• 제목/요약/키워드: ${\phi}$-prime ideal

검색결과 9건 처리시간 0.018초

A GENERALIZATION OF THE PRIME RADICAL OF IDEALS IN COMMUTATIVE RINGS

  • Harehdashti, Javad Bagheri;Moghimi, Hosein Fazaeli
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.543-552
    • /
    • 2017
  • Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

ON 𝜙-SCHREIER RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1057-1075
    • /
    • 2016
  • Let R be a ring in which Nil(R) is a divided prime ideal of R. Then, for a suitable property X of integral domains, we can define a ${\phi}$-X-ring if R/Nil(R) is an X-domain. This device was introduced by Badawi [8] to study rings with zero divisors with a homomorphic image a particular type of domain. We use it to introduce and study a number of concepts such as ${\phi}$-Schreier rings, ${\phi}$-quasi-Schreier rings, ${\phi}$-almost-rings, ${\phi}$-almost-quasi-Schreier rings, ${\phi}$-GCD rings, ${\phi}$-generalized GCD rings and ${\phi}$-almost GCD rings as rings R with Nil(R) a divided prime ideal of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain, almost domain, almost-quasi-Schreier domain, GCD domain, generalized GCD domain and almost GCD domain, respectively. We study some generalizations of these concepts, in light of generalizations of these concepts in the domain case, as well. Here a domain D is pre-Schreier if for all $x,y,z{\in}D{\backslash}0$, x | yz in D implies that x = rs where r | y and s | z. An integrally closed pre-Schreier domain was initially called a Schreier domain by Cohn in [15] where it was shown that a GCD domain is a Schreier domain.

ON φ-VON NEUMANN REGULAR RINGS

  • Zhao, Wei;Wang, Fanggui;Tang, Gaohua
    • 대한수학회지
    • /
    • 제50권1호
    • /
    • pp.219-229
    • /
    • 2013
  • Let R be a commutative ring with $1{\neq}0$ and let $\mathcal{H}$ = {R|R is a commutative ring and Nil(R) is a divided prime ideal}. If $R{\in}\mathcal{H}$, then R is called a ${\phi}$-ring. In this paper, we introduce the concepts of ${\phi}$-torsion modules, ${\phi}$-flat modules, and ${\phi}$-von Neumann regular rings.

A NOTE ON OPERATORS ON FINSLER MODULES

  • TAGHAVI, A.;JAFARZADEH, JAFARZADEH
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.533-541
    • /
    • 2006
  • let E be a Finsler modules over $C^*$-algebras. A with norm-map $\rho$ and L(E) set of all A-linear bonded operators on E. We show that the canonical homomorphism ${\phi}:L(E){\rightarrow}L(E_I)$ sending each operator T to its restriction $T|E_I$ is injective if and only if I is an essential ideal in the underlying $C^*$-algebra A. We also show that $T{\in}L(E)$ is a bounded below if and only if ${\mid}{\mid}x{\mid}{\mid}={\mid}{\mid}{\rho}{\prime}(x){\mid}{\mid}$ is complete, where ${\rho}{\prime}(x)={\rho}(Tx)$ for all $x{\in}E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

  • PDF

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

A QUESTION ABOUT MAXIMAL NON φ-CHAINED SUBRINGS

  • Atul Gaur;Rahul Kumar
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Let 𝓗0 be the set of rings R such that Nil(R) = Z(R) is a divided prime ideal of R. The concept of maximal non φ-chained subrings is a generalization of maximal non valuation subrings from domains to rings in 𝓗0. This generalization was introduced in [20] where the authors proved that if R ∈ 𝓗0 is an integrally closed ring with finite Krull dimension, then R is a maximal non φ-chained subring of T(R) if and only if R is not local and |[R, T(R)]| = dim(R) + 3. This motivates us to investigate the other natural numbers n for which R is a maximal non φ-chained subring of some overring S. The existence of such an overring S of R is shown for 3 ≤ n ≤ 6, and no such overring exists for n = 7.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

ON 𝜙-PSEUDO-KRULL RINGS

  • El Khalfi, Abdelhaq;Kim, Hwankoo;Mahdou, Najib
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1095-1106
    • /
    • 2020
  • The purpose of this paper is to introduce a new class of rings that is closely related to the class of pseudo-Krull domains. Let 𝓗 = {R | R is a commutative ring and Nil(R) is a divided prime ideal of R}. Let R ∈ 𝓗 be a ring with total quotient ring T(R) and define 𝜙 : T(R) → RNil(R) by ${\phi}({\frac{a}{b}})={\frac{a}{b}}$ for any a ∈ R and any regular element b of R. Then 𝜙 is a ring homomorphism from T(R) into RNil(R) and 𝜙 restricted to R is also a ring homomorphism from R into RNil(R) given by ${\phi}(x)={\frac{x}{1}}$ for every x ∈ R. We say that R is a 𝜙-pseudo-Krull ring if 𝜙(R) = ∩ Ri, where each Ri is a nonnil-Noetherian 𝜙-pseudo valuation overring of 𝜙(R) and for every non-nilpotent element x ∈ R, 𝜙(x) is a unit in all but finitely many Ri. We show that the theories of 𝜙-pseudo Krull rings resemble those of pseudo-Krull domains.