• Title/Summary/Keyword: ${\sigma}$-derivation

Search Result 46, Processing Time 0.02 seconds

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF

SOME RESULTS ON GENERALIZED LIE IDEALS WITH DERIVATION

  • Aydin, Neset;Kaya, Kazim;Golbasi, Oznur
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.225-232
    • /
    • 2001
  • Let R be a prime ring with characteristic not two. U a (${\sigma},{\tau}$)-left Lie ideal of R and d : R$\rightarrow$R a non-zero derivation. The purpose of this paper is to invesitigate identities satisfied on prime rings. We prove the following results: (1) [d(R),a]=0$\Leftrightarrow$d([R,a])=0. (2) if $(R,a)_{{\sigma},{\tau}}$=0 then $a{\in}Z$. (3) if $(R,a)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $a{\in}Z$. (4) if $(U,a){\subset}Z$ then $a^2{\in}Z\;or\;{\sigma}(u)+{\tau}(u){\in}Z$, for all $u{\in}U$. (5) if $(U,R)_{{\sigma},{\tau}}{\subset}C_{{\sigma},{\tau}}$ then $U{\subset}Z$.

  • PDF

LIE IDEALS AND DERIVATIONS OF $\sigma$-PRIME RINGS

  • Shuliang, Huang
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Let R be a 2-torsion free $\sigma$-prime ring with an involution $\sigma$, U a nonzero square closed $\sigma$-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or $U\;{\subseteq}\;Z(R)$ if one of the following conditions holds: (1) $d(xy)\;-\;xy\;{\in}\;Z(R)$ or $d(xy)\;-\;yx\;{\in}Z(R)$ for all x, $y\;{\in}\;U$. (2) $d(x)\;{\circ}\;d(y)\;=\;0$ or $d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$ for all x, $y\;{\in}\;U$ and d commutes with $\sigma$.

Comparision of Six Sigma and PM (식스시그마와 PM의 비교)

  • Choi Sungwoon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.05a
    • /
    • pp.109-116
    • /
    • 2005
  • This paper discusses the relationship between project management and six sigma and the derivation of overall related table. This paper proposes an integrated approach by blending CMM project management and six sigma to meet business goals.

  • PDF

INNER DERIVATIONS MAPPING INTO THE RADICAL

  • Jun, Kil-Woung;Lee, Young-Whan
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.889-893
    • /
    • 1998
  • In this paper we show that $\sigma$a maps into the radical if and only if for every irreducible representation $\pi$,$\pi$(a) is scalar and obtain that every inner derivation corresponding to $\sigma$-quasi central elements in some Banach algebra maps into the radical.

On The Derivation of a Certain Noncentral t Distribution

  • Gupta, A.K.;Kabe, D.G.
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.2
    • /
    • pp.182-185
    • /
    • 1990
  • Let a p-component vector y have a p-variate normal distribution $N(b\theta, \Sigma), \Sigma$ unknown, b specified, then for testing $\theta = 0$ against general $\theta$, Khatri and Rao (1987) derive a certain t test and obtain its power function. This paper presents a direct derivation of this power function in terms of the original variates unlike Khatri and Rao (1987) who resort to the canonical transformations of the original variates and the conditional distributions.

  • PDF

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

On Commutativity of σ-Prime Γ-Rings

  • DEY, KALYAN KUMAR;PAUL, AKHIL CHANDRA;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.827-835
    • /
    • 2015
  • Let U be a ${\sigma}$-square closed Lie ideal of a 2-torsion free ${\sigma}$-prime ${\Gamma}$-ring M. Let $d{\neq}1$ be an automorphism of M such that $[u,d(u)]_{\alpha}{\in}Z(M)$ on U, $d{\sigma}={\sigma}d$ on U, and there exists $u_0$ in $Sa_{\sigma}(M)$ with $M{\Gamma}u_0{\subseteq}U$. Then, $U{\subseteq}Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to ${\Gamma}$-rings. Finally, for a non-zero derivation of a 2-torsion free ${\sigma}$-prime $\Gamma$-ring, we obtain suitable conditions under which the $\Gamma$-ring must be commutative.