method [1,7,8,32,34,39,46], the solution of the Boussinesq equation (7)
can be writen in the form:

u(€) = a2¢(€) + a19(€) + ao, (50)
where ¢(§) satisfies the Riccati equation
$(&) = R+ ¢*(€) (51)

The Riccati equation (51) have the following solutions:
(i) If R <0, then

o€ = —ﬁtanh(ﬁf)a or @)= —ﬁcoth(\/ﬁf) (52)
(ii) If R > 0, then
¢(€) = VRtan(VRE), or  ¢(¢) = —VRcot(VRE) (53)
(iii) If R =0, then
6(6) = %1 (54)

Substituting (50) along with (51) into (8) we get the following polynomail:

(—a3 + 602)d* + (—200071 + 201)¢% + (VZag — a — ag — 20009 + 8az R)¢?
—|—(—011 + V2Oll — 20&10&0 + 20[1R)¢) + 2052R2 — Qo + VZOZQ — Oég =0 (55)

Equating the coefficients of this polynomial to zero and solving the algebraic
equations by Maple or Mathematica, we have the following two sets of solutions:
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The set 3
(65 :6, (03] :0, (7)) :2R7 V:i\/1—4R, (56)

The set 4
a =6, a1 =0, aqy=6R, V=4+v1+4R (57)

Thus, the exact solutions of Eq.(7) have the following forms:

For the set 3 we deduce for R < 0 that
u(§) = —6R tanh®*(vV—RE) +2R, or wu(f) = —6R coth?(vV—RE)+2R., (58)
while for the set 4 we deduce for R < 0 that
u(€) = —6R tanh?(vV/—RE)+6R, or u(f) = —6R coth?(vV—RE)+6R.. (59)
For the set 3 we deduce for R > 0 that

u(€) = 6R tan?(VRE) + 2R, or u(€) = 6R cot>(VRE) + 2R., (60)
while for the set 4 we deduce for R > 0 that

u(€) = 6R tan*(VRE) +6R, or u(€) =6R cot?>(VRE) + 6R., (61)
where

E=xFV1F4Rt

respectively.

From the previous results, we have the following remarks:
Remark 1. If we put R = —4a where a > 0 then the results (58),(59) are
equivalent to the results (22), (32), (23) and (33) respectively .
Remark 2. If we put R = —4a where a < 0 then the results (60),(61) are
equivalent to the results (27) and (28) respectively .

From these remarks we have the following observation :
“ The exact solutions of the Boussinesq equation obtained using the extended
tanh- function method are equivalent to its exact solutions obtained using the
further improved (%)— expansion method.”

4. Conclusions

In summary, we have found the exact solutions of the (141)- dimensional
Bussinesq equation (3.1) using two methods via the further improved (%) -
expansion method and the extended tanh-function method. We have arrived at
the observation that these exact solutions are equivalent.
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