Kyungpook Math. J. Volume 13, Number 2 December, 1973

A PROPERTY OF COFUNCTORS $S_F(X, A)$

By Kwang Ho So

Abstract.

A k-dimensional vector bundle is a bundle $\hat{\xi} = (E, P, B, F^k)$ with fibre F^k satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $\operatorname{Vect}_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $\operatorname{Vect}_F(X) = {\operatorname{Vect}_k(X)}_{k=0,1,\cdots}$ is a semigroup with Whitney sum (§1).

For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) $\alpha: \hat{\xi}_0 \rightarrow \hat{\xi}_1$ such that the restriction $\alpha: \hat{\xi}_0 | A \longrightarrow \hat{\xi}_1 | A$ is an isomorphism. Let $S_k(X, A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre F^k . Then $S_F(X, A) = \{S_k(X, A)\}_{k=0, 1, \cdots}$ is a semigroup with Whitney sum (§2).

In this paper, we shall prove a relation between $\operatorname{Vect}_F(X)$ and $S_F(X, A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall

use the following theorem in the paper.

THEOREM 1. Let $\xi = (E, P, B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of $\xi \mid A$ prolong to a cross section S* of ξ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m \leq \dim B$. (H2) There is a relative CW-complex (Y, X) such that $B=Y \times I$ and $A=(X \times I)$ $\bigcap(Y \times 0)$, where I=[0,1]. (For proof see p.21 [2]).

1. Cofunctors Vect_k .

Let $\xi = (E(\xi), P_{\xi}, B)$ and $\eta = (E(\eta), P_{\eta}, B)$ be two vector bundles over B. We define $\xi \oplus \eta$ by

$$E(\widehat{\xi} \oplus \eta) = \bigcup_{b \in B} \widehat{\xi}_b \oplus \eta_b$$

then, with a suitable topology on $E(\widehat{\xi} \oplus \eta)$, $\widehat{\xi} \oplus \eta = (E(\widehat{\xi} \oplus \eta), P_{\widehat{\xi}} \oplus P_{\eta}, B)$

236 Kwang Ho So

is a vector bundle over *B*, where $\hat{\xi}_b = P_{\xi}^{-1}(b)$ and $\eta_b = P_{\eta}^{-1}(b)$. ([1], [2]). We call $\hat{\xi} \oplus \eta$ the Whitney sum of $\hat{\xi}$ and η .

For a continuous map $f: A \longrightarrow B$, and a vector bundle ξ over B, we define the *fibre products bundle* $f^*(\xi)$ induced by f as follows,

 $E(f^*(\hat{\xi})) = \{(x,y) \in A \times E(\hat{\xi}) | f(x) = P(y)\},\$

 $P_{f^*(\xi)}: E(f^*(\xi)) \longrightarrow A \text{ is defined by } P_{f^*(\xi)}((x, y)) = x.$

Then, $f^*(\xi) = (E(f^*(\xi)), P_{f^*(\xi)}, A)$ is a vector bundle over A([1], [3]). Let **Pa** be the category of paracompact spaces and homotopy classes of maps, and let **Ens** be the category of sets and functions. We take $[f]: A \to B$ in **Pa**. For $f, g \in [f]$ and a vector bundle ξ over B, we can prove that $f^*(\xi) \cong g^*(\xi)$ ([2]). Now, we define a function Vect_k : $\operatorname{Pa} \to \operatorname{Ens}$ by $\operatorname{Vect}_k([f]): \operatorname{Vect}_k(B) \longrightarrow \operatorname{Vect}_k(A)$ such that $[\operatorname{Vect}_k([f])](\{\xi\}) = \{f^*(\xi)\}$ in **Ens** for $[f]: A \longrightarrow B$ in **Pa**, where $\{\xi\} \in \operatorname{Vect}_k(B)$ and $\{f^*(\xi)\} \in \operatorname{Vect}_k(A)$ are the isomorphism classes containing ξ . For f, $g \in [f]: A \longrightarrow B$, since $f^*(\xi) \cong g^*(\xi)$ $\operatorname{Vect}_k([f])$ is well defined. PROPOSITION 1. The family of functions Vect_k : $\operatorname{Pa} \longrightarrow \operatorname{Ens}$ is a cofunctor. PROOF. For $1_B: B \longrightarrow B$, $B \in \operatorname{Pa}$, and a vector bundle ξ over B, $1_B^*(\xi) \cong \xi$ and therefore $\operatorname{Vect}_k([1_B])$ is the identity. If $g \circ f: B_2 \xrightarrow{f} B_1 \xrightarrow{g} B$ is continuous, where B_2 , B_1 and $B \in \operatorname{Pa}$, for a vector bundle ξ over B, $(g \circ f)^*(\xi) = f^* \circ g^*(\xi)([2])$. Thus $\operatorname{Vect}_k([g \circ f]) = \operatorname{Vect}_k([f]) \circ \operatorname{Vect}_k([g])$. Therefore Vect_k is a cofunctor.

The Stiefel variety of orthogonal k-frames in \mathbb{R}^n , written $V_k(\mathbb{R}^n)$, is the subspace of $(v_1, \dots, v_k) \in (S^{n-1})^k$ such that $v_i \perp v_j$ for $i \neq j$. The Grassmann variety of k-dimensional subspaces of \mathbb{R}^n , written $G_k(\mathbb{R}^n)$, is the set of k-dimensional subspaces of \mathbb{R}^n with the quotient topology defined by the function $(v_1, \dots, v_k) \longrightarrow$ $\langle v_1, \dots, v_k \rangle$ of $V_k(\mathbb{R}^n)$ onto $G_k(\mathbb{R}^n)$, where $\langle v_1, \dots, v_k \rangle$ is the k-dimensional subspace of \mathbb{R}^n with basis v_1, \dots, v_k ([2]). We have the canonical k-dimensional vector bundle γ_k^n over $G_k(\mathbb{R}^n)$, which is defined by $E(\gamma_k^n) = \{(V, x) \in G_k(\mathbb{R}^n) \times \mathbb{R}^n \mid x \in V\}$, $P_{\gamma_k^n}$: $E(\gamma_k^n) \to G_k(\mathbb{R}^n)$ is the projection on the first argument, that is γ_k^n $= (E(\gamma_k^n), P_{\gamma_k^n}, G_k(\mathbb{R}^n))$. γ_k^n is the vector bundle with fibre \mathbb{R}^k , i, e γ_k^n is the

•

A Property of Cofunctors $S_F(X, A)$ 237

· · · ·

k-dimensional vector bundle over $G_k(R^n)$.

Suppose a space *B* is in **Pa**. Every *k*-dimensional vector bundle ξ^k over *B* is isomorphic to $f^*(\gamma_k^{\infty})$ for some continuous map $f: B \longrightarrow G_k(F^{\infty})$ as vector bundles over *F* (p.31 of [2]). If we put $[B, G_k(F^{\infty})]$ = the set of homotopy classes of maps from *B* to $G_k(F^{\infty})$, then there exists an one-to-one correspondence between $[B, G_k(F^{\infty})]$ and $\operatorname{Vect}_k(B)$, This function $\phi_B: [B, G_k(F^{\infty})] \longrightarrow \operatorname{Vect}_k(B)$ is defined

by $\phi_B([f]) = \{f^*(\gamma_k^{\infty}) \text{ for } [f] \in [B, G_k(F^{\infty})].$ Since $[---, G_k(F^{\infty})]: \mathbf{Pa} \longrightarrow \mathbf{Ens} \text{ is a cofunctor, in fact } \phi \text{ is a natural transformation between cofunctors } [---, G_k(F^{\infty})] \text{ and Vect}_k$, where ϕ is the family of functions ϕ_B for $B \in \mathbf{Pa}$.

PROPOSITION 2. ϕ is a natural equivalence from [---, $G_k(F^{\infty})$] to Vect_k.

PROOF. At first, to prove that ϕ is a natural transformation, we take a homotopy class $[f]: B_1 \longrightarrow B$ of maps in **Pa**. Then we have the commutative diagram.

$$[B, G_{k}(F^{\infty})] \xrightarrow{\phi_{B}} \operatorname{Vect}_{k}(B)$$

$$[[f], G_{k}(F^{\infty})] \qquad \bigcirc \qquad \bigvee \operatorname{Vect}_{k}([f])$$

$$[B_{1}, G_{k}(F^{\infty})] \xrightarrow{\phi_{B_{1}}} \operatorname{Vect}_{k}(B_{1})$$

that is, for $[g] \in [B, G_{k}(F^{\infty})]$

 $\operatorname{Vect}_{k}([f]) (\phi_{B}([g])) = \operatorname{Vect}_{k}([f]) (\{g^{*}(\gamma_{k}^{\infty})\}) = \{f^{*} \circ g^{*}(\gamma_{k}^{\infty})\}$

$$\phi_{B_{1}}([[f], G_{k}(F^{\infty})])([g]) = \phi_{B_{1}}([g] \circ [f]) = \phi_{B_{1}}([g \circ f]) = \{(g \circ f)^{*}(\gamma_{k}^{\infty})\} = \{f^{*} \circ g^{*}(\gamma_{k}^{\infty})\}.$$

For each $B \in \text{Pa}$, ϕ_B is surjective and injective ([2]), and therefore ϕ is a natural equivalence.

2. Cofunctor $S_F(X, A)$.

Suppose a pair (X, A) of spaces. Two difference isomorphisms over (X, A), $\alpha: \hat{\xi}_0 \longrightarrow \hat{\xi}_1$ and $\beta: \eta_0 \longrightarrow \eta_1$ are isomorphic if there exist isomorphisms $u_i: \hat{\xi}_i \longrightarrow \eta_i$ (over X) for i=0, 1 such that the following diagram of isomorphisms is commutative.

$$\begin{array}{cccc} \hat{\xi}_0 | A & \xrightarrow{\alpha} & \hat{\xi}_1 | A \\ u_0 & & & & & \\ u_0 & & & & & \\ \eta_0 | A & \xrightarrow{\beta} & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$$

Kwang Ho So

Let $S_k(X, A)$ be the set of all difference isomorphism classes of k-dimensional, *F*-vector bundles over (X, A). For a continuous function $f: (X, A) \longrightarrow (Y, B)$ with $f(A) \subset B$, we define $S_k(f): S_k(Y, B) \longrightarrow S_k(X, A)$ by $[S_k(f)](\{\xi\}) = \{f^*(\xi)\},$ where $\{\xi\} \in S_k(Y, B)$ and $\{f^*(\xi)\} \in S_k(X, A)$.

PROPOSITION 3. If $f: (X, A) \longrightarrow (Y, B)$ is a continuous map such that $f(A) \subset B$, and if $\beta: \eta_0 \longrightarrow \eta_1$ is a difference isomorphism over (Y, B), then $f^*(\beta): f^*(\eta_0) \longrightarrow f^*(\eta_1)$ is a difference isomorphism over (X, A).

PROOF. We want to show that $f^*(\beta)$: $f^*(\eta_0)|A \longrightarrow f^*(\eta_1)|A$ is an isomorphism. For the inclusion map $i: A \longrightarrow X$, $(f \circ i)^*(\eta_0) = i^* \circ f^*(\eta_0) \cong i^* \circ f^*(\eta_0|B) \cong f^*(\eta_0)|A$ and $(f \circ i)^*(\eta_1) = i^* \circ f^*(\eta_1) \cong i^* \circ f^*(\eta_1|B) \cong f^*(\eta_1)|A$, and therefore $f^*(\beta): f^*(\eta_0)|A \longrightarrow f^*(\eta_1)|A$ is an isomorphism, because of $(f \circ i)^*(\beta): (f \circ i)^*(\eta_0|B) \longrightarrow (f \circ i)^*(\eta_1|B)$ is an isomorphism induced from the isomorphism $\beta: \eta_0|B \longrightarrow \eta_1|B$.

By this proposition we see that $S_k(f)$ is well defined. Let $\mathbb{C} \times \mathbb{C}_0$ be the category of all pairs of topological spaces and maps between pairs. Then

$$S_k: \mathbb{C} \times \mathbb{C}_0 \longrightarrow \mathbb{E}$$
ns

is a cofunctor. Put $S_F(X, A) = \{S_k(X, A)\}_{k=0, 1, \dots, r}$. Then $S_F: \mathbb{C} \times \mathbb{C}_0 \longrightarrow \mathbb{E}$ ns

is a cofunctor. We define a commutative semigroup structure on $S_F(X, A)$, using the quotient function of the Whitney sum operation defined as usual by $\alpha \oplus \beta$: $\hat{\xi}_0 \oplus \eta_0 \longrightarrow \hat{\xi}_1 \oplus \eta_1$ for α : $\hat{\xi}_0 \longrightarrow \hat{\xi}_1$ and β : $\eta_0 \longrightarrow \eta_1$. Of course, if α : $\hat{\xi}_0 \longrightarrow \hat{\xi}_1$ and β : $\eta_0 \longrightarrow \eta_1$ are difference isomorphisms over (X, A), then $\alpha \oplus \beta$: $\hat{\xi}_0 \oplus \eta_0 \longrightarrow \hat{\xi}_1 \oplus \eta_1$ is a difference isomorphism over (X, A). Let Sg be the category of all semigroups and semigroup maps. Then

$$S_F: C \times C_0 \longrightarrow Sg$$

is a cofunctor.

238

3. The main theorem.

In this section, we assume that A be a subcomplex or subspace of a finite CW-complex X.

THEOREM 2. (Main theorem) For (X, A), $S_F(X, A)$ is a sub-semigroup of $\operatorname{Vect}_F(A)$. If X is deformable into a subspace A, then $S_F(X, A) \cong \operatorname{Vect}_F(A)$ as

A Property of Cofunctors $S_F(X.A)$

239

semigroups.

To prove this theorem we need the following lemmas.

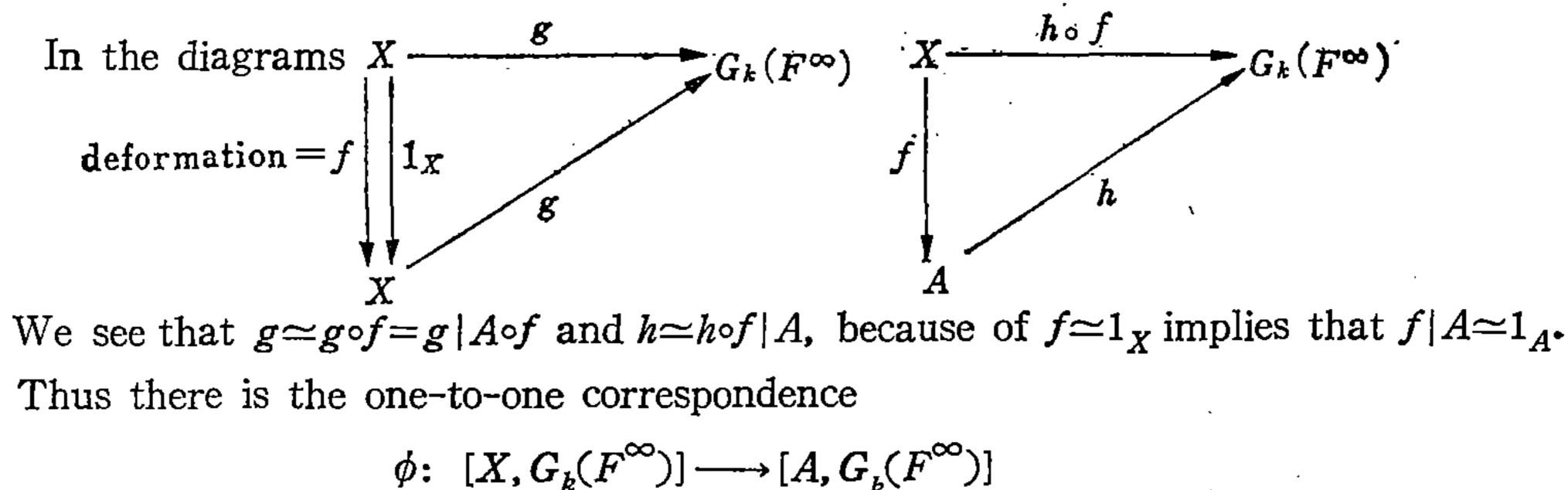
LEMMA 1. Let ξ_0 and ξ_1 be two vector bundles over X, If $u: \xi_0 | A \longrightarrow \xi_1 | A$ is a vector bundle morphism, then there exists a unique vector bundle morphism $v: \xi_0 \longrightarrow \xi_1$ such that v | A = u, where A is a subcomplex.

PROOF. Define $E(\operatorname{Hom}_F(\xi_0, \xi_1)) = \bigcup_{x \in X} \operatorname{Hom}_F((\xi_0)_{x_*}(\xi_1)_{x})$, where $(\xi_0)_{x}$ is the fibre at $x \in X$ of ξ_0 , and so on. Since each $\operatorname{Hom}_F((\xi_0)_{x_*}(\xi_1)_{x})$ for all $x \in X$ is a vector space, $\operatorname{Hom}_F(\xi_0, \xi_1) = (E(\operatorname{Hom}_F(\xi_0, \xi_1)), P, X)$ is a vector bundle over X, where $P^{-1}(x) = \operatorname{Hom}_F((\xi_0)_{x_*}, (\xi_1)_{x})$. Then we can view u as a cross section of $\operatorname{Hom}_F(\xi_0, \xi_1)$ over A, i.e., for each $x \in A$, $u(x) = u | (\xi_0)_x : (\xi_0)_x \longrightarrow (\xi_1)_x$. Since every vector space is contractible, the fibre of $\operatorname{Hom}_F(\xi_0, \xi_1)$ is also contractible. Therefore, by Theorem 1, u is extended to a unique cross section $v: X \longrightarrow \operatorname{Hom}_F(\xi_0, \xi_1)$. In this case, $v = \{v(x): (\xi_0)_x \longrightarrow (\xi_1)x \mid x \in X\}$ is a vector bundle morphism $v: \xi_0 \longrightarrow$ ξ_1 which prolongs u.

LEMMA 2. If X is deformable into A, then $\operatorname{Vect}_F(X) \cong \operatorname{Vect}_F(A)$ as semigroups.

PROOF. Since X is deformable into A, there is a continuous map $f: X \longrightarrow A$ such that $i \circ f \simeq 1_X$ (homotopic), where $i: A \longrightarrow X$ is the inclusion map ([4]). Recall that there is an one-to-one correspondence between $[B, G_k(F^{\infty})]$ and $\operatorname{Vect}_F(B)$ for

 $B \in \mathbf{Pa}$ and for all $k=0, 1, \cdots$.



defined by $\phi([g]) = [g|A]$. The inverse ϕ^{-1} of ϕ is defined by $\phi^{-1}([h]) = [h \circ f]$. Then $\phi^{-1} \circ \phi([g]) = \phi^{-1}([g|A]) = [g|A \circ f] = [g]$ and $\phi \circ \phi^{-1}([h]) = \phi([h \circ f]) = [h \circ f|A] = [h]$

Therefore we define $\tilde{\phi}$: Vect_F(X) \longrightarrow Vect_F(A) by $\tilde{\phi}(\{g^*(\gamma_k^{\infty})\}) = \{(g|A)^*(\gamma_k^{\infty})\}$. Then $\tilde{\phi}$ is a semigroup isomorphism.

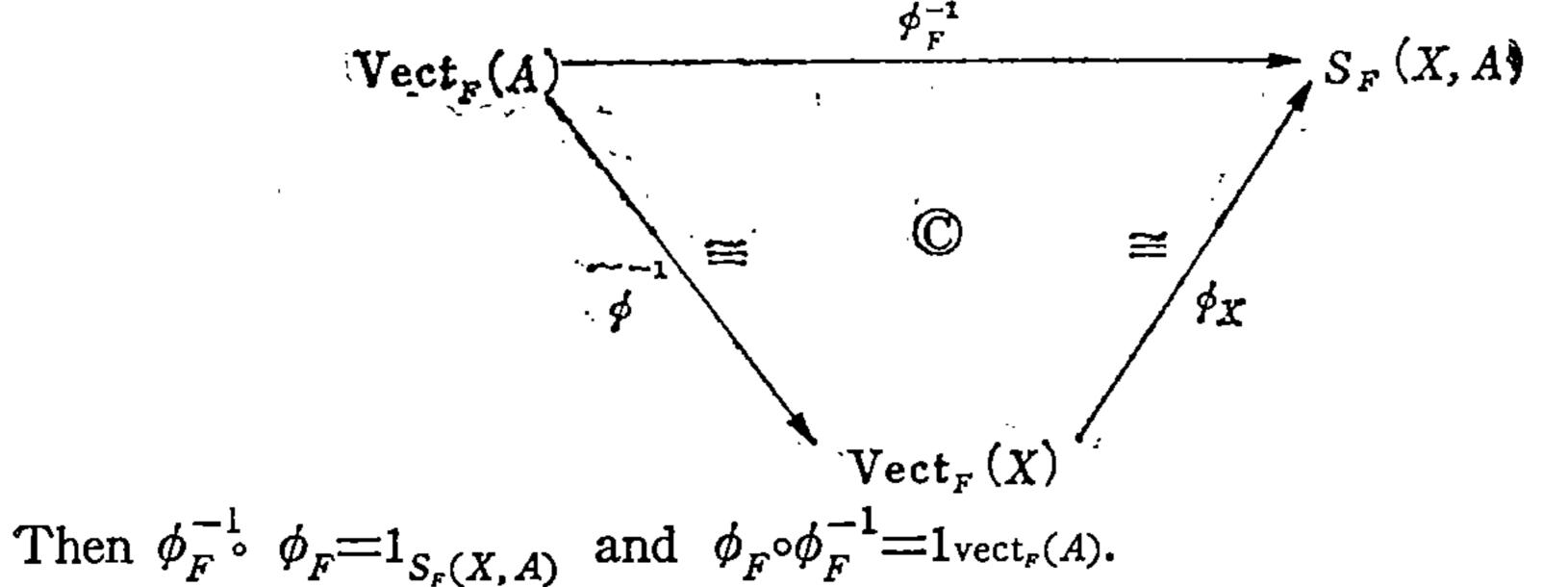
-

Kwang Ho So 240

of Theorem 2. Let ξ_0 and ξ_1 be two vector bundles over X. By Lem-PROOF ma l, if there is a vector bundle isomorphism $\hat{\xi}_0 | A \longrightarrow \hat{\xi}_1 | A$ over A then $\{\hat{\xi}_0\} = \{\hat{\xi}_1\}$ in $S_F(X, A)$. Therefore the morphism

 $\phi_F \colon S_F(X, A) \longrightarrow \operatorname{Vect}_F(A)$

defined by $\phi_F(\{\xi\}) = \{\xi | A\}$ is injective and preserves Whitney sum. (Note that the class $\{\hat{\xi}\}$ in $\phi_F(\{\xi\})$ is the difference isomorphism class containing $\hat{\xi}$ and the $\{\xi \mid A\}$ is the isomorphism class containing $\xi|A$. Thus ϕ_F is a monomorphism between semigroups, and therefore $S_{F}(X, A)$ is isomorphic to a sub-semigroup of $\operatorname{Vect}_{F}(A)$. Let us assume that X is deformable into A. Then there is a continuous map f: $X \longrightarrow A \subset X$ such that $f \simeq 1_X$. Lemma 2 says that $\xi_0 \cong \xi_1$ over X iff $\xi_0 | A \cong \xi_1$ $\xi_1|A$ over A in our situation. That is, there is a semigroup isomorphism ϕ_X : Vect_F(X) \cong S_F(X, A) defined by $\phi_X(\{\xi\}) = \{\xi\}$. Define ϕ_F^{-1} : Vect_F(A) \longrightarrow S_F(X, A) by the commutative diagram:



Let us denote the completions of $\operatorname{Vect}_{F}(A)$ and $S_{F}(X, A)$ by $K_{F}(A)$ and $KS_{F}(A)$ (X, A), respectively ([2]). Then, from Theorem 2 we easily obtain the following.

COROLLARY 1. $KS_F(X, A)$ is a subgroup of $K_F(A)$. If X is deformable into A, then $KS_{F}(X,A) \cong K_{F}(A)$ as abelian groups.

> Jeonpuck University Korea

REFERENCES

- [1] M.F. Atiyah. K-Theory, W.A. Benjamin, Inc. (1967).
- [2] Dale Husemoller. Fibre Bundles, McGraw-Hill Book Company (1966).
- [3] Keean Lee. Elementary K-Theory, Seminer Note at Muju Kuchundong, Korea (1973).
- [4] Edwin H. Spanier: Algebraic Topology, McGraw-Hill Book Company (1966).