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ON ¢-PSEUDO ALMOST VALUATION RINGS

AFSANEH ESMAEELNEZHAD AND PARVIZ SAHANDI

ABSTRACT. The purpose of this paper is to introduce a new class of rings
that is closely related to the classes of pseudo valuation rings (PVRs)
and pseudo-almost valuation domains (PAVDs). A commutative ring R
is said to be a ¢-ring if its nilradical Nil(R) is both prime and comparable
with each principal ideal. The name is derived from the natural map ¢
from the total quotient ring T(R) to R localized at Nil(R). A prime ideal
P of a ¢-ring R is said to be a ¢-pseudo-strongly prime ideal if, whenever
z,y € Rnir) and (zy)¢(P) C ¢(P), then there exists an integer m > 1
such that either 2™ € ¢(R) or y™¢p(P) C ¢(P). If each prime ideal of R is
a ¢-pseudo strongly prime ideal, then we say that R is a ¢-pseudo-almost
valuation ring (¢-PAVR). Among the properties of ¢»-PAVRs, we show
that a quasilocal ¢-ring R with regular maximal ideal M is a ¢-PAVR if
and only if V = (M : M) is a ¢-almost chained ring with maximal ideal
VMV. We also investigate the overrings of a ¢-PAVR.

1. Introduction

Throughout R is a commutative ring with 1 # 0. The nilradical of R
is denoted by Nil(R), and T(R) denotes the total quotient ring of R. We
use R’ to denote the integral closure of R in T(R). Also we use Z(R) to
denote the set of zero divisors of R. If I is an ideal of R, then /T is the
radical ideal of T and (I : I) = {x € T(R) | I C I}. The elements of
R\ Z(R) is called regular elements of R. An ideal of R is said to be a regular
ideal if, it contains at least one regular element. Recall from [8] and [15]
that a prime ideal P of R is called a divided prime ideal if P C (x) for every
x € R\ P; thus a divided prime ideal is comparable to every ideal of R. Recently,
Badawi in [6], [7], [9], [10] and [11], has studied the following class of rings:
H = {R | Ris a commutative ring and Nil(R) is a divided prime ideal of R}.
If R € H, then R is called a ¢-ring. It is easy to see that every integral domain
is a ¢-ring. An ideal I of R is said to be a nonnil ideal if, I ¢ Nil(R). If I is
a nonnil ideal of a ¢-ring R, then Nil(R) C I. Recall from [7] that for a ring
R € H with total quotient ring T(R), the map ¢ : T(R) — Ryi(r) such that
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¢(3) = ¢ fora € Rand b € R\ Z(R) is a ring homomorphism, and ¢ restricted
to R is also a ring homomorphism from R into Ryir) given by ¢(z) =
for every x € R. It is easy to see that if R € H, then ¢(R) € H, Ker(¢)
Nil(R), Nil(T(R)) = Nil(R), Nil(Rxu(ry) = 6(Nil(R)) = Nil((R)) = Z((R)),
T(¢(R)) = Ruir)- If B is an overring of R (that is a ring between R and
T(R)), then T(R) = T(B) and Nil(R) = Nil(B). For a subset S of a ring R we
use E(5) to denote the subset {z € T(R) | 2™ ¢ S for every integer n > 1} of
T(R).

Let D be an integral domain with quotient field K. Then D is said to be
an almost valuation domain if for every nonzero x € K, there exists an integer
n > 1 such that either 2™ € D or =™ € D [4]. Also D is said to be a pseudo-
valuation domain in case, each prime ideal P of D is a strongly prime ideal, in
the sense that xy € P, x,y € K implies that either x € P or y € P [16]. Tt is
known in [16, Theorem 1.5], that an integral domain D is a pseudo valuation
domain if and only if for every nonzero z € K, either x € D or ax~! € D for
every nonunit a € R. It is easy to see that a valuation domain is a pseudo-
valuation domain. Also, it is known in [17, Example 3.1], that for each integer
n > 1, there is a pseudo-valuation domain with Krull dimension n which is not
a valuation domain.

Recently Badawi [12] introduced a new class of integral domains, that is
closely related to pseudo-valuation domain. An integral domain D is said to
be a pseudo-almost valuation domain (PAVD), in case each prime ideal P of D
is a pseudo-strongly prime ideal, in the sense that zyP C P, x,y € K implies
that either 2™ € R or y"P C P for some integer n > 1. It is known in [12,
Theorem 2.8], that an integral domain D is a PAVD if and ouly if for every
nonzero € K, there is an integer n > 1 such that either 2™ € D or axz™ € D
for every nonunit a € R. Therefore an almost valuation domain is a PAVD;
however Badawi in [12, Example 3.6], shows that for each n > 1 there is a
PAVD with Krull dimension n which is not an almost valuation domain. A
ring R € H is said to be ¢-chained ring (¢-CR) if for each x € Ryir)\¢(R)
we have 27! € ¢(R) [10]. Also a ring R € H is said to be a ¢-pseudo-valuation
ring (¢-PVR) if every nonnil prime ideal of R is a ¢-strongly prime ideal of
#(R), in the sense that 2y € ¢(P), x € Ryi(r), ¥ € Rni(r) implies that either
x € ¢(P) ory € ¢(P) [7] (and [13]). It is known in [10, Proposition 3.3], that
if R € H is a quasilocal ring with the regular maximal ideal M, then R is a
¢-PVR if and only if (M : M) is a ¢-CR with maximal ideal M.

In this article, we introduced a new closely related class of ¢-rings. We define
a prime ideal P of R to be a ¢-pseudo-strongly prime ideal of R if, whenever
z,y € Ryi(r) (observe that T(¢(R)) = Ryir)) and (zy)p(P) € ¢(P), then
there exists an integer m > 1 such that either 2™ € ¢(R) or y"™¢(P) C ¢(P).
If each prime ideal of R is a ¢-pseudo strongly prime ideal, then we say that
R is a ¢-pseudo-almost valuation ring (¢-PAVR). In Section 2 we investigate
the properties of »-PAVRs. We show in Corollary 2.8 that R € H is a ¢-PAVR
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if and only if for every z € Ryj(r) there is an integer n > 1 such that either
z" € ¢(R) or ax™"™ € ¢(R) for every nonunit a € ¢(R). We generalized the
concept of ¢-CR to ¢-almost chained ring in the sense that a ring R € H is
called a ¢-almost chained ring (¢-ACR) if for each = € Ryji(g), there exists an
integer n > 1 such that either 2" € ¢(R) or =™ € ¢(R). In Theorem 2.17 we
show that a quasilocal R € H with the regular maximal ideal M is ¢»-PAVR if
and only if V = (M : M) is a ¢-ACR with the maximal ideal v MV.
In Section 3 we study the overrings of ¢-PAVRs and prove the following
equivalent conditions for a ¢-PAVR, R with maximal ideal M, and V := (M :
(1) Every overring of R is a ¢-PAVR;
(2) Ru] is a »-PAVR for each u € V'\R, and every integral overring of R
is a ¢-PAVR;
(3) RJu] is quasilocal for each u € V'\ R, and every integral overring of R
is a »-PAVR,;
(4) If B is an overring of R such that B C V', then B is a ¢-PAVR;
(5) R’ =V’ is a ¢-CR and every integral overring of R is a ¢-PAVR.

2. Main properties of »-PAVRs

In this section, we introduce the ¢-pseudo-almost valuation rings and prove
some properties of these rings.

Definition 2.1. Let R € H. A nonnil prime ideal P of R is called a ¢-pseudo-
strongly prime ideal, if for each x,y € T(#(R)) whenever (zy)p(P) C ¢(P),
then there exists an integer m > 1 such that either 2™ € ¢(R) or y™¢(P) C
¢(P). A ring R € H is said to be a ¢-pseudo-almost valuation ring (¢-PAVR)
if every nonnil prime ideal of R is a ¢-pseudo-strongly prime ideal.

Lemma 2.2. Let P be a nonnil prime ideal of R. Then P is a ¢-pseudo-
strongly prime ideal if and only if for every x € T(P(R)) there exists an integer
n =1 such that either " € ¢(R) or x~"¢(P) C ¢(P).

Proof. Let P be a ¢-pseudo-strongly prime ideal of R, x € E(¢(R)), and set
x:= ¢ for some a € R and b € R\ Z(R). Note that if a € Nil(R), then there
exists an integer ¢ > 1 such that 2 = 0 € ¢(R), which is a contradiction.
Hence 27! = 2 € Ryyp). Since zz71¢(P) C ¢(P), using the definition,
we have z7"¢(P) C ¢(P) for some integer n > 1. Conversely assume that
z,y € T(¢(R)) such that zyd(P) C ¢(P) and = € E(¢(R)). Then by the
hypothesis there is an integer n > 1 such that 2 "¢(P) C ¢(P). Therefore

y"o(P) =2z " (z"y"¢(P)) € z7"¢(P) C ¢(P). O
The following theorem is one of the main results on ¢-pseudo valuation rings.
Theorem 2.3 ([6, Proposition 2.9] and [14, Theorem 3.1]). Let R € H. Then

R is a -PVR if and only if #R) is a PVD.
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In the following theorem we prove analogous result for ¢-PAVRs.

Theorem 2.4. Let R € H. Then R is a ¢p-PAVR if and only if ﬁ(m s a
PAVD.

Proof. By definition it is enough to show that, if P is a nonnil prime ideal
of R, then P is a ¢-pseudo-strongly prime ideal of R if and only if #ER)

is a pseudo-strongly prime ideal of %. So let P be a ¢-pseudo-strongly

prime ideal of R. Let 2 € E(x l(R)) and assume that z = ZIEIIIER; for some

a,b € R\Nil(R). It is easy to see that & b € E(¢(R)). Thus using Lemma 2.2,
there exists an integer n > 1 such that o qb( ) C ¢(P). Hence one can easily
see that T "leZR) - Nl](R) Therefore W
of by [12, Lemma 2.1]. The converse follows by similar reasoning. O

is a pseudo-strongly prime ideal

Ni I(R)

Corollary 2.5. Let R be a ¢p-PAVR. Then the prime ideals of R are linearly
ordered. In particular R is quasilocal.

Proof. Using T heorem 2.4, W() is a PAVD. Hence by [12, Proposition 2.2]

the prime ideals of N1l( 7y are linearly ordered. In particular Nﬂ}? o) is quasilocal.
Thus the prime ideals of R are linearly ordered and R is quasilocal. (I

Remark 2.6. Let R be a ¢-PAVR. Since Z(R) is a union of prime ideals, then
by Corollary 2.5, Z(R) is a prime ideal of R.

Corollary 2.7. A ring R is a ¢-PAVR if and only if some mazximal ideal of
R is a ¢-pseudo-strongly prime ideal.

Proof. Use Theorem 2.4 and [12, Theorem 2.5]. O
Corollary 2.8. A ring R € H is a 9-PAVR if and only if for every x € E(¢(R))
).

there exists an integer n > 1 such that ax™™ € ¢(R) for every nonunita € ¢(R
Proof. Use Theorem 2.4 and [12, Theorem 2.8]. O

Proposition 2.9. A ring R € H is a ¢p-PAVR if and only if for every a,b €
R\ Nil(R) either a™ | b™ in R for some integer n > 1, or there exists an integer
t > 1 such that b | ca® in R for every nonunit ¢ of R.

Proof. Assume that R is a qﬁ-PAVR and a,b € R\ Nil(R). Set z = 2 6 Ryii(r)-

If 2" € ¢(R) for some n > 1, then 2= = £ for some r € R. Hence there exists an
element v € R\ Nil(R) such that u(b"fanr) = 0. Thus b"—a"r € Nil(R). Since
Nil(R) is a divided prime ideal of R and a ¢ Nil(R), we have Nil(R) C (a™).
Therefore b™ — a™r = sa™ for some s € R. Consequently a™ | ™ in R. Now if
x € E(¢(R)), by Corollary 2.8, there exists an integer ¢ > 1 such that cx=* €
¢(R) for every nonunit ¢ € ¢(R). Thus ‘“t = TT/ for some ' € R. Hence there
exists an element w € R\ Nil(R) such that w(ca® — btr") = 0 € Nil(R) C (b?),
which implies that b | ca’. The converse follows by similar reasoning. (I
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Theorem 2.10 ([1, Theorem 2.7]). Let R € H. Then R is a ¢-CR if and only
if %(R) 18 a valuation domain.

Now we introduce the class of ¢-almost chained rings which is a generaliza-
tion of almost valuation domains and ¢-CRs.

Definition 2.11. A ¢-ring is said to be a ¢-almost chained ring (¢-ACR) if,
for each x € E(¢(R)), there exists an integer n > 1 such that 2" € ¢(R).

It is clear that a ¢-ring is a ¢-ACR if and only if for each a,b € R\ Nil(R)
there exists an integer n > 1 such that either a™ | b™ or b™ | a™ in R.

Lemma 2.12. Let R € H. Then R is a ¢p-ACR if and only if ﬁ(m s an
almost valuation domain.

Proof Let R be a ¢-ACR. Let z be a nonzero element of K, the quotient field
of NII(R) Then there exist a,b € R\ Nil(R) such that xz = Ziglllgg Hence by
assumption there exists an integer n > 1 such that either a™ | b™ in R orb" | a”

in R. Tt is easy to see that either a" | " in Nil(R) W(R)' That

is ﬁw’/) is an almost valuation domain. Conversely suppose that ﬁER) is an
a+Nil(R)

or b | @” in

almost valuation domain and a,b € R\ Nil(R). Set z = If 2™ €

b+ NI(R) * Nll(R)
for some integer n > 1, then ﬁ%ﬂg = r + Nil(R) for some r € R. Hence
a™ —b"r € Nil(R). Since Nil(R) is a divide prime ideal of R and b ¢ Nil(R), we
have Nil(R) C (b™). Hence a™ — b"r € (b™) which implies that b | a”. On the
other hand if 2% € N1l( o) for some integer ¢ > 1, with the similar argument
we get a' | b'. Therefore R is a ¢-ACR. O

The following proposition holds easily by Theorem 2.4 and Lemma 2.12 and
[12, Proposition 2.12].

Proposition 2.13. Suppose that R is a ¢p-ACR. Then R is a ¢p-PAVR.
The following result is an analog of [12, Corollary 4.2].

Proposition 2.14. Let R be a ¢-PAVR and P be a non mazimal prime ideal
of R. Then Rp is a ¢p-ACR.

Proof. Let R be a ¢-PAVR. Then by Theorem 2.4, R/ Nil(R) is a PAVD, and
by [12, Corollary 4.2], Rp/Nil(R)Rp is an almost valuation domain. Since
Nil(Rp) = Nil(R)Rp, Lemma 2.12 implies that Rp is a ¢-ACR. O

Now we are looking for examples of the rings which are ¢-PAVR but are not
¢-ACR. Recall that if M is a unitary R-module, then R(+)M with coordinate-
wise addition and multiplication (r1,m1)(ra, ma) = (rire,rime + remq) is a
commutative ring with 1 called the idealization of M or the trivial extension
of R by M. Note that if N is a submodule of M, then 0(+)N is an ideal of
R(+)M, and for every ideal J of R, R(+)M/J(+)M = R/J. Thus P(+)M is
a prime ideal of R(+)M for every prime ideal P of R. Also note that a module



940 AFSANEH ESMAEELNEZHAD AND PARVIZ SAHANDI

M over a ring R is called divisible if, for all r in R which are not zero divisors,
every element m of M can be divided by r, in the sense that there is an element
m’ in M such that m = rm’. This condition can be reformulated by saying
that the multiplication by r defines a surjective map from M to M. Recall
that Nil(R(+)M) = Nil(R)(+)M [3, Theorem 3.2(3)], and that for an integral
domain D and a D-module M, every ideal of D(+)M is comparable to 0(+)M
if and only if M is divisible by [3, Corollary 3.4].

Example 2.15. Let D be a PAVD which is not an almost valuation domain
(cf. [12, Example 2.20]). Assume that K is the quotient field of D. Then
D(+)K € H. Thus using Theorem 2.4 and Lemma 2.12 it is easy to see that
D(4)K is a »-PAVR which is not a ¢-ACR.

Recall that R is called root closed if, whenever € T(R) and z™ € R for
some integer n > 1, then =z € R.

Proposition 2.16. Let R be a ¢-PAVR such that ¢(R) is root closed. Then
R is a ¢p-PVR.

Proof. Tt is easy to check that if ¢(R) is root closed, then ﬁgft’) is also root
closed. Therefore the assertion is clear by [12, Theorem 2.13], Theorems 2.3

and 2.4. 0

It is known that a quasilocal domain D with the maximal ideal M is a
pseudo-valuation domain if and only if (M : M) is a valuation domain with
maximal ideal M [2, Proposition 2.5]. Also a quasilocal R € H with the regular
maximal ideal M is a ¢-PVR if and only if (M : M) is a ¢-CR with maximal
ideal M and a quasilocal domain D with the maximal ideal M is a PAVD if
and only if V = (M : M) is an almost valuation domain with maximal ideal
VMV, [10, Proposition 3.3] and [12, Theorem 2.15].

Inspired by those facts, we are willing to prove the following theorem.

Theorem 2.17. A quasilocal R € H with the regular mazimal ideal M is a
¢-PAVR if and only if V := (M : M) is a ¢-ACR with the maximal ideal
VMV,

Proof. We follow the technique of [10, Proposition 3.3]. Assume that R is a
¢-PAVR and 0 # x € T(¢(V)) = Rni(r) be such that x € E(¢(V)). Set
r = §. Note that if a € Nil(R), then 2™ = 0 for some integer n > 1. So
that « ¢ E(¢(V)), which is a contradiction. Hence a,b € R\ Nil(R). Assume
that b" | ¢ in R for some integer n > 1. Then a" = b"r for some r € R,
and hence z" = ‘g—: = 7 € ¢(R) C ¢(V) which is absurd. Therefore by
Proposition 2.9, there exists an integer ¢ > 1 such that a’ | b'c in R for every
c € M. Let s € M\ Z(R). Thus bts = a'd for some d € R. If ' > 1 is an
integer such that d*' | s* in R, then s* = d'7/ for some r € R. Thus from
bit' st = o' dt we get b dt' 1 = a't'dt’. Since d € R\ Z(R) we get bty = aft’
which is a contradiction. Hence d’ " st for every integer ¢’ > 1. Once again
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by Proposition 2.9 we have s' | d'm for some integer [ > 1 and all m € M. For

m € M, there is some y € R such that d'm = s'y. Thus ‘:—;m =yeR If ‘i—fm

is a unit element, we get d'my~! = s, then d' | s’ which is a contradiction.

Therefore ‘:—;m € M, that is ‘:—; € (M : M) = V. On the other hand the
equality bt's! = a'’d' implies that =% = Z—:ll = ‘:—; € (M : M) =V, then
7 = ¢(x7t) € ¢(V). Thus V is a ¢-ACR. Now let y be a nonunit element of
V which is not in vV MV. Assume that ¢(y") € ¢(R) for some positive integer
n. Then ¢(y™) € ¢(M), since ¢(y) is a nonunit element of ¢(R). Therefore
y"* € M = MV, which implies that y € vVMV. Hence ¢(y) € E(¢(R)).
Then ¢(y) " t¢p(M) C ¢(M) for some positive integer ¢, and thus y=*M C M.
Therefore y~t € V. Since y € V we conclude that y is a unit element of V'
which is a contradiction. Hence v MV is the maximal ideal of V. Conversely
suppose that V = (M : M) is a ¢-ACR with the maximal ideal v MV. Assume
that a,b € R\ Nil(R) be such that " { " in R for every integer n > 1. Thus
r =3 & o(VMV). If 2™ € ¢(V) for some integer n > 1, then 2" is a
unit of ¢(V) and a7 "¢(M) C ¢(M). Thus 22 € ¢(M) C ¢(R) for every
m € M. So that a” | b™m in R for every nonunit m € R. On the other hand
if x € E(¢(V)), then 27t € ¢(V) for some integer ¢ > 1, since V is a ¢-ACR.
Thus z7¢¢(M) C ¢p(M), i.e., Z—i% € ¢(M) for every m € M, that is a’ | b'm
in R for every nonunit m € R. Hence by Proposition 2.9, R is a ¢-PAVR. O

Now we are looking to find a quasilocal ring R with maximal ideal N such
that R is a ¢-PAVR which is not a ¢-ACR and (N : N) is a ¢-ACR which is
not a ¢-CR.

Example 2.18. Let D be a PAVD with maximal ideal M such that D is not
an almost valuation domain and V' = (M : M) is an almost valuation domain
that is not a valuation domain (cf. [12, Example 3.7]). Consider R = D(+)K.
Then N = M(+)K is the maximal ideal of R. Set V = (N : N). It is easy to
see that V = V(+)K. Note that Nil(R) = Nil(V) = 0(+)K. Therefore using
the isomorphisms D(+)K/0(+)K = D and V(4+)K/0(+)K =V, Theorem 2.4,
and Lemma 2.12, one can see that R is a ¢-PAVR which is not a ¢-ACR and
V = (N : N) is a ¢-ACR which is not a ¢-CR.

Recall that an overring S of R is said to be a root extension, if for every
x € S, there is an integer n > 1 such that ™ € R.

Theorem 2.19. Let R be a quasilocal ring with the maximal ideal M. Suppose
that V' is an overring of R which is a ¢-ACR, such that M is an ideal of V
and VM (in V') is the mazimal ideal of V. Then R is a ¢-ACR if and only if

V' is a root extension of R.

Proof. First of all note that V' is a root extension of R if and only if ¢(V) is
a root extension of ¢(R). If (V) = ¢(R) there is nothing to prove. Hence
assume that ¢(R) C ¢(V) and R is a ¢-ACR. Let z € ¢(V). If € ¢(vV M)



942 AFSANEH ESMAEELNEZHAD AND PARVIZ SAHANDI

(in V), then z* € ¢(M) C ¢(R) for some integer k > 1. On the other hand if
x ¢ ¢(v/M) (in V), then z is an unit of ¢(V). If z=' € E(¢(R)), then 2" € ¢(R)
for some integer n > 1, since R is a ¢-ACR. Now assume that 2% € ¢(R) for
some integer ¢t > 1. If 7% is a nonunit of ¢(R) we get x~* € ¢(M). So that
z~! € ¢(v/M) (in V) which is a contradiction, since ™! is a unit element of
#(V). Thus 7" is a unit element of ¢(R) and hence z' € ¢(R). Hence V is a
root extension of R. Conversely assume that V' is a root extension of R. Then
(V) is a root extension of ¢(R). Then E(¢p(R)) = E(¢p(V)). Let = € E(¢p(R)).
Since V is a ¢-ACR we get 2™ € ¢(V') for some integer n > 1 and since ¢(V)
is a root extension of ¢(R) we have 27"t € ¢(R) for some integer t > 1. Hence
R is a ¢-ACR. O

We conclude this section by showing that every ¢-PAVR is a pullback of a
¢-ACR.

Theorem 2.20. Let V be a ¢-ACR with nonzero mazximal ideal N and let M
be an ideal of V such that VM = N, F = V/IM, o : V. — F the canonical
epimorphism, H be a field contained in F, and R = a~*(H). Then the pullback
R =V xpH is a p-PAVR with mazimal ideal M. In particular, if H is properly
contained in F and V is not a root extension of R, then R is a ¢p-PAVR which
is not a ¢p-ACR.

Proof. In view of the hypothesis we are deal with the following commutative

diagram:
f If\

V—F
By construction it is clear that M is the maximal ideal of R, R is a ¢-ring
and Nil(R) = Nil(V'). Therefore an obvious result of the above diagram is the
following diagram:
R/Nil(R) — H.

V/Nil(V) & F
where a(v + Nil(V)) = a(v) for every v € V. Since V is a ¢-ACR, by Lemma
2.12 V/Nil(V) is an almost valuation domain, and R/ Nil(R) is the pullback,
V/Nil(V) xgp H. Therefore [12, Theorem 2.19] implies that R/Nil(R) is a
PAVD. Hence by Theorem 2.4 R is a ¢-PAVR. The proof of the in particular
case is obvious by Theorem 2.19. O

3. Overrings

The purpose of this section is to characterize when each overring of a ¢-ring
is a p-PAVR.
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Lemma 3.1. Let R be a ¢-PAVR and let P be a prime ideal of R. Then for
each x© € E(R), there exists an integer m > 1 such that x~™P C P.

Proof. Let x = ¢ € E(R) for some a € R and b € R\ Z(R). Then b" { a” in
R for every positive integer n. Note that Z(R) is a ¢-pseudo-strongly prime
by Remark 2.6. Since z = ¢(x) € E(¢(R)), by Lemma 2.2, There exists
an integer ¢ > 1 such that 2 '¢(Z(R)) C ¢(Z(R)). Now if a € Z(R), then
(bt /at)(at/1) = bt /1 € ¢(Z(R)), which is a contradiction. Thus a ¢ Z(R), and
271 =2 € T(R). Let P be a prime ideal of R. Thus from ¢(z)¢(z~1)p(P) C
d(P) we get ¢(x)" € ¢(R) for some integer n > 1 or there exists an integer
m > 1 such that ¢(x) "™ ¢(P) C ¢(P). If ¢(x)™ € ¢(R) for some integer n > 1,
then & = £ for some s € R. Thus a” — sb” € Nil(R) C (b"), since Nil(R)
is a divided prime ideal of R and b ¢ Nil(R). Therefore 0" | ™ in R; hence
z" € R, which is a contradiction. Thus there exists an integer m > 1 such
that ¢(x)""¢(P) C ¢(P). Now let p € P. Then ¢(x) "¢(p) € ¢(P). Thus
x~™p —q € Nil(R) C P for some g € P. Therefore z~™p € P. O

Proposition 3.2. Let R be a ¢-PAVR with the mazimal ideal M and z € E(R)
be integral over R. Then there is a monic polynomial f(x) € R[x] such that
f(z) =0 and f(0) is a unit in R.

Proof. By Lemma 3.1 there exists an integer n > 1 such that 27" M C M. Let
f(z) € Rlz] be a minimal monic polynomial such that f(z") = 0. Set ag =
£(0). We claim that ag is unit. Otherwise ag € M, and hence z""ag = m € M
is a nonunit element of R. Thus ag = mz". Hence we can replace the constant
term ap in f(x) with mz to construct a monic polynomial g(z). Thus if we
factor x from g(x), we get a monic polynomial h(z) of less degree than f(z)
such that h(z") = 0, a contradiction. O

By [6, Proposition 3.3], it is well known that, the integral closure of a ¢-
PVR is a ¢-PVR. In the following proposition we show the similar result for
¢-PAVRs.

Proposition 3.3. Let R be a ¢-PAVR with the mazimal ideal M and let B be
an overring of R such that B C R'. Then B is quasilocal with mazimal ideal

VMB. Furthermore R’ is a ¢-PAVR with the mazimal ideal vV MR'.

Proof. First we show that B is quasilocal with the maximal ideal v M B. Let
z € B. If z € E(R), then by Proposition 3.2 there exists a monic polynomial
f(x) = 2t + ag_12'"1 + .-+ + a12 + ap such that f(z) = 0 and ag is a unit
element of R. Hence —(aalzt + aalat_lzt_l 4+ aalalz) = 1. Therefore
2(—ag 'zt —agtas_12t7% — -~ —ag'ay) = 1. That is z is unit in B. Now
assume that there exists an integer n > 1 such that 2™ € R. If z is nonunit
in B, then 2™ is nonunit in B. Hence 2" is nonunit in R. Thus 2" € M,
and hence z € VMB. On the other hand using [5, Theorem 5.10], we see
that vV M B is a proper ideal of B. Therefore vV M B is the maximal ideal of

B. To complete the proof we have to show that vV MR’ is a ¢-pseudo-strongly
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prime ideal of R'. Let z € E(¢(R')) and a € vVMR'. Then there is an
integer ¢ > 1 such that a* € MR’. Hence there exist mi,...,ms € M and
T1,...,7s € R such that a® = Y=m;r;. Note that x € E(¢(R)), and M is
a ¢-pseudo-strongly prime ideal of R. Thus there is an integer n > 1 such
that x’”qﬁ( ) € ¢(M) by Lemma 2.2. Hence x~ ™ ¢(M) C ¢(M). Therefore
x’”t“ —nt B2 ﬂlm = W= 1x’”t it e g(MR'). Since ¢(R') is root closed
'), so that 7" ¢ € \/¢(MR’). Now as MR’ C VMR, we have
( gb(\/ , hence /o(MR') C \/¢(VMR) VMR'), since
(VMR') is the maxunal ideal of qﬁ(R’). Therefore af"‘ll € Vo(MR') C
( )-

Thus 27 "¢(vVMR') C ¢(vVMR’) and R’ is a ¢-PAVR by Corollary
7. O

>—'Im
m
|ﬂ /—\ H

By using Propositions 2.16 and 3.3 we get the following result.
Corollary 3.4. If R is a $-PAVR, then R’ is a ¢p-PVR.

Proposition 3.5. Let R be a ¢p-PAVR with the maximal ideal M and u €
V'\R, where V := (M : M). Then R[u] C R if and only if Rlu] is quasilocal.

Proof. Let uw € V\R. If R[u] C R/, then R[u] is quasilocal by Proposition 3.3.
Conversely assume that R[u| is quasilocal. If u is a nonunit element of R[u],
then 1+ u is a unit element of R[u|, since R[u] is quasilocal. Thus 1+ u is a
unit element of R[u+ 1]. Thus (1 +u)~! € Rlu+ 1]. Hence (1 +u)~! € R
by [18, Theorem 15]. On the other hand by Proposition 3.3, R is a ¢-PAVR
with maximal ideal vVMR’. We claim that (1 +u)~! € R'\V R’ Indeed
by Theorem 2.17, V is a ¢-ACR with the maximal ideal \/ Thus by

Prop081t1on 3.3, V' is a »-PAVR with the max1mal ideal v/ V’ VMV’
If (14+u)~t € VMR, then we have (1+u)~! € VMV’ But 1+u € V’/, which
implies that 1 € v/ MV, which is a contradiction. Hence (1+u)~! € R\VMR'.
Thus 1 +u € R', whence u = u+1—1 € R'. Now if u is a unit element of
R[u], then u=! € R[u]. Hence again by [18, Theorem 15], u=! € R’. As
above V' is a ¢-PAVR with the maximal ideal v MV’. Thus u=t ¢ VMV’ so
u~!t € R\VMR'. Hence u € R'. Therefore R[u] C R'. O

Proposition 3.6. Let R be a ¢-PAVR with the mazximal ideal M. If B is an
overring of R such that B does not contain an element of the form % for some
nonzero divisor s € M, then B C V', where V := (M : M).

Proof. Let x € B. If 7" € R for some integer n > 1, then z' is a unit element
of B. Hence x~™ must be a nonzero divisor of R. So that by the assumption
2™ ¢ B, which is a contradiction. Thus assume that 2=! € E(R). Hence by
Lemma 3.1, there exists an integer ¢ > 1 such that 2'M C M. Therefore
zt € V and hence x € V. O
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Proposition 3.7. Let R be a ¢-PAVR with the mazimal ideal M such that
every integral overring of R is a ¢-PAVR. Then every overring of R is a ¢-
PAVR if and only if R[u] is quasilocal for each uw € V'\R, where V := (M : M).

Proof. Suppose that R[u] is quasilocal for each u € V'\R. Let B be an overring
of R. Assume that B contains an element of the form % for some nonzero divisor
s € M and = € E(¢(B)) C E(¢(R)). So there exists an integer n > 1 such
that 27 "¢(a) € ¢(M) for each a € M. In particular 27" ¢ = Zt for some
m e M. Thus 27" = 2 = ¢(m)¢(L) € ¢(B). Hence B is a ¢-ACR. Then B
is a ¢-PAVR by Proposition 2.13. Now assume that B does not contains an
element of the form % for some s € M. Hence B C V'’ by Proposition 3.6. Let
u € B\R. Then RJu] is quasilocal by hypothesis and so by Proposition 3.5 we
get u € R'. Thus B C R'. Therefore by assumption, B is a ¢-PAVR. O

Corollary 3.8. Let R be a ¢p-PAVR. Then every overring of R is a ¢p-PAVR
if and only if R = V', and every integral overring of R is a ¢p-PAVR, where
Vi=(M:M).

Proof. Assume that every overring of R is a ¢-PAVR, then Ru| is quasilocal
for every u € V'\R. Hence by Proposition 3.5, u € R’. Thus V' C R’.
Conversely assume that V' = R’ and every integral overring of R is a ¢-
PAVR. By Proposition 3.7, it is enough to show that R[u] is quasilocal for
every u € R'\R, and this holds by Proposition 3.3. O

Combining Propositions 3.5, 3.6, and 3.7 and Corollary 3.8, we get the fol-
lowing result that is a generalization of [6, Corollary 3.17] and [12, Corollary
4.12).

Corollary 3.9. Let R be a ¢-PAVR with mazimal ideal M and V := (M : M).
Then the following statement are equivalent:
(1) Ewvery overring of R is a ¢p-PAVR;
(2) R[u] is a p-PAVR for each u € V'\R, and every integral overring of R
is a ¢p-PAVR;
(3) R[u] is quasilocal for each u € V'\R, and every integral overring of R
is a ¢-PAVR,
(4) If B is an overring of R such that B C V', then B is a ¢-PAVR;
(5) R' =V’ is ¢-CR and every integral overring of R is a ¢p-PAVR.
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