Bull. Korean Math. Soc. **52** (2015), No. 3, pp. 935–946 http://dx.doi.org/10.4134/BKMS.2015.52.3.935

ON ϕ -PSEUDO ALMOST VALUATION RINGS

AFSANEH ESMAEELNEZHAD AND PARVIZ SAHANDI

ABSTRACT. The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be a ϕ -ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ϕ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ϕ -ring R is said to be a ϕ -pseudo-strongly prime ideal if, whenever $x, y \in R_{\text{Nil}(R)}$ and $(xy)\phi(P) \subseteq \phi(P)$, then there exists an integer $m \ge 1$ such that either $x^m \in \phi(R)$ or $y^m \phi(P) \subseteq \phi(P)$. If each prime ideal of R is a ϕ -pseudo strongly prime ideal, then we say that R is a ϕ -pseudo-almost valuation ring (ϕ -PAVR). Among the properties of ϕ -PAVRs, we show that a quasilocal ϕ -ring R with regular maximal ideal M is a ϕ -PAVR if and only if V = (M : M) is a ϕ -almost chained ring with maximal ideal \sqrt{MV} . We also investigate the overrings of a ϕ -PAVR.

1. Introduction

Throughout R is a commutative ring with $1 \neq 0$. The nilradical of Ris denoted by Nil(R), and T(R) denotes the total quotient ring of R. We use R' to denote the integral closure of R in T(R). Also we use Z(R) to denote the set of zero divisors of R. If I is an ideal of R, then \sqrt{I} is the radical ideal of I and $(I : I) = \{x \in T(R) \mid xI \subseteq I\}$. The elements of $R \setminus Z(R)$ is called regular elements of R. An ideal of R is said to be a regular ideal if, it contains at least one regular element. Recall from [8] and [15] that a prime ideal P of R is called a *divided prime ideal* if $P \subseteq (x)$ for every $x \in R \setminus P$; thus a divided prime ideal is comparable to every ideal of R. Recently, Badawi in [6], [7], [9], [10] and [11], has studied the following class of rings: $\mathcal{H} = \{R \mid R \text{ is a commutative ring and Nil}(R)$ is a divided prime ideal of $R\}$. If $R \in \mathcal{H}$, then R is called a ϕ -ring. It is easy to see that every integral domain is a ϕ -ring. An ideal I of R is said to be a nonnil ideal if, $I \nsubseteq Nil(R)$. If I is a nonnil ideal of a ϕ -ring R, then Nil $(R) \subseteq I$. Recall from [7] that for a ring $R \in \mathcal{H}$ with total quotient ring T(R), the map $\phi : T(R) \to R_{Nil(R)}$ such that

C2015Korean Mathematical Society

935

Received June 2, 2014; Revised October 11, 2014.

²⁰¹⁰ Mathematics Subject Classification. 13A15, 13A10, 13F05.

Key words and phrases. ϕ -ring, valuation domain, pseudo-valuation ring, almost valuation ring, ϕ -PAVR, chained ring.

 $\phi(\frac{a}{b}) = \frac{a}{b}$ for $a \in R$ and $b \in R \setminus Z(R)$ is a ring homomorphism, and ϕ restricted to R is also a ring homomorphism from R into $R_{\operatorname{Nil}(R)}$ given by $\phi(x) = \frac{x}{1}$ for every $x \in R$. It is easy to see that if $R \in \mathcal{H}$, then $\phi(R) \in \mathcal{H}$, $\operatorname{Ker}(\phi) \subseteq$ $\operatorname{Nil}(R)$, $\operatorname{Nil}(\operatorname{T}(R)) = \operatorname{Nil}(R)$, $\operatorname{Nil}(R_{\operatorname{Nil}(R)}) = \phi(\operatorname{Nil}(R)) = \operatorname{Nil}(\phi(R)) = Z(\phi(R))$, $\operatorname{T}(\phi(R)) = R_{\operatorname{Nil}(R)}$. If B is an overring of R (that is a ring between R and $\operatorname{T}(R)$), then $\operatorname{T}(R) = \operatorname{T}(B)$ and $\operatorname{Nil}(R) = \operatorname{Nil}(B)$. For a subset S of a ring R we use $\operatorname{E}(S)$ to denote the subset $\{x \in \operatorname{T}(R) \mid x^n \notin S \text{ for every integer } n \ge 1\}$ of $\operatorname{T}(R)$.

Let D be an integral domain with quotient field K. Then D is said to be an *almost valuation domain* if for every nonzero $x \in K$, there exists an integer $n \ge 1$ such that either $x^n \in D$ or $x^{-n} \in D$ [4]. Also D is said to be a *pseudovaluation domain* in case, each prime ideal P of D is a *strongly prime ideal*, in the sense that $xy \in P$, $x, y \in K$ implies that either $x \in P$ or $y \in P$ [16]. It is known in [16, Theorem 1.5], that an integral domain D is a pseudo-valuation domain if and only if for every nonzero $x \in K$, either $x \in D$ or $ax^{-1} \in D$ for every nonunit $a \in R$. It is easy to see that a valuation domain is a pseudovaluation domain. Also, it is known in [17, Example 3.1], that for each integer $n \ge 1$, there is a pseudo-valuation domain with Krull dimension n which is not a valuation domain.

Recently Badawi [12] introduced a new class of integral domains, that is closely related to pseudo-valuation domain. An integral domain D is said to be a *pseudo-almost valuation domain* (PAVD), in case each prime ideal P of Dis a pseudo-strongly prime ideal, in the sense that $xyP \subseteq P, x, y \in K$ implies that either $x^n \in R$ or $y^n P \subseteq P$ for some integer $n \ge 1$. It is known in [12, Theorem 2.8], that an integral domain D is a PAVD if and only if for every nonzero $x \in K$, there is an integer $n \ge 1$ such that either $x^n \in D$ or $ax^{-n} \in D$ for every nonunit $a \in R$. Therefore an almost valuation domain is a PAVD: however Badawi in [12, Example 3.6], shows that for each $n \ge 1$ there is a PAVD with Krull dimension n which is not an almost valuation domain. A ring $R \in \mathcal{H}$ is said to be ϕ -chained ring (ϕ -CR) if for each $x \in R_{\text{Nil}(R)} \setminus \phi(R)$ we have $x^{-1} \in \phi(R)$ [10]. Also a ring $R \in \mathcal{H}$ is said to be a ϕ -pseudo-valuation ring (ϕ -PVR) if every nonnil prime ideal of R is a ϕ -strongly prime ideal of $\phi(R)$, in the sense that $xy \in \phi(P)$, $x \in R_{\text{Nil}(R)}$, $y \in R_{\text{Nil}(R)}$ implies that either $x \in \phi(P)$ or $y \in \phi(P)$ [7] (and [13]). It is known in [10, Proposition 3.3], that if $R \in \mathcal{H}$ is a quasilocal ring with the regular maximal ideal M, then R is a ϕ -PVR if and only if (M:M) is a ϕ -CR with maximal ideal M.

In this article, we introduced a new closely related class of ϕ -rings. We define a prime ideal P of R to be a ϕ -pseudo-strongly prime ideal of R if, whenever $x, y \in R_{\operatorname{Nil}(R)}$ (observe that $\operatorname{T}(\phi(R)) = R_{\operatorname{Nil}(R)}$) and $(xy)\phi(P) \subseteq \phi(P)$, then there exists an integer $m \ge 1$ such that either $x^m \in \phi(R)$ or $y^m\phi(P) \subseteq \phi(P)$. If each prime ideal of R is a ϕ -pseudo strongly prime ideal, then we say that R is a ϕ -pseudo-almost valuation ring (ϕ -PAVR). In Section 2 we investigate the properties of ϕ -PAVRs. We show in Corollary 2.8 that $R \in \mathcal{H}$ is a ϕ -PAVR if and only if for every $x \in R_{\operatorname{Nil}(R)}$ there is an integer $n \ge 1$ such that either $x^n \in \phi(R)$ or $ax^{-n} \in \phi(R)$ for every nonunit $a \in \phi(R)$. We generalized the concept of ϕ -CR to ϕ -almost chained ring in the sense that a ring $R \in \mathcal{H}$ is called a ϕ -almost chained ring (ϕ -ACR) if for each $x \in R_{\operatorname{Nil}(R)}$, there exists an integer $n \ge 1$ such that either $x^n \in \phi(R)$ or $x^{-n} \in \phi(R)$. In Theorem 2.17 we show that a quasilocal $R \in \mathcal{H}$ with the regular maximal ideal M is ϕ -PAVR if and only if V = (M : M) is a ϕ -ACR with the maximal ideal \sqrt{MV} .

In Section 3 we study the overrings of ϕ -PAVRs and prove the following equivalent conditions for a ϕ -PAVR, R with maximal ideal M, and V := (M : M).

- (1) Every overring of R is a ϕ -PAVR;
- (2) R[u] is a ϕ -PAVR for each $u \in V' \setminus R$, and every integral overring of R is a ϕ -PAVR;
- (3) R[u] is quasilocal for each $u \in V' \setminus R$, and every integral overring of R is a ϕ -PAVR;
- (4) If B is an overring of R such that $B \subseteq V'$, then B is a ϕ -PAVR;
- (5) R' = V' is a ϕ -CR and every integral overring of R is a ϕ -PAVR.

2. Main properties of ϕ -PAVRs

In this section, we introduce the ϕ -pseudo-almost valuation rings and prove some properties of these rings.

Definition 2.1. Let $R \in \mathcal{H}$. A nonnil prime ideal P of R is called a ϕ -pseudostrongly prime ideal, if for each $x, y \in T(\phi(R))$ whenever $(xy)\phi(P) \subseteq \phi(P)$, then there exists an integer $m \ge 1$ such that either $x^m \in \phi(R)$ or $y^m \phi(P) \subseteq \phi(P)$. A ring $R \in \mathcal{H}$ is said to be a ϕ -pseudo-almost valuation ring $(\phi$ -PAVR) if every nonnil prime ideal of R is a ϕ -pseudo-strongly prime ideal.

Lemma 2.2. Let P be a nonnil prime ideal of R. Then P is a ϕ -pseudostrongly prime ideal if and only if for every $x \in T(\phi(R))$ there exists an integer $n \ge 1$ such that either $x^n \in \phi(R)$ or $x^{-n}\phi(P) \subseteq \phi(P)$.

Proof. Let P be a ϕ -pseudo-strongly prime ideal of R, $x \in E(\phi(R))$, and set $x := \frac{a}{b}$ for some $a \in R$ and $b \in R \setminus Z(R)$. Note that if $a \in \operatorname{Nil}(R)$, then there exists an integer $t \ge 1$ such that $x^t = 0 \in \phi(R)$, which is a contradiction. Hence $x^{-1} = \frac{b}{a} \in R_{\operatorname{Nil}(R)}$. Since $xx^{-1}\phi(P) \subseteq \phi(P)$, using the definition, we have $x^{-n}\phi(P) \subseteq \phi(P)$ for some integer $n \ge 1$. Conversely assume that $x, y \in \operatorname{T}(\phi(R))$ such that $xy\phi(P) \subseteq \phi(P)$ and $x \in \operatorname{E}(\phi(R))$. Then by the hypothesis there is an integer $n \ge 1$ such that $x^{-n}\phi(P) \subseteq \phi(P)$. Therefore $y^n\phi(P) = x^{-n}(x^ny^n\phi(P)) \subseteq x^{-n}\phi(P) \subseteq \phi(P)$.

The following theorem is one of the main results on ϕ -pseudo valuation rings.

Theorem 2.3 ([6, Proposition 2.9] and [14, Theorem 3.1]). Let $R \in \mathcal{H}$. Then R is a ϕ -PVR if and only if $\frac{R}{\text{Nil}(R)}$ is a PVD.

In the following theorem we prove analogous result for ϕ -PAVRs.

Theorem 2.4. Let $R \in \mathcal{H}$. Then R is a ϕ -PAVR if and only if $\frac{R}{\operatorname{Nil}(R)}$ is a PAVD.

Proof. By definition it is enough to show that, if *P* is a nonnil prime ideal of *R*, then *P* is a ϕ -pseudo-strongly prime ideal of *R* if and only if $\frac{P}{\operatorname{Nil}(R)}$ is a pseudo-strongly prime ideal of $\frac{R}{\operatorname{Nil}(R)}$. So let *P* be a ϕ -pseudo-strongly prime ideal of *R*. Let $x \in E(\frac{R}{\operatorname{Nil}(R)})$ and assume that $x = \frac{a+\operatorname{Nil}(R)}{b+\operatorname{Nil}(R)}$ for some $a, b \in R \setminus \operatorname{Nil}(R)$. It is easy to see that $\frac{a}{b} \in E(\phi(R))$. Thus using Lemma 2.2, there exists an integer $n \ge 1$ such that $\frac{b^n}{a^n}\phi(P) \subseteq \phi(P)$. Hence one can easily see that $x^{-n}\frac{P}{\operatorname{Nil}(R)} \subseteq \frac{P}{\operatorname{Nil}(R)}$. Therefore $\frac{P}{\operatorname{Nil}(R)}$ is a pseudo-strongly prime ideal of $\frac{R}{\operatorname{Nil}(R)}$ by [12, Lemma 2.1]. The converse follows by similar reasoning. □

Corollary 2.5. Let R be a ϕ -PAVR. Then the prime ideals of R are linearly ordered. In particular R is quasilocal.

Proof. Using Theorem 2.4, $\frac{R}{\text{Nil}(R)}$ is a PAVD. Hence by [12, Proposition 2.2] the prime ideals of $\frac{R}{\text{Nil}(R)}$ are linearly ordered. In particular $\frac{R}{\text{Nil}(R)}$ is quasilocal. Thus the prime ideals of R are linearly ordered and R is quasilocal.

Remark 2.6. Let R be a ϕ -PAVR. Since Z(R) is a union of prime ideals, then by Corollary 2.5, Z(R) is a prime ideal of R.

Corollary 2.7. A ring R is a ϕ -PAVR if and only if some maximal ideal of R is a ϕ -pseudo-strongly prime ideal.

Proof. Use Theorem 2.4 and [12, Theorem 2.5].

Corollary 2.8. A ring $R \in \mathcal{H}$ is a ϕ -PAVR if and only if for every $x \in E(\phi(R))$

there exists an integer $n \ge 1$ such that $ax^{-n} \in \phi(R)$ for every nonunit $a \in \phi(R)$.

Proof. Use Theorem 2.4 and [12, Theorem 2.8].

Proposition 2.9. A ring $R \in \mathcal{H}$ is a ϕ -PAVR if and only if for every $a, b \in R \setminus \operatorname{Nil}(R)$ either $a^n \mid b^n$ in R for some integer $n \ge 1$, or there exists an integer $t \ge 1$ such that $b^t \mid ca^t$ in R for every nonunit c of R.

Proof. Assume that *R* is a ϕ -PAVR and $a, b \in R \setminus \operatorname{Nil}(R)$. Set $x = \frac{b}{a} \in R_{\operatorname{Nil}(R)}$. If $x^n \in \phi(R)$ for some $n \ge 1$, then $\frac{b^n}{a^n} = \frac{r}{1}$ for some $r \in R$. Hence there exists an element $u \in R \setminus \operatorname{Nil}(R)$ such that $u(b^n - a^n r) = 0$. Thus $b^n - a^n r \in \operatorname{Nil}(R)$. Since $\operatorname{Nil}(R)$ is a divided prime ideal of *R* and $a \notin \operatorname{Nil}(R)$, we have $\operatorname{Nil}(R) \subseteq (a^n)$. Therefore $b^n - a^n r = sa^n$ for some $s \in R$. Consequently $a^n \mid b^n$ in *R*. Now if $x \in \operatorname{E}(\phi(R))$, by Corollary 2.8, there exists an integer $t \ge 1$ such that $cx^{-t} \in \phi(R)$ for every nonunit $c \in \phi(R)$. Thus $\frac{ca^t}{b^t} = \frac{r'}{1}$ for some $r' \in R$. Hence there exists an element $w \in R \setminus \operatorname{Nil}(R)$ such that $w(ca^t - b^t r') = 0 \in \operatorname{Nil}(R) \subseteq (b^t)$, which implies that $b^t \mid ca^t$. The converse follows by similar reasoning. □ **Theorem 2.10** ([1, Theorem 2.7]). Let $R \in \mathcal{H}$. Then R is a ϕ -CR if and only if $\frac{R}{\operatorname{Nil}(R)}$ is a valuation domain.

Now we introduce the class of ϕ -almost chained rings which is a generalization of almost valuation domains and ϕ -CRs.

Definition 2.11. A ϕ -ring is said to be a ϕ -almost chained ring (ϕ -ACR) if, for each $x \in E(\phi(R))$, there exists an integer $n \ge 1$ such that $x^{-n} \in \phi(R)$.

It is clear that a ϕ -ring is a ϕ -ACR if and only if for each $a, b \in R \setminus Nil(R)$ there exists an integer $n \ge 1$ such that either $a^n \mid b^n$ or $b^n \mid a^n$ in R.

Lemma 2.12. Let $R \in \mathcal{H}$. Then R is a ϕ -ACR if and only if $\frac{R}{\operatorname{Nil}(R)}$ is an almost valuation domain.

Proof. Let *R* be a ϕ -ACR. Let *x* be a nonzero element of *K*, the quotient field of $\frac{R}{\operatorname{Nil}(R)}$. Then there exist $a, b \in R \setminus \operatorname{Nil}(R)$ such that $x = \frac{a + \operatorname{Nil}(R)}{b + \operatorname{Nil}(R)}$. Hence by assumption there exists an integer $n \ge 1$ such that either $a^n \mid b^n$ in *R* or $b^n \mid a^n$ in *R*. It is easy to see that either $\bar{a}^n \mid \bar{b}^n$ in $\frac{R}{\operatorname{Nil}(R)}$ or $\bar{b}^n \mid \bar{a}^n$ in $\frac{R}{\operatorname{Nil}(R)}$. That is $\frac{R}{\operatorname{Nil}(R)}$ is an almost valuation domain. Conversely suppose that $\frac{R}{\operatorname{Nil}(R)}$ is an almost valuation domain and $a, b \in R \setminus \operatorname{Nil}(R)$. Set $x = \frac{a + \operatorname{Nil}(R)}{b + \operatorname{Nil}(R)}$. If $x^n \in \frac{R}{\operatorname{Nil}(R)}$ for some integer $n \ge 1$, then $\frac{a^n + \operatorname{Nil}(R)}{b^n + \operatorname{Nil}(R)} = r + \operatorname{Nil}(R)$ for some $r \in R$. Hence $a^n - b^n r \in \operatorname{Nil}(R)$. Since $\operatorname{Nil}(R)$ is a divide prime ideal of *R* and $b \notin \operatorname{Nil}(R)$, we have $\operatorname{Nil}(R) \subseteq (b^n)$. Hence $a^n - b^n r \in (b^n)$ which implies that $b^n \mid a^n$. On the other hand if $x^{-t} \in \frac{R}{\operatorname{Nil}(R)}$ for some integer $t \ge 1$, with the similar argument we get $a^t \mid b^t$. Therefore *R* is a ϕ -ACR. \Box

The following proposition holds easily by Theorem 2.4 and Lemma 2.12 and [12, Proposition 2.12].

Proposition 2.13. Suppose that R is a ϕ -ACR. Then R is a ϕ -PAVR.

The following result is an analog of [12, Corollary 4.2].

Proposition 2.14. Let R be a ϕ -PAVR and P be a non maximal prime ideal of R. Then R_P is a ϕ -ACR.

Proof. Let R be a ϕ -PAVR. Then by Theorem 2.4, $R/\operatorname{Nil}(R)$ is a PAVD, and by [12, Corollary 4.2], $R_P/\operatorname{Nil}(R)R_P$ is an almost valuation domain. Since $\operatorname{Nil}(R_P) = \operatorname{Nil}(R)R_P$, Lemma 2.12 implies that R_P is a ϕ -ACR.

Now we are looking for examples of the rings which are ϕ -PAVR but are not ϕ -ACR. Recall that if M is a unitary R-module, then R(+)M with coordinatewise addition and multiplication $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1)$ is a commutative ring with 1 called the *idealization* of M or the *trivial extension* of R by M. Note that if N is a submodule of M, then 0(+)N is an ideal of R(+)M, and for every ideal J of R, $R(+)M/J(+)M \cong R/J$. Thus P(+)M is a prime ideal of R(+)M for every prime ideal P of R. Also note that a module M over a ring R is called *divisible* if, for all r in R which are not zero divisors, every element m of M can be *divided* by r, in the sense that there is an element m' in M such that m = rm'. This condition can be reformulated by saying that the multiplication by r defines a surjective map from M to M. Recall that Nil(R(+)M) = Nil(R)(+)M [3, Theorem 3.2(3)], and that for an integral domain D and a D-module M, every ideal of D(+)M is comparable to 0(+)Mif and only if M is divisible by [3, Corollary 3.4].

Example 2.15. Let D be a PAVD which is not an almost valuation domain (cf. [12, Example 2.20]). Assume that K is the quotient field of D. Then $D(+)K \in \mathcal{H}$. Thus using Theorem 2.4 and Lemma 2.12 it is easy to see that D(+)K is a ϕ -PAVR which is not a ϕ -ACR.

Recall that R is called *root closed* if, whenever $x \in T(R)$ and $x^n \in R$ for some integer $n \ge 1$, then $x \in R$.

Proposition 2.16. Let R be a ϕ -PAVR such that $\phi(R)$ is root closed. Then R is a ϕ -PVR.

Proof. It is easy to check that if $\phi(R)$ is root closed, then $\frac{R}{\text{Nil}(R)}$ is also root closed. Therefore the assertion is clear by [12, Theorem 2.13], Theorems 2.3 and 2.4.

It is known that a quasilocal domain D with the maximal ideal M is a pseudo-valuation domain if and only if (M : M) is a valuation domain with maximal ideal M [2, Proposition 2.5]. Also a quasilocal $R \in \mathcal{H}$ with the regular maximal ideal M is a ϕ -PVR if and only if (M : M) is a ϕ -CR with maximal ideal M and a quasilocal domain D with the maximal ideal M is a PAVD if and only if V = (M : M) is an almost valuation domain with maximal ideal \sqrt{MV} , [10, Proposition 3.3] and [12, Theorem 2.15].

Inspired by those facts, we are willing to prove the following theorem.

Theorem 2.17. A quasilocal $R \in \mathcal{H}$ with the regular maximal ideal M is a ϕ -PAVR if and only if V := (M : M) is a ϕ -ACR with the maximal ideal \sqrt{MV} .

Proof. We follow the technique of [10, Proposition 3.3]. Assume that R is a ϕ -PAVR and $0 \neq x \in T(\phi(V)) = R_{Nil(R)}$ be such that $x \in E(\phi(V))$. Set $x = \frac{a}{b}$. Note that if $a \in Nil(R)$, then $x^n = 0$ for some integer $n \ge 1$. So that $x \notin E(\phi(V))$, which is a contradiction. Hence $a, b \in R \setminus Nil(R)$. Assume that $b^n \mid a^n$ in R for some integer $n \ge 1$. Then $a^n = b^n r$ for some $r \in R$, and hence $x^n = \frac{a^n}{b^n} = \frac{r}{1} \in \phi(R) \subseteq \phi(V)$ which is absurd. Therefore by Proposition 2.9, there exists an integer $t \ge 1$ such that $a^t \mid b^t c$ in R for every $c \in M$. Let $s \in M \setminus Z(R)$. Thus $b^t s = a^t d$ for some $r' \in R$. Thus from $b^{tt'}s^{t'} = a^{tt'}d^{t'}$ we get $b^{tt'}d^{t'}r' = a^{tt'}d^{t'}$. Since $d \in R \setminus Z(R)$ we get $b^{tt'}r' = a^{tt'}$ which is a contradiction. Hence $d^{t'} \nmid s^{t'}$ for every integer $t' \ge 1$. Once again

by Proposition 2.9 we have $s^l \mid d^l m$ for some integer $l \ge 1$ and all $m \in M$. For $m \in M$, there is some $y \in R$ such that $d^l m = s^l y$. Thus $\frac{d^l}{s^l} m = y \in R$. If $\frac{d^l}{s^l} m$ is a unit element, we get $d^l m y^{-1} = s^l$, then $d^l \mid s^l$ which is a contradiction. Therefore $\frac{d^l}{s^l} m \in M$, that is $\frac{d^l}{s^l} \in (M : M) = V$. On the other hand the equality $b^{tl}s^{l} = a^{tl}d^{l}$ implies that $x^{-tl} = \frac{b^{tl}}{a^{tl}} = \frac{d^{l}}{s^{l}} \in (M : M) = V$, then $x^{-tl} = \phi(x^{-tl}) \in \phi(V)$. Thus V is a ϕ -ACR. Now let y be a nonunit element of V which is not in \sqrt{MV} . Assume that $\phi(y^n) \in \phi(R)$ for some positive integer n. Then $\phi(y^n) \in \phi(M)$, since $\phi(y)$ is a nonunit element of $\phi(R)$. Therefore $y^n \in M = MV$, which implies that $y \in \sqrt{MV}$. Hence $\phi(y) \in E(\phi(R))$. Then $\phi(y)^{-t}\phi(M) \subseteq \phi(M)$ for some positive integer t, and thus $y^{-t}M \subseteq M$. Therefore $y^{-t} \in V$. Since $y \in V$ we conclude that y is a unit element of V which is a contradiction. Hence \sqrt{MV} is the maximal ideal of V. Conversely suppose that V = (M : M) is a ϕ -ACR with the maximal ideal \sqrt{MV} . Assume that $a, b \in R \setminus Nil(R)$ be such that $b^n \nmid a^n$ in R for every integer $n \ge 1$. Thus $x = \frac{a}{b} \notin \phi(\sqrt{MV})$. If $x^n \in \phi(V)$ for some integer $n \ge 1$, then x^n is a unit of $\phi(V)$ and $x^{-n}\phi(M) \subseteq \phi(M)$. Thus $\frac{b^n}{a^n}\frac{m}{1} \in \phi(M) \subseteq \phi(R)$ for every $m \in M$. So that $a^n \mid b^n m$ in R for every nonunit $m \in R$. On the other hand if $x \in E(\phi(V))$, then $x^{-t} \in \phi(V)$ for some integer $t \ge 1$, since V is a ϕ -ACR. Thus $x^{-t}\phi(M) \subseteq \phi(M)$, i.e., $\frac{b^t}{a^t} \frac{m}{1} \in \phi(M)$ for every $m \in M$, that is $a^t \mid b^t m$ in R for every nonunit $m \in R$. Hence by Proposition 2.9, R is a ϕ -PAVR. \Box

Now we are looking to find a quasilocal ring R with maximal ideal N such that R is a ϕ -PAVR which is not a ϕ -ACR and (N : N) is a ϕ -ACR which is not a ϕ -CR.

Example 2.18. Let D be a PAVD with maximal ideal M such that D is not an almost valuation domain and V = (M : M) is an almost valuation domain that is not a valuation domain (cf. [12, Example 3.7]). Consider R = D(+)K. Then N = M(+)K is the maximal ideal of R. Set $\overline{V} = (N : N)$. It is easy to see that $\overline{V} = V(+)K$. Note that $\operatorname{Nil}(R) = \operatorname{Nil}(\overline{V}) = 0(+)K$. Therefore using the isomorphisms $D(+)K/0(+)K \cong D$ and $V(+)K/0(+)K \cong V$, Theorem 2.4, and Lemma 2.12, one can see that R is a ϕ -PAVR which is not a ϕ -ACR and $\overline{V} = (N : N)$ is a ϕ -ACR which is not a ϕ -CR.

Recall that an overring S of R is said to be a root extension, if for every $x \in S$, there is an integer $n \ge 1$ such that $x^n \in R$.

Theorem 2.19. Let R be a quasilocal ring with the maximal ideal M. Suppose that V is an overring of R which is a ϕ -ACR, such that M is an ideal of V and \sqrt{M} (in V) is the maximal ideal of V. Then R is a ϕ -ACR if and only if V is a root extension of R.

Proof. First of all note that V is a root extension of R if and only if $\phi(V)$ is a root extension of $\phi(R)$. If $\phi(V) = \phi(R)$ there is nothing to prove. Hence assume that $\phi(R) \subsetneq \phi(V)$ and R is a ϕ -ACR. Let $x \in \phi(V)$. If $x \in \phi(\sqrt{M})$ (in V), then $x^k \in \phi(M) \subseteq \phi(R)$ for some integer $k \ge 1$. On the other hand if $x \notin \phi(\sqrt{M})$ (in V), then x is an unit of $\phi(V)$. If $x^{-1} \in \mathcal{E}(\phi(R))$, then $x^n \in \phi(R)$ for some integer $n \ge 1$, since R is a ϕ -ACR. Now assume that $x^{-t} \in \phi(R)$ for some integer $t \ge 1$. If x^{-t} is a nonunit of $\phi(R)$ we get $x^{-t} \in \phi(M)$. So that $x^{-1} \in \phi(\sqrt{M})$ (in V) which is a contradiction, since x^{-1} is a unit element of $\phi(V)$. Thus x^{-t} is a unit element of $\phi(R)$ and hence $x^t \in \phi(R)$. Hence V is a root extension of R. Conversely assume that V is a root extension of R. Then $\phi(V)$ is a root extension of $\phi(R)$. Then $\mathcal{E}(\phi(R)) = \mathcal{E}(\phi(V))$. Let $x \in \mathcal{E}(\phi(R))$. Since V is a ϕ -ACR we get $x^{-n} \in \phi(V)$ for some integer $n \ge 1$ and since $\phi(V)$ is a root extension of $\phi(R)$ we have $x^{-nt} \in \phi(R)$ for some integer $t \ge 1$. Hence R is a ϕ -ACR.

We conclude this section by showing that every $\phi\text{-}\text{PAVR}$ is a pullback of a $\phi\text{-}\text{ACR}.$

Theorem 2.20. Let V be a ϕ -ACR with nonzero maximal ideal N and let M be an ideal of V such that $\sqrt{M} = N$, F = V/M, $\alpha : V \to F$ the canonical epimorphism, H be a field contained in F, and $R = \alpha^{-1}(H)$. Then the pullback $R = V \times_F H$ is a ϕ -PAVR with maximal ideal M. In particular, if H is properly contained in F and V is not a root extension of R, then R is a ϕ -PAVR which is not a ϕ -ACR.

Proof. In view of the hypothesis we are deal with the following commutative diagram:

By construction it is clear that M is the maximal ideal of R, R is a ϕ -ring and $\operatorname{Nil}(R) = \operatorname{Nil}(V)$. Therefore an obvious result of the above diagram is the following diagram:

$$\begin{array}{ccc} R/\operatorname{Nil}(R) & \longrightarrow & H \\ & & & & & \\ & & & & & \\ V/\operatorname{Nil}(V) & \xrightarrow{\bar{\alpha}} & \gg & F \end{array}$$

where $\bar{\alpha}(v + \operatorname{Nil}(V)) = \alpha(v)$ for every $v \in V$. Since V is a ϕ -ACR, by Lemma 2.12 V/Nil(V) is an almost valuation domain, and $R/\operatorname{Nil}(R)$ is the pullback, $V/\operatorname{Nil}(V) \times_F H$. Therefore [12, Theorem 2.19] implies that $R/\operatorname{Nil}(R)$ is a PAVD. Hence by Theorem 2.4 R is a ϕ -PAVR. The proof of the in particular case is obvious by Theorem 2.19.

3. Overrings

The purpose of this section is to characterize when each overring of a $\phi\text{-ring}$ is a $\phi\text{-PAVR}.$

942

Lemma 3.1. Let R be a ϕ -PAVR and let P be a prime ideal of R. Then for each $x \in E(R)$, there exists an integer $m \ge 1$ such that $x^{-m}P \subseteq P$.

Proof. Let $x = \frac{a}{b} \in E(R)$ for some $a \in R$ and $b \in R \setminus Z(R)$. Then $b^n \nmid a^n$ in R for every positive integer n. Note that Z(R) is a ϕ -pseudo-strongly prime by Remark 2.6. Since $x = \phi(x) \in E(\phi(R))$, by Lemma 2.2, There exists an integer $t \ge 1$ such that $x^{-t}\phi(Z(R)) \subseteq \phi(Z(R))$. Now if $a \in Z(R)$, then $(b^t/a^t)(a^t/1) = b^t/1 \in \phi(Z(R))$, which is a contradiction. Thus $a \notin Z(R)$, and $x^{-1} = \frac{b}{a} \in T(R)$. Let P be a prime ideal of R. Thus from $\phi(x)\phi(x^{-1})\phi(P) \subseteq \phi(P)$ we get $\phi(x)^n \in \phi(R)$ for some integer $n \ge 1$ or there exists an integer $m \ge 1$ such that $\phi(x)^{-m}\phi(P) \subseteq \phi(P)$. If $\phi(x)^n \in \phi(R)$ for some integer $n \ge 1$, then $\frac{a^n}{b^n} = \frac{s}{1}$ for some $s \in R$. Thus $a^n - sb^n \in Nil(R) \subset (b^n)$, since Nil(R) is a divided prime ideal of R and $b \notin Nil(R)$. Therefore $b^n \mid a^n$ in R; hence $x^n \in R$, which is a contradiction. Thus there exists an integer $m \ge 1$ such that $\phi(x)^{-m}\phi(P) \subseteq \phi(P)$. Now let $p \in P$. Then $\phi(x)^{-m}\phi(p) \in \phi(P)$. Thus $x^{-m}p - q \in Nil(R) \subseteq P$ for some $q \in P$. Therefore $x^{-m}p \in P$. □

Proposition 3.2. Let R be a ϕ -PAVR with the maximal ideal M and $z \in E(R)$ be integral over R. Then there is a monic polynomial $f(x) \in R[x]$ such that f(z) = 0 and f(0) is a unit in R.

Proof. By Lemma 3.1 there exists an integer $n \ge 1$ such that $z^{-n}M \subseteq M$. Let $f(x) \in R[x]$ be a minimal monic polynomial such that $f(z^n) = 0$. Set $a_0 = f(0)$. We claim that a_0 is unit. Otherwise $a_0 \in M$, and hence $z^{-n}a_0 = m \in M$ is a nonunit element of R. Thus $a_0 = mz^n$. Hence we can replace the constant term a_0 in f(x) with mx to construct a monic polynomial g(x). Thus if we factor x from g(x), we get a monic polynomial h(x) of less degree than f(x) such that $h(z^n) = 0$, a contradiction.

By [6, Proposition 3.3], it is well known that, the integral closure of a ϕ -PVR is a ϕ -PVR. In the following proposition we show the similar result for ϕ -PAVRs.

Proposition 3.3. Let R be a ϕ -PAVR with the maximal ideal M and let B be an overring of R such that $B \subseteq R'$. Then B is quasilocal with maximal ideal \sqrt{MB} . Furthermore R' is a ϕ -PAVR with the maximal ideal $\sqrt{MR'}$.

Proof. First we show that B is quasilocal with the maximal ideal \sqrt{MB} . Let $z \in B$. If $z \in E(R)$, then by Proposition 3.2 there exists a monic polynomial $f(x) = x^t + a_{t-1}x^{t-1} + \cdots + a_1x + a_0$ such that f(z) = 0 and a_0 is a unit element of R. Hence $-(a_0^{-1}z^t + a_0^{-1}a_{t-1}z^{t-1} + \cdots + a_0^{-1}a_1z) = 1$. Therefore $z(-a_0^{-1}z^{t-1} - a_0^{-1}a_{t-1}z^{t-2} - \cdots - a_0^{-1}a_1) = 1$. That is z is unit in B. Now assume that there exists an integer $n \ge 1$ such that $z^n \in R$. If z is nonunit in B, then z^n is nonunit in B. Hence z^n is nonunit in R. Thus $z^n \in M$, and hence $z \in \sqrt{MB}$. On the other hand using [5, Theorem 5.10], we see that \sqrt{MB} is a proper ideal of B. Therefore \sqrt{MB} is the maximal ideal of B. To complete the proof we have to show that $\sqrt{MR'}$ is a ϕ -pseudo-strongly

prime ideal of R'. Let $x \in E(\phi(R'))$ and $a \in \sqrt{MR'}$. Then there is an integer $t \ge 1$ such that $a^t \in MR'$. Hence there exist $m_1, \ldots, m_s \in M$ and $r_1, \ldots, r_s \in R'$ such that $a^t = \sum_{i=1}^{i=s} m_i r_i$. Note that $x \in E(\phi(R))$, and M is a ϕ -pseudo-strongly prime ideal of R. Thus there is an integer $n \ge 1$ such that $x^{-n}\phi(M) \subseteq \phi(M)$ by Lemma 2.2. Hence $x^{-nt}\phi(M) \subseteq \phi(M)$. Therefore $x^{-nt}\frac{a^t}{1} = x^{-nt}\frac{\sum_{i=1}^{i=s}m_i r_i}{1} = \sum_{i=1}^{i=s}x^{-nt}\frac{m_i r_i}{1} \in \phi(MR')$. Since $\phi(R')$ is root closed $x^{-n}\frac{a}{1} \in \phi(R')$, so that $x^{-n}\frac{a}{1} \in \sqrt{\phi(MR')}$. Now as $MR' \subseteq \sqrt{MR'}$, we have $\phi(MR') \subseteq \phi(\sqrt{MR'})$, hence $\sqrt{\phi(MR')} \subseteq \sqrt{\phi(\sqrt{MR'})} = \phi(\sqrt{MR'})$, since $\phi(\sqrt{MR'})$ is the maximal ideal of $\phi(R')$. Therefore $x^{-n}\frac{a}{1} \in \sqrt{\phi(MR')} \subseteq \phi(\sqrt{MR'})$. Thus $x^{-n}\phi(\sqrt{MR'}) \subseteq \phi(\sqrt{MR'})$ and R' is a ϕ -PAVR by Corollary 2.7.

By using Propositions 2.16 and 3.3 we get the following result.

Corollary 3.4. If R is a ϕ -PAVR, then R' is a ϕ -PVR.

Proposition 3.5. Let R be a ϕ -PAVR with the maximal ideal M and $u \in V' \setminus R$, where V := (M : M). Then $R[u] \subseteq R'$ if and only if R[u] is quasilocal.

Proof. Let $u \in V' \backslash R$. If $R[u] \subseteq R'$, then R[u] is quasilocal by Proposition 3.3. Conversely assume that R[u] is quasilocal. If u is a nonunit element of R[u], then 1 + u is a unit element of R[u], since R[u] is quasilocal. Thus 1 + u is a unit element of R[u + 1]. Thus $(1 + u)^{-1} \in R[u + 1]$. Hence $(1 + u)^{-1} \in R'$ by [18, Theorem 15]. On the other hand by Proposition 3.3, R' is a ϕ -PAVR with maximal ideal $\sqrt{MR'}$. We claim that $(1 + u)^{-1} \in R' \setminus \sqrt{MR'}$. Indeed by Theorem 2.17, V is a ϕ -PAVR with the maximal ideal \sqrt{MV} . Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus by Proposition 3.3, V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. But $1 + u \in V'$, which implies that $1 \in \sqrt{MV'}$, which is a contradiction. Hence $(1+u)^{-1} \in R' \setminus \sqrt{MR'}$. Thus $1 + u \in R'$, whence $u = u + 1 - 1 \in R'$. Now if u is a unit element of R[u], then $u^{-1} \in R[u]$. Hence again by [18, Theorem 15], $u^{-1} \in R'$. As above V' is a ϕ -PAVR with the maximal ideal $\sqrt{MV'}$. Thus $u^{-1} \notin \sqrt{MV'}$, so $u^{-1} \in R' \setminus \sqrt{MR'}$. Hence $u \in R'$. Therefore $R[u] \subseteq R'$. □

Proposition 3.6. Let R be a ϕ -PAVR with the maximal ideal M. If B is an overring of R such that B does not contain an element of the form $\frac{1}{s}$ for some nonzero divisor $s \in M$, then $B \subseteq V'$, where V := (M : M).

Proof. Let $x \in B$. If $x^{-n} \in R$ for some integer $n \ge 1$, then x^n is a unit element of B. Hence x^{-n} must be a nonzero divisor of R. So that by the assumption $x^n \notin B$, which is a contradiction. Thus assume that $x^{-1} \in E(R)$. Hence by Lemma 3.1, there exists an integer $t \ge 1$ such that $x^t M \subseteq M$. Therefore $x^t \in V$ and hence $x \in V'$.

Proposition 3.7. Let R be a ϕ -PAVR with the maximal ideal M such that every integral overring of R is a ϕ -PAVR. Then every overring of R is a ϕ -PAVR if and only if R[u] is quasilocal for each $u \in V' \setminus R$, where V := (M : M).

Proof. Suppose that R[u] is quasilocal for each $u \in V' \setminus R$. Let *B* be an overring of *R*. Assume that *B* contains an element of the form $\frac{1}{s}$ for some nonzero divisor $s \in M$ and $x \in E(\phi(B)) \subseteq E(\phi(R))$. So there exists an integer $n \ge 1$ such that $x^{-n}\phi(a) \in \phi(M)$ for each $a \in M$. In particular $x^{-n}\frac{s}{1} = \frac{m}{1}$ for some $m \in M$. Thus $x^{-n} = \frac{m}{s} = \phi(m)\phi(\frac{1}{s}) \in \phi(B)$. Hence *B* is a ϕ -ACR. Then *B* is a ϕ -PAVR by Proposition 2.13. Now assume that *B* does not contains an element of the form $\frac{1}{s}$ for some $s \in M$. Hence $B \subseteq V'$ by Proposition 3.6. Let $u \in B \setminus R$. Then R[u] is quasilocal by hypothesis and so by Proposition 3.5 we get $u \in R'$. Thus $B \subseteq R'$. Therefore by assumption, *B* is a ϕ -PAVR. □

Corollary 3.8. Let R be a ϕ -PAVR. Then every overring of R is a ϕ -PAVR if and only if R' = V', and every integral overring of R is a ϕ -PAVR, where V := (M : M).

Proof. Assume that every overring of R is a ϕ -PAVR, then R[u] is quasilocal for every $u \in V' \setminus R$. Hence by Proposition 3.5, $u \in R'$. Thus $V' \subseteq R'$. Conversely assume that V' = R' and every integral overring of R is a ϕ -PAVR. By Proposition 3.7, it is enough to show that R[u] is quasilocal for every $u \in R' \setminus R$, and this holds by Proposition 3.3.

Combining Propositions 3.5, 3.6, and 3.7 and Corollary 3.8, we get the following result that is a generalization of [6, Corollary 3.17] and [12, Corollary 4.12].

Corollary 3.9. Let R be a ϕ -PAVR with maximal ideal M and V := (M : M). Then the following statement are equivalent:

- (1) Every overring of R is a ϕ -PAVR;
- (2) R[u] is a ϕ -PAVR for each $u \in V' \setminus R$, and every integral overring of R is a ϕ -PAVR;
- (3) R[u] is quasilocal for each $u \in V' \setminus R$, and every integral overring of R is a ϕ -PAVR;
- (4) If B is an overring of R such that $B \subseteq V'$, then B is a ϕ -PAVR;
- (5) R' = V' is ϕ -CR and every integral overring of R is a ϕ -PAVR.

References

- D. F. Anderson and A. Badawi, On *\phi-Pr\u00fcfer rings and \phi-B\u00e9zout rings*, Houston J. Math. **30** (2004), no. 2, 331–343.
- [2] D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. J. Math. 32 (1980), no. 2, 362–384.
- [3] D. F. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1 (2009), no. 1, 3–56.
- [4] D. F. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra 142 (1991), no. 2, 285–309.

- [5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addition-Wesley Publishing Company, 1969.
- [6] A. Badawi, On divided rings and φ-pseudo-valuation rings, Commutative ring theory (Fés, 1995), 57–67, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
- [7] _____, On φ-pseudo-valuation rings, in Advances in Commutative Ring Theory, (Fez, Morocco 1997), 101–110, Lecture Notes Pure Appl. Math. 205, Basel, 1999.
- [8] _____, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465–1474.
- [9] _____, On φ-pseudo-valuation rings II, Houston J. Math. **26** (2000), no. 3, 473–480.
- [10] _____, On ϕ -chained rings and ϕ -pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725–736.
- [11] _____, On Nonnil-Noetherian rings, Comm. Algebra **31** (2003), no. 4, 1669–1677.
- [12] _____, On pseudo almost valuation domains, Comm. Algebra 35 (2007), no. 4, 1167– 1181.
- [13] A. Badawi, D. F. Anderson, and D. E. Dobbs, *Pseudo-valuation rings*, Lecture Notes Pure Appl. Math. 185, 57–67, Marcel Dekker, New York/Basel, 1997.
- [14] G. W. Chang, Generalizations of pseudo-valuation rings, Commutative rings, 15–24, Nova Sci. Publ., Hauppauge, NY, 2002.
- [15] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363.
- [16] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137–147.
- [17] _____, Pseudo-valuation domains II, Houston J. Math. 4 (1978), no. 2, 199–207.
- [18] I. Kaplansky, Commutative Rings, Revised Edition, Univ. Chicago Press, Chicago, 1974.

AFSANEH ESMAEELNEZHAD FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER KHARAZMI UNIVERSITY TEHRAN, IRAN *E-mail address*: esmaeilnejad@gmail.com

PARVIZ SAHANDI DEPARTMENT OF MATHEMATICS UNIVERSITY OF TABRIZ TABRIZ, IRAN *E-mail address*: sahandi@ipm.ir, sahandi@tabrizu.ac.ir

946