A PROPERTY OF COFUNCTORS $S_{F}(X, A)$

By Kwang Ho So

Abstract

. A k-dimensional vector bundle is a bundle $\xi=\left(E, P, B, F^{k}\right)$ with fibre F^{k} satisfying the local triviality, where F is the field of real numbers R or complex numbers \boldsymbol{C} ([1], [2] and [3]). Let $\operatorname{Vect}_{k}(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $\operatorname{Vect}_{F}(X)=\left\{\operatorname{Vect}_{k}(X)\right\}_{k=0,1, \ldots}$ is a semigroup with Whitney sum ($\S 1$).

For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) $\alpha: \xi_{0} \rightarrow \xi_{1}$ such that the restriction $\alpha: \xi_{0} \mid A \longrightarrow$ $\xi_{1} \mid A$ is an isomorphism. Let $S_{k}(X, A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre F^{k}. Then $S_{F}(X, A)=\left\{S_{k}(X, A)\right\}_{k=0,1, \cdots,}$ is a semigroup with Whitney sum ($\left.\S 2\right)$.

In this paper, we shall prove a relation between $\operatorname{Vect}_{F}(X)$ and $S_{F}(X, A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper.

THEOREM 1. Let $\xi=(E, P, B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative $C W$-complex. Then all cross sections S of $\xi \mid A$ prolong to a cross section S^{*} of ξ under either of the following hypothesis:
(H1) The space F is ($m-1$)-connected for each $m \leq \operatorname{dim} B$.
(H2) There is a relative $C W$-complex (Y, X) such that $B=Y \times I$ and $A=(X \times I)$ $\mathrm{n}(Y \times 0)$, where $I=[0,1]$. (For proof see p. 21 [2]).

1. Cofunctors Vect ${ }_{k}$.

Let $\xi=\left(E(\xi), P_{\xi}, B\right)$ and $\eta=\left(E(\eta), P_{\eta}, B\right)$ be two vector bundles over B. We define $\xi \oplus \eta$ by

$$
E(\xi \oplus \eta)=\bigcup_{b \in B} \xi_{b} \oplus \eta_{b}
$$

then, with a suitable topology on $E(\xi \oplus \eta), \xi \oplus \eta=\left(E(\xi \oplus \eta), P_{\xi} \oplus P_{\eta}, B\right)$
is a vector bundle over B, where $\xi_{b}=P_{\xi}^{-1}(b)$ and $\eta_{b}=P_{\eta}^{-1}(b)$. ([1], [2]). Wecall $\xi \oplus \eta$ the Whitney sum of ξ and η.
For a continuous map $f: A \longrightarrow B$, and a vector bundle ξ over B, we define the fibre products bundle $f^{*}(\xi)$ induced by f as follows,

$$
\begin{aligned}
& E\left(f^{*}(\xi)\right)=\{(x, y) \in A \times E(\xi) \mid f(x)=P(y)\}, \\
& P_{f *(\xi)}: E\left(f^{*}(\xi)\right) \longrightarrow A \text { is defined by } P_{f *(\xi)}((x, y))=x .
\end{aligned}
$$

Then, $f^{*}(\xi)=\left(E\left(f^{*}(\xi)\right), P_{f *(\xi)}, A\right)$ is a vector bundle over $A([1],[3])$.
Let Pa be the category of paracompact spaces and homotopy classes of maps, and let Ens be the category of sets and functions. We take $[f]: A \rightarrow B$ in Pa. For $f, g \in[f]$ and a vector bundle ξ over B, we can prove that $f^{*}(\xi) \cong g^{*}(\xi)$ ([2]). Now, we define a function $\operatorname{Vect}_{k}: \mathbf{P a} \rightarrow$ Ens by $\operatorname{Vect}_{k}([f]): \operatorname{Vect}_{k}(B) \longrightarrow \operatorname{Vect}_{k}(A)$ such that $\left[\operatorname{Vect}_{k}([f])\right](\{\xi\})=\left\{f^{*}(\xi)\right\}$ in Ens for $[f]: A \longrightarrow B$ in Pa, where $\{\xi\} \in$ $\operatorname{Vect}_{k}(B)$ and $\left\{f^{*}(\xi)\right\} \in \operatorname{Vect}_{k}(A)$ are the isomorphism classes containing ξ. For f, $g \in[f]: A \longrightarrow B$, since $f^{*}(\xi) \cong g^{*}(\xi) \operatorname{Vect}_{k}([f])$ is well defined.

PROPOSITION 1. The family of functions Vect $_{k}: \mathbf{P a} \longrightarrow$ Ens is a cofunctor.
PROOF. For $1_{B}: B \longrightarrow B, B \in \mathrm{~Pa}$, and a vector bundle ξ over $B, 1_{B}^{*}(\xi) \cong \xi$ and therefore $\operatorname{Vect}_{k}\left(\left[1_{B}\right]\right)$ is the identity. If $g \circ f: B_{2} \xrightarrow{f} B_{1} \stackrel{g}{ } B$ is continuous, where B_{2}, B_{1} and $B \in \mathrm{~Pa}$, for a vector bundle ξ over $B,(g \circ f)^{*}(\xi)=f^{*} \circ g^{*}(\xi)([2])$. Thus $\operatorname{Vect}_{k}([g \circ f])=\operatorname{Vect}_{k}([f]) \circ \operatorname{Vect}_{k}([g])$. Therefore Vect_{k} is a cofunctor.

The Stiefel variety of orthogonal k-frames in \boldsymbol{R}^{n}, written $V_{k}\left(\boldsymbol{R}^{n}\right)$, is the subspace of $\left(v_{1}, \cdots, v_{k}\right) \in\left(S^{n-1}\right)^{k}$ such that $v_{i} \perp v_{j}$ for $i \neq j$. The Grassmann variety of k-dimensional subspaces of \boldsymbol{R}^{n}, written $G_{k}\left(\boldsymbol{R}^{n}\right)$, is the set of k-dimensional subspaces of \boldsymbol{R}^{n} with the quotient topology defined by the function (v_{1}, \cdots, v_{k}) \longrightarrow $\left\langle v_{1}, \cdots, v_{k}\right\rangle$ of $V_{k}\left(\boldsymbol{R}^{n}\right)$ onto $G_{k}\left(\boldsymbol{R}^{n}\right)$, where $\left\langle v_{1}, \cdots, v_{k}\right\rangle$ is the k-dimensional subspace of R^{n} with basis v_{1}, \cdots, v_{k} ([2]). We have the canonical k-dimensional vector bundle γ_{k}^{n} over $G_{k}\left(\boldsymbol{R}^{n}\right)$, which is defined by $E\left(\gamma_{k}^{n}\right)=\left\{(V, x) \in G_{k}\left(\boldsymbol{R}^{n}\right) \times \boldsymbol{R}^{n}\right.$ $\mid x \in V\}, P_{\gamma_{k}^{n}}: E\left(\gamma_{k}^{n}\right) \rightarrow G_{k}\left(\boldsymbol{R}^{n}\right)$ is the projection on the first argument, that is γ_{k}^{n} $=\left(E\left(\gamma_{k}^{n}\right), P_{\gamma_{b}^{n}}, G_{k}\left(\boldsymbol{R}^{n}\right)\right) . \gamma_{k}^{n}$ is the vector bundle with fibre \boldsymbol{R}^{k}, i, e γ_{k}^{n} is the
k-dimensional vector bundle over $G_{k}\left(R^{n}\right)$.
Suppose a space B is in Pa. Every k-dimensional vector bundle ξ^{k} over B is isomorphic to $f^{*}\left(\gamma_{k}^{\infty}\right)$ for some continuous map $f: B \longrightarrow G_{k}\left(F^{\infty}\right)$ as vector bundles over F (p. 31 of [2]). If we put $\left[B, G_{k}\left(F^{\infty}\right)\right]=$ the set of homotopy classes of maps from B to $G_{k}\left(F^{\infty}\right)$, then there exists an one-to-one correspondence between $\left[B, G_{k}\left(F^{\infty}\right)\right]$ and $\operatorname{Vect}_{k}(B)$, This function $\phi_{B}:\left[B, G_{k}\left(F^{\infty}\right)\right] \longrightarrow \operatorname{Vect}_{k}(B)$ is defined by $\phi_{B}([f])=\left\{f^{*}\left(\gamma_{k}^{\infty}\right)\right.$ for $[f] \in\left[B, G_{k}\left(F^{\infty}\right)\right]$. Since $\left[-, G_{k}\left(F^{\infty}\right)\right]: \mathbf{P a} \longrightarrow$ Ens is a cofunctor, in fact ϕ is a natural transformation between cofunctors [-, $\left.G_{k}\left(F^{\infty}\right)\right]$ and Vect_{k}, where ϕ is the family of functions ϕ_{B} for $B \in \mathbf{P a}$.

PROPOSITION 2. ϕ is a natural equivalence from $\left[-, G_{k}\left(F^{\infty}\right)\right]$ to Vect $_{k}$.
PROOF. At first, to prove that ϕ is a natural transformation, we take a homotopy class $[f]: B_{1} \longrightarrow B$ of maps in Pa. Then we have the commutative diagram.

$$
\begin{gathered}
{\left[B, G_{k}\left(F^{\infty}\right)\right] \xrightarrow{\phi_{B}} \operatorname{Vect}_{k}(B)} \\
{\left[[f], G_{k}\left(F^{\infty}\right)\right] \mid} \\
{\left[B_{1}, G_{k}\left(\stackrel{F}{F}^{\infty}\right)\right] \xrightarrow{\phi_{B_{1}}} \operatorname{Vect}_{k}\left(B_{1}\right)}
\end{gathered}
$$

that is, for $[g] \in\left[B, G_{k}\left(F^{\infty}\right)\right]$

$$
\begin{aligned}
\operatorname{Vect}_{k}([f])\left(\phi_{B}([g])\right) & =\operatorname{Vect}_{k}([f])\left(\left\{g^{*}\left(\gamma_{k}^{\infty}\right)\right\}\right)=\left\{f^{*} \circ g^{*}\left(\gamma_{k}^{\infty}\right)\right\} \\
\left.\phi_{B_{1}}\left([f f], G_{k}\left(F^{\infty}\right)\right]\right)([g]) & =\phi_{B_{1}}([g] \circ[f])=\phi_{B_{1}}([g \circ f])=\left\{(g \circ f)^{*}\left(\gamma_{k}^{\infty}\right)\right\} \\
& =\left\{f^{*} \circ g^{*}\left(\gamma_{k}^{\infty}\right)\right\} .
\end{aligned}
$$

For each $B \in \mathrm{~Pa}, \phi_{B}$ is surjective and injective ([2]), and therefore ϕ is a natural equivalence.
2. Cofunctor $S_{F}(X, A)$.

Suppose a pair (X, A) of spaces. Two difference isomorphisms over (X, A), $\alpha: \xi_{0} \longrightarrow \hat{\xi}_{1}$ and $\beta: \eta_{0} \longrightarrow \eta_{1}$ are isomorphic if there exist isomorphisms $u_{i}: \xi_{i} \longrightarrow \eta_{i}$ (over X) for $i=0,1$ such that the following diagram of isomorphisms is commutative.

$$
\begin{array}{ccc}
\xi_{0} \mid A & \stackrel{\alpha}{\longrightarrow} & \xi_{1} \mid A \\
\left.u_{0}\right|^{\circ} \mid & \stackrel{\ominus}{C} & \mid u_{1} \\
\eta_{0} \mid A & \xrightarrow{\square} & \eta_{1} \mid A
\end{array}
$$

Let $S_{k}(X, A)$ be the set of all difference isomorphism classes of k-dimensional, F-vector bundles over (X, A). For a continuous function $f:(X, A) \longrightarrow(Y, B)$ with $f(A) \subset B$, we define $S_{k}(f): S_{k}(Y, B) \longrightarrow S_{k}(X, A)$ by $\left[S_{k}(f)\right](\{\xi\})=\left\{f^{*}(\xi)\right\}$, where $\{\xi\} \in S_{k}(Y, B)$ and $\left\{f^{*}(\xi)\right\} \in S_{k}(X, A)$.

PROPOSITION 3. If $f:(X, A) \longrightarrow(Y, B)$ is a continuous map such that $f(A) \subset$ B, and if $\beta: \eta_{0} \longrightarrow \eta_{1}$ is a difference isomorphism over (Y, B), then $f^{*}(\beta): f^{*}\left(\eta_{0}\right)$ $\longrightarrow f^{*}\left(\eta_{1}\right)$ is a difference isomorphism over (X, A).

PROOF. We want to show that $f^{*}(\beta): f^{*}\left(\eta_{0}\right)\left|A \longrightarrow f^{*}\left(\eta_{1}\right)\right| A$ is an isomorphism. For the inclusion map $i: A \longrightarrow X,(f \circ i)^{*}\left(\eta_{0}\right)=i^{*} \circ f^{*}\left(\eta_{0}\right) \cong i^{*} \circ f^{*}\left(\eta_{0} \mid B\right) \cong f^{*}\left(\eta_{0}\right) \mid A$ and $(f \circ i)^{*}\left(\eta_{1}\right)=i^{*} \circ f^{*}\left(\eta_{1}\right) \cong i^{*} \circ f^{*}\left(\eta_{1} \mid B\right) \cong f^{*}\left(\eta_{1}\right) \mid A$, and therefore $f^{*}(\beta): f^{*}\left(\eta_{0}\right) \mid A \longrightarrow$ $f^{*}\left(\eta_{1}\right) \mid A$ is an isomorphism, because of $(f \circ i)^{*}(\beta):(f \circ i)^{*}\left(\eta_{0} \mid B\right) \longrightarrow(f \circ i)^{*}\left(\eta_{1} \mid B\right)$ is an isomorphism induced from the isomorphism $\beta: \eta_{0}\left|B \longrightarrow \eta_{1}\right| B$.

By this proposition we see that $S_{k}(f)$ is well defined. Let $\mathbf{C} \times \mathbf{C}_{0}$ be the category of all pairs of topological spaces and maps between pairs. Then

$$
S_{k}: \mathbf{C} \times \mathbf{C}_{0} \longrightarrow \text { Ens }
$$

is a cofunctor. Put $S_{F}(X, A)=\left\{S_{k}(X, A)\right\}_{k=0,1, \ldots,}$. Then

$$
S_{F}: \mathbf{C} \times \mathbf{C}_{0} \longrightarrow \text { Ens }
$$

is a cofunctor. We define a commutative semigroup structure on $S_{F}(X, A)$, using the quotient function of the Whitney sum operation defined as usual by $\alpha \oplus \beta$: ξ_{0} $\oplus \eta_{0} \longrightarrow \xi_{1} \oplus \eta_{1}$ for $\alpha: \xi_{0} \longrightarrow \xi_{1}$ and $\beta: \eta_{0} \longrightarrow \eta_{1}$. Of course, if $\alpha: \xi_{0} \longrightarrow \xi_{1}$ and $\beta: \eta_{0} \longrightarrow \eta_{1}$ are difference isomorphisms over (X, A), then $\alpha \oplus \beta: \xi_{0} \oplus \eta_{0} \longrightarrow \xi_{1} \oplus \eta_{1}$ is a difference isomorphism over (X, A). Let Sg be the category of all semigroups and semigroup maps. Then

$$
S_{F}: \mathbf{C} \times \mathbf{C}_{0} \longrightarrow \mathbf{S g}
$$

is a cofunctor.

3. The main theorem.

In this section, we assume that A be a subcomplex or subspace of a finite $C W$-complex X.

THEOREM 2. (Main theorem) For $(X, A), S_{F}(X, A)$ is a sub-semigroup of $\operatorname{Vect}_{F}(A)$. If X is deformable into a subspace A, then $S_{F}(X, A) \cong \operatorname{Vect}_{F}(A)$ as

semigroups.

To prove this theorem we need the following lemmas.
LEmMA 1. Let ξ_{0} and ξ_{1} be two vector bundles over X, If $u: \xi_{0}\left|A \longrightarrow \xi_{1}\right| A$ is a vector bundle morphism, then there exists a unique vector bundle morphism $v: \xi_{0} \longrightarrow \xi_{1}$ such that $v \mid A=u$, where A is a subcomplex.

PROOF. Define $E\left(\operatorname{Hom}_{F}\left(\xi_{0}, \xi_{1}\right)\right)=\bigcup_{x \in X} \operatorname{Hom}_{F}\left(\left(\xi_{0}\right)_{x},\left(\xi_{1}\right)_{x}\right)$, where $\left(\xi_{0}\right)_{x}$ is the fibre at $x \in X$ of ξ_{0}, and so on. Since each $\operatorname{Hom}_{F}\left(\left(\xi_{0}\right)_{x_{1}}\left(\xi_{1}\right)_{x}\right)$ for all $x \in X$ is a vector space, $\operatorname{Hom}_{F}\left(\xi_{0}, \xi_{1}\right)=\left(E\left(\operatorname{Hom}_{F}\left(\xi_{0}, \xi_{1}\right)\right), P, X\right)$ is a vector bundle over X, where $P^{-1}(x)=\operatorname{Hom}_{F}\left(\left(\xi_{0}\right)_{x},\left(\xi_{1}\right)_{x}\right)$. Then we can view u as a cross section of $\operatorname{Hom}_{F}\left(\xi_{0}, \xi_{1}\right)$ over A, i. e., for each $x \in A, u(x)=u \mid\left(\xi_{0}\right)_{x}:\left(\xi_{0}\right)_{x} \longrightarrow\left(\xi_{1}\right)_{x}$. Since every vector space is contractible, the fibre of $\operatorname{Hom}_{F}\left(\xi_{0}, \xi_{1}\right)$ is also contractible. Therefore, by Theorem $1, u$ is extended to a unique cross section $v: X \longrightarrow \operatorname{Hom}_{F}\left(\xi_{0}, \xi_{1}\right)$. In this case, $v=\left\{v(x):\left(\xi_{0}\right)_{x} \longrightarrow\left(\xi_{1}\right) x \mid x \in X\right\}$ is a vector bundle morphism $v: \xi_{0} \longrightarrow$ ξ_{1} which prolongs u.

LEMMA 2. If X is deformable into A, then $\operatorname{Vect}_{F}(X) \cong \operatorname{Vect}_{F}(A)$ as semigroups.
PRoof. Since X is deformable into A, there is a continuous map $f: X \longrightarrow A$ such that $i \circ f \simeq 1_{X}$ (homotopic), where $i: A \longrightarrow X$ is the inclusion map ([4]). Recall that there is an one-to-one correspondence between $\left[B, G_{k}\left(F^{\infty}\right)\right]$ and $\operatorname{Vect}_{F}(B)$ for $B \in \mathrm{~Pa}$ and for all $k=0,1, \cdots$.

We see that $g \simeq g \circ f=g \mid A \circ f$ and $h \simeq h \circ f \mid A$, because of $f \simeq 1_{X}$ implies that $f \mid A \simeq 1_{A}$. Thus there is the one-to-one correspondence

$$
\phi:\left[X, G_{k}\left(F^{\infty}\right)\right] \longrightarrow\left[A, G_{k}\left(F^{\infty}\right)\right]
$$

defined by $\phi([g])=[g \mid A]$. The inverse ϕ^{-1} of ϕ is defined by $\phi^{-1}([h])=[h \circ f]$. Then $\phi^{-1} \circ \phi([g])=\phi^{-1}([g \mid A])=[g \mid A \circ f]=[g]$ and $\phi \circ \phi^{-1}([h])=\phi([h \circ f])=$ $[h \circ f \mid A]=[h]$

Therefore we define $\tilde{\phi}: \operatorname{Vect}_{F}(X) \longrightarrow \operatorname{Vect}_{F}(A)$ by $\tilde{\phi}\left(\left\{g^{*}\left(\gamma_{k}^{\infty}\right)\right\}\right)=\left\{(g \mid A) *\left(\gamma_{k}^{\infty}\right)\right\}$. Then $\tilde{\phi}$ is a semigroup isomorphism.

PROOF of Theorem 2. Let ξ_{0} and ξ_{1} be two vector bundles over X. By Lemma l, if there is a vector bundle isomorphism $\xi_{0}\left|A \longrightarrow \xi_{1}^{2}\right| A$ over A then $\left\{\xi_{0}\right\}=\left\{\hat{\xi}_{1}\right\}$ in $S_{F}(X, A)$. Therefore the morphism

$$
\phi_{F}: S_{F}(X, A) \longrightarrow \operatorname{Vect}_{F}(A)
$$

defined by $\phi_{F}(\{\xi\})=\{\xi \mid A\}$ is injective and preserves Whitney sum. (Note that the class $\{\xi\}$ in $\phi_{F}(\{\xi\})$ is the difference isomorphism class containing ξ and the $\{\xi \mid A\}$ is the isomorphism class containing $\xi \mid A)$. Thus ϕ_{F} is a monomorphism between semigroups, and therefore $S_{F}(X, A)$ is isomorphic to a sub-semigroup of $\operatorname{Vect}_{F}(A)$.
Let us assume that X is deformable into A. Then there is a continuous map $f: X \longrightarrow A \subset X$ such that $f \simeq 1_{X}$. Lemma 2 says that $\xi_{0} \cong \xi_{1}$ over X iff $\xi_{0} \mid A \cong$ $\xi_{1} \mid A$ over A in our situation. That is, there is a semigroup isomorphism $\phi_{X}: \operatorname{Vect}_{F}(X) \cong S_{F}(X, A)$ defined by $\phi_{X}(\{\xi\})=\{\xi\}$. Define $\phi_{F}^{-1}: \operatorname{Vect}_{F}(A) \longrightarrow S_{F}(X$, A) by the commutative diagram:

Then $\phi_{F}^{-1}{ }^{-1} \phi_{F}=11_{S_{F}(X, A)}$ and $\phi_{F}{ }^{\circ} \phi_{F}^{-1}=1 \operatorname{vect}_{F}(A)$.
Let us denote the completions of $\operatorname{Vect}_{F}(A)$ and $S_{F}(X, A)$ by $K_{F}(A)$ and $K S_{F}$ (X, A), respectively ([2]). Then, from Theorem 2 we easily obtain the following.

COROLLARY 1. $K S_{F}(X, A)$ is a subgroup of $K_{F}(A)$. If X is deformable into A, then $K S_{F}(X, A) \cong K_{F}(A)$ as abelian groups.

Jeonpuck University
Korea

REFERENCES

[1] M.F. Atiyah. K-Theory, W.A. Benjamin, Inc. (1967).
[2] Dale Husemoller. Fibre Bundles, McGraw-Hill Book Company (1966).
[3] Keean Lee. Elementary K-Theory, Seminer Note at Muju Kuchundong, Korea (1973).
[4] Edwin H. Spanier: Algebraic Topology, McGraw-Hill Book Company (1966).

