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ON φ-SCHREIER RINGS

Ahmad Yousefian Darani and Mahdi Rahmatinia

Abstract. Let R be a ring in which Nil(R) is a divided prime ideal of
R. Then, for a suitable property X of integral domains, we can define
a φ-X-ring if R/Nil(R) is an X-domain. This device was introduced by
Badawi [8] to study rings with zero divisors with a homomorphic image a
particular type of domain. We use it to introduce and study a number of
concepts such as φ-Schreier rings, φ-quasi-Schreier rings, φ-almost-rings,
φ-almost-quasi-Schreier rings, φ-GCD rings, φ-generalized GCD rings
and φ-almost GCD rings as rings R with Nil(R) a divided prime ideal
of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain,
almost domain, almost-quasi-Schreier domain, GCD domain, generalized
GCD domain and almost GCD domain, respectively.

We study some generalizations of these concepts, in light of general-
izations of these concepts in the domain case, as well. Here a domain D is
pre-Schreier if for all x, y, z ∈ D\0, x | yz in D implies that x = rs where
r | y and s | z. An integrally closed pre-Schreier domain was initially
called a Schreier domain by Cohn in [15] where it was shown that a GCD
domain is a Schreier domain.

1. Introduction

We assume throughout that all rings are commmutative with 1 6= 0. Let
R be a ring. Then T (R) denotes the total quotient ring of R, Nil(R) de-
notes the set of nilpotent elements of R and Z(R) denotes the set of zero-
divisors of R. Recall that a nonzerodivisor of a ring R is called a regular
element and an ideal of R is said to be regular if it contains a regular ele-
ment. A ring R is called a Prüfer ring, in the sense of [20], if every finitely
generated regular ideal of R is invertible, i.e., if I is finitely generated regu-
lar ideal of R and I−1 = {x ∈ T (R) | xI ⊂ R}, then II−1 = R [5]. Recall
from [16] and [9], that a prime ideal P of R is called a divided prime ideal
if P ⊂ (x) for every x ∈ R \ P ; thus a divided prime ideal is comparable
to every ideal of R. In [8], [10], [11], [12] and [13], the scond-named author
investigated the class of rings H = {R | R is a commutative ring with 1 6=

Received June 24, 2015; Revised January 12, 2016.
2010 Mathematics Subject Classification. Primary 16N99, 16S99; Secondary 06C05,

16N20.
Key words and phrases. φ-primal, φ-Schreier ring, φ-quasi-Schreier ring, φ-GCD ring.

c©2016 Korean Mathematical Society

1057



1058 AHMAD YOUSEFIAN DARANI AND MAHDI RAHMATINIA

0 and Nil(R) is a divided prime ideal of R}. An ideal I of a ring R is said to
be a nonnil ideal if I * Nil(R). Recall from [8] that for a ring R ∈ H with
total quotient ring T (R), if a ∈ R and b ∈ R\Z(R), then φ : T (R) −→ RNil(R)

such that φ(a/b) = a/b is a ring homomorphism from T (R) into RNil(R) and
φ restricted to R is also a ring homomorphism from R into RNil(R) given by
φ(x) = x/1 for every x ∈ R. A nonnil ideal I of R is said to be a φ-invertible
if φ(I) is an invertible ideal of φ(R). If every nonnil finitely generated ideal of
R is φ-invertible, then we say that R is a φ-Prüfer ring [5]. In [5, Lemma 2.5],
it is shown that, if R ∈ H and P an ideal of R, then R/P is ring-isomorphic
to φ(R)/φ(P ). A ring R ∈ H is called φ-integrally closed if φ(R) is integrally
closed in T (φ(R)) = RNil(R). It is shown that R is φ-integrally closed if and
only if R/NilR is integrally closed if and only if φ(R)/Nil(φ(R)) is integrally
closed.

Observe that if R ∈ H, then φ(R) ∈ H, Ker(φ) ⊂ Nil(R), Nil(T (R)) =
Nil(R), Nil(RNil(R)) = φ(Nil(R)) = Nil(φ(R)) = Z(φ(R)), T (φ(R)) =
RNil(R) is quasilocal with maximal ideal Nil(φ(R)) and RNil(R)/Nil(φ(R)) =
T (φ(R))/Nil(φ(R)) is the quotient field of φ(R)/Nil(φ(R)). Therefore we have
x ∈ R \ Nil(R) if and only if φ(x) ∈ φ(R) \ Z(φ(R)). Let R ∈ H. Then I is
a finitely generated nonnil ideal of R if and only if φ(I) is a finitely generated
regular ideal of φ(R) [5, Lemma 2.1]. Let R ∈ H with Nil(R) = Z(R) and let
I be an ideal of R. Then I is an invertible ideal of R if and only if I/Nil(R)
is an invertible ideal of R/Nil(R) [5, Lemma 2.3]. Let R ∈ H and let I be
an ideal od R. Then I is a finitely generated nonnil ideal of R if and only if
I/Nil(R) is a finitely generated nonzero ideal of R/Nil(R) [5, Lemma 2.4].

An element x of a ring R is called primal if whenever x | y1y2, with x, y1, y2 ∈
R, then x = z1z2 where z1 | y1 and z2 | y2. P. M. Cohen in [15] introduced
the concept of Schreier domain. A domain D is called a pre-Schreier domain if
every nonzero element of D is primal. If in addition D is integrally closed, then
D is called a Schreier domain. The study of Schreier domains was continued in
MacAdam and Rush [22] and M. Zafrullah [24]. In [18] and [7], an extension
of the class of pre-Schreier domains was studied. A domain D as called quasi-
Schreier domain if whenever I, J1, J2 are invertible ideals of D and I ⊇ J1J2,
then I = I1I2 for some invertible ideals I1, I2 of D with Ii ⊇ Ji for i = 1, 2. In
[17], another generalization of the pre-Schreier domains was studied. A domain
D was called an almost-Schreier domain (AS domain) if whenever a, b1, b2 are
nonzero elements of D and a | b1b2, there exist an integer k ≥ 1 and nonzero
elements a1, a2 of D such that ak = a1a2 and ai | bki for i = 1, 2. In [1],
Z. Ahmad and T. Dumitrescu introduced another generalization of the pre-
Schreier domains which includes the pre-Schreier domains and the AS domains.
They called this domain almost quasi-Schreier domain. A domain D is called
almost-quasi-Schreier domain (AQS domain) if whenever I, J1, J2 are nonzero
invertible ideals of D such that I ⊇ J1J2 there exist an integer k ≥ 1 and
nonzero invertible ideals I1, I2 of D such that Ik = I1I2 and Ii ⊇ Jk

i for
i = 1, 2. A GCD domain is a domain in which every two elements have greatest
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common divisor. Anderson [3] and Anderson and Anderson [4] introduced and
investigated a class of domains called generalized GCD domains. A generalized
GCD domain (GGCD domain) is a domain in which every intersection of two
invertible nonzero ideals is an invertible ideal, [4]. An almost GCD domain
(AGCD domain) D is a domain in which for every two principal ideals I, J of
D there exists some k ≥ 1 such that Ik ∩ Jk is a principal ideal of D, [23].

Now we generalize above concepts. A ring R is called a pre-Schreier ring if
every regular element of R is primal. If in addition R is integrally closed, then
R is called a Schreier ring. A ring R is called a quasi-Schreier ring if whenever
I, J1, J2 are regular invertible ideals of R and I ⊇ J1J2, then I = I1I2 for
regular invertible ideals I1, I2 of R with Ii ⊇ Ji for i = 1, 2. We say that a ring
R is almost-Schreier ring (AS ring) if whenever a, b1, b2 are regular elements of
R and a | b1b2, there exist an integer k ≥ 1 and regular elements a1, a2 of R
such that ak = a1a2 and ai | bki for i = 1, 2. A ring R is called almost-quasi-
Schreier ring (AQS ring) if whenever I, J1, J2 are regular invertible ideals of R
such that I ⊇ J1J2 there exist an integer k ≥ 1 and regular invertible ideals
I1, I2 of R such that Ik = I1I2 and Ii ⊇ Jk

i for i = 1, 2. A ring R is called a
GCD ring if every two regular elements of R have a greatest common divisor.
We say that a ring R is a generalized GCD ring (GGCD ring) if R is a ring in
which every intersection of two regular invertible ideals is an invertible ideal of
R. A generalized GCD ring (GGCD ring) was introduced by M. M. Ali and D.
J. Smith in [2]. They called a ring R a GGCD ring if in R the intersection of
every two finitely generated faithful multiplication ideals is a finitely generated
faithful multiplication ideal. In fact two above definitions for GGCD ring are
equivalent. For proof, it is sufficient to consider the following remarks in [19]:

Remark 1. Every invertible ideal is finitely generated ideal.

Remark 2. Every invertible ideal is a multiplication ideal.

Remark 3. An ideal I is multiplication if and only if I is locally principal.

Remark 4. Let I be a finitely generated ideal of R. Then I is an invertible
ideal if and only if I is locally principal.

Here an ideal I of a ring R is called a multiplication ideal if every ideal
contained in I is a multiple of I [19].

An almost GCD ring (AGCD ring) is a ring in which for every two regular
principal ideals I and J of R, there exists some k ≥ 1 such that Ik ∩ Jk is a
regular principal ideal of R.

In this paper, we define a φ-primal element. We say that a nonnil element
x ∈ R is φ-primal if and only if φ(x) is primal in φ(R). In Lemma 2.2, we show
that x ∈ R is φ-primal if and only if x+Nil(R) is primal in R/Nil(R). A ring
R is called a φ-pre-Schreier ring if every element of R is φ-primal. In addition
if R is φ-integrally closed, then we say that R is a φ-Schreier ring. A ring R
called a φ-quasi-Schreier ring if whenever I, J1, J2 are nonnil φ-invertible ideals
of R and I ⊇ J1J2, then I = I1I2 for nonnil φ-invertible ideals I1, I2 of R with
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Ii ⊇ Ji for i = 1, 2. we show that a φ-pre-Schreier ring is a φ-quasi-Schreier
ring, Corollary 2.18. We say that a regular element x of a ring R is strongly
primal, whenever x | ab for regular elements a, b of R, then there exists k ≥ 1
and regular elements a′, b′ of R such that xk = a′b′ with a′ | ak and b′ | bk. An
element x of R is called φ-strongly primal in R if and only if φ(x) is strongly
primal in φ(R). In Lemma 2.22, we show that x ∈ R is a φ-strongly primal
element if and only if x+Nil(R) is a strongly primal element in R/Nil(R). A
ring R is called a φ-almost-Schreier ring (φ-AS ring) if every nonnil element
of R is φ-strongly primal. In Corollary 2.29, we show that a φ-pre-Schreier
ring is a φ-AS ring. A ring R called a φ-almost-quasi-Schreier ring (φ-AQS
ring) if whenever I, J1, J2 are nonnil φ-invertible ideals of R such that I ⊇ J1J2
there exist an integer k ≥ 1 and nonnil φ-invertible ideals I1, I2 of R such that
Ik = I1I2 and Ii ⊇ Jk

i for i = 1, 2. In Corollary 2.36, we show that a φ-AS
ring is a φ-AQS ring and in Corollary 2.37, we prove that a φ-quasi-Schreier
ring is a φ-AQS ring. A ring R is called a φ-GCD ring is a ring in which
every two nonnil elements of R have a greatest common divisor. A φ-GCD
ring is a φ-Schreier ring, Corollary 3.7. A φ-generalized GCD ring (φ-GGCD
ring) is a ring in which every intersection of two nonnil principal ideals is a φ-
invertible ideal. In Corollary 3.13, we show that a φ-GCD ring is a φ-GGCD
ring and in Corollary 3.14, we prove that a φ-Prüfer ring is a φ-GGCD ring.
A φ-GGCD ring is a φ-quasi-Schreier ring, Corollary 3.15. A φ-almost GCD
ring (φ-AGCD ring) is a ring in which for every two nonnil principal ideals I
and J of R, there exists some k ≥ 1 such that Ik ∩ Jk is a nonnil principal
ideal of R. In Corollary 3.22, we show that a φ-AGCD ring is a φ-AS ring.

2. φ-Schreier rings

Definition 2.1. Let R ∈ H. A nonnil element x ∈ R is said to be φ-primal if
and only if φ(x) is primal in φ(R).

Lemma 2.2. Let R ∈ H and x ∈ R. Then x is φ-primal in R if and only if

x+Nil(R) is primal in R/Nil(R).

Proof. Let x be φ-primal in R and let x+Nil(R) | (a+Nil(R))(b+Nil(R)) =
ab + Nil(R) in R/Nil(R) for nonnil elements x, a, b of R. Then there exists
y +Nil(R) in R/Nil(R) such that ab+Nil(R) = xy +Nil(R). So ab − xy ∈
Nil(R). Thus ab = xy + w for some w ∈ Nil(R). Since Nil(R) is a divided
prime ideal. Then Nil(R) ⊆ (x). So w = xz for some z ∈ Nil(R). Therefore
ab = xy + xz = x(y + z). Hence x | ab and so x = a′b′ for nonnil elements
a′, b′ of R with a′ | a and b′ | b in R. So x + Nil(R) = a′b′ + Nil(R) = (a′ +
Nil(R))(b′+Nil(R)) with a′+Nil(R) | a+Nil(R) and b′+Nil(R) | b+Nil(R).
Thus x+Nil(R) is primal in R/Nil(R). Conversely, let x+Nil(R) be primal
in R/Nil(R). Since, by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is ring-homomorphic
to R/Nil(R), then φ(x) + Nil(φ(R)) is primal in φ(R)/Nil(φ(R)). Now, let
x | ab for nonnil elements of R. Then φ(x)+Nil(φ(R)) | φ(a)+Nil(φ(R))φ(b)+
Nil(φ(R)) and so φ(x)+Nil(φ(R)) = (φ(a′)+Nil(φ(R)))(φ(b′)+Nil(φ(R))) =
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φ(a′)φ(b′)+Nil(φ(R)) for nonzero elements φ(a′)+Nil(φ(R)), φ(b′)+Nil(φ(R))
of φ(R)/Nil(φ(R)) with φ(a′) + Nil(φ(R)) | φ(a) + Nil(φ(R)) and φ(b′) +
Nil(φ(R)) | φ(b) +Nil(φ(R)). Therefore φ(x)− φ(a′)φ(b′) ∈ Nil(φ(R)). Since
Nil(φ(R)) = Z(φ(R), we conclude that φ(x) = φ(a′)φ(b′) with φ(a′) | φ(a) and
φ(b′) | φ(b). So φ(x) is primal in φ(R) and by definition of φ-primal element,
x is a φ-primal element of R. �

Proposition 2.3. Let R ∈ H. Any product of φ-primal elements in R is

φ-primal.

Proof. Let p, q ∈ R \ Nil(R). Then pq ∈ R \ Nil(R). Suppose that pq | a1a2
with a1, a2 ∈ R\Nil(R). So a1a2 = pqs for some nonnil element s of R. Hence
p | a1a2. Then p = p1p2 for some p1, p2 ∈ R\Nil(R) and pi | ai in R for i = 1, 2.
Writing ai = piri with ri ∈ R \Nil(R). Thus, we have a1a2 = p1r1p2r2 = pqs.
Hence r1r2 = qs, i.e., q | r1r2, whence q = q1q2 with qi | ri and qi ∈ R\Nil(R).
Therefore pq = p1q1p2q2 and piqi | piri = ai and piqi ∈ R \ Nil(R). So pq
is φ-primal. by induction it follows that any product of φ-primal elements is
again φ-primal. �

Definition 2.4. A ring R is called a φ-pre-Schreier ring if every element of
R is φ-primal. In addition if R is φ-integrally closed, then we say that R is a
φ-Schreier ring.

Theorem 2.5. Let R ∈ H. Then R is a φ-Schreier ring if and only if

R/Nil(R) is a Schreier domain.

Proof. By [6], R is φ-integrally closed if and only if R/Nil(R) is integrally
closed. Then, by Lemma 2.2, R is a φ-Schreier ring if and only if R/Nil(R) is
a Schreier domain. �

Theorem 2.6. Let R ∈ H. Then R is a φ-Schreier ring if and only if φ(R) is
a Schreier ring.

Proof. Note that R is φ-integrally closed in T (R) if and only if φ(R) is in-
tegrally closed in T (φ(R)) = RNil(R), by the definition of φ being integrally
closed. Now, let R be a φ-Schreier ring, then by Theorem 2.5, R/Nil(R) is
a Schreier domain. So, by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is a Schreier do-
main. Let φ(x) | φ(a)φ(b) for regular elements φ(x), φ(a), φ(b) of φ(R). Then
φ(x) +Nil(φ(R)) | (φ(a) +Nil(φ(R)))(φ(b) +Nil(φ(R))) for nonzero elements
φ(x)+Nil(φ(R)), φ(a)+Nil(φ(R)), φ(b)+Nil(φ(R)) of φ(R)/Nil(φ(R)). Thus
φ(x)+Nil(φ(R)) = (φ(a′)+Nil(φ(R)))(φ(b′)+Nil(φ(R))) for nonzero elements
φ(a′)+Nil(φ(R)), φ(b′)+Nil(φ(R)) of φ(R)/Nil(φ(R)) with φ(a′)+Nil(φ(R)) |
φ(a) +Nil(φ(R)) and φ(b′) +Nil(φ(R)) | φ(b) +Nil(φ(R)). Therefore φ(x)−
φ(a′)φ(b′) ∈ Nil(φ(R)). Since Nil(φ(R)) = Z(φ(R), we conclude that φ(x) =
φ(a′)φ(b′) for regular elements φ(a′), φ(b′) of φ(R) with φ(a′) | φ(a) and φ(b′) |
φ(b). Hence φ(R) is a Schreier ring. Conversely, let φ(R) be a Schreier ring. Let
x | ab for nonnil elements of R. Then φ(x) | φ(a)φ(b) for regular elements φ(x),
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φ(a), φ(b) of φ(R). So φ(x)+Nil(φ(R)) | (φ(a)+Nil(φ(R)))(φ(b)+Nil(φ(R)))
for nonzero elements φ(x) + Nil(φ(R)), φ(a) + Nil(φ(R)), φ(b) + Nil(φ(R))
of φ(R)/Nil(φ(R)). Since φ(x) = φ(a′)φ(b′) for regular elements φ(a′), φ(b′)
of φ(R) with φ(a′) | φ(a) and φ(b′) | φ(b), so φ(x) + Nil(φ(R)) = (φ(a′) +
Nil(φ(R)))(φ(b′)+Nil(φ(R))) for nonzero elements φ(a′)+Nil(φ(R)), φ(b′)+
Nil(φ(R)) of φ(R)/Nil(φ(R)) with φ(a′) +Nil(φ(R)) | φ(a) +Nil(φ(R)) and
φ(b′) +Nil(φ(R)) | φ(b) +Nil(φ(R)). Therefore φ(R)/Nil(φ(R)) is a Schreier
domain. Since, by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is ring-homomorphic to
R/Nil(R), then R/Nil(R) is a Schreier domain. Hence, by Theorem 2.5, R is
a φ-Schreier ring. �

Corollary 2.7. Let R ∈ H. The following are equivalent:
(1) R is a φ-Schreier ring;
(2) φ(R) is a Schreier ring;
(3) R/Nil(R) is a Schreier domain;
(4) φ(R)/Nil(φ(R)) is a Schreier domain.

Lemma 2.8. Let R ∈ H and x ∈ R. If x is φ-primal, then x is primal.

Proof. If x is φ-primal, then by Lemma 2.2, x+Nil(R) is primal in R/Nil(R).
If x | ab for regular elements x, a, b of R. Then with a same way of proof
Theorem 2.6, we conclude that x is primal. �

Theorem 2.9. Let R ∈ H. If R is a φ-Schreier ring, then R is a Schreier

ring.

Proof. Let R be a φ-Schreier ring. Then, by Theorem 2.6, φ(R) is a Schreier
ring. So φ(R) is integrally closed in T (φ(R)). Thus, by [5, Lemma 2.13], R is
integrally closed in T (R). Now, by Lemma 2.8, it is clear that R is a Schreier
ring. �

Theorem 2.10. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-Schreier ring
if and only if R is a Schreier ring.

Proof. Suppose that R is a Schreier ring. Then φ(R) = R is a Schreier ring.
Hence, by Theorem 2.6, R is a φ-Schreier ring. The converse is clearly by
Theorem 2.9. �

Note that the above results are satisfied for φ-pre-Schreier rings. Now, we
define an extension of the class φ-pre-Schreier rings.

Definition 2.11. A ring R is called a φ-quasi-Schreier ring if whenever I, J1, J2
are nonnil φ-invertible ideals of R and I ⊇ J1J2, then I = I1I2 for nonnil φ-
invertible ideals I1, I2 of R with Ii ⊇ Ji for i = 1, 2.

Lemma 2.12. Let R ∈ H and I be a nonnil ideal of R. Then I is φ-invertible
ideal of R if and only if I/Nil(R) is an invertible ideal of R/Nil(R).
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Proof. Let I be φ-invertible ideal of R. Then φ(I) is an invertible ideal of
φ(R). So, by [14, Lemma 2.4], I/Nil(R) is an invertible ideal of R/Nil(R).
Conversely, if I/Nil(R) is an invertible ideal of R/Nil(R), then by [14, Lemma
2.4], φ(I) is an invertible ideal of φ(R). Hence, by definition of a φ-invertible
ideal, I is φ-invertible ideal of R. �

Theorem 2.13. Let R ∈ H. Then R is a φ-quasi-Schreier ring if and only if

R/Nil(R) is a quasi-Schreier domain.

Proof. Suppose that R is a φ-quasi-Schreier ring and let I/Nil(R), J1/Nil(R)
and J2/Nil(R) be nonzero invertible ideals of R/Nil(R) and I/Nil(R) ⊇
(J1/Nil(R))(J2/Nil(R)). Then, by Lemma 2.12, I, J1, J2 are nonnil φ-inverti-
ble ideals of R and I ⊇ J1J2. So I = I1I2 for φ-invertible ideals I1, I2 of R
with I1 ⊇ J1 and I2 ⊇ J2. Therefore I/Nil(R) = (I1/Nil(R))(I2/Nil(R))
for invertible ideals I1/Nil(R), I2/Nil(R) of R/Nil(R) by Lemma 2.12, with
I1/Nil(R) ⊇ J1/Nil(R) and I2/Nil(R) ⊇ J2/Nil(R). Hence, R/Nil(R) is a
quasi-Schreier domain. Conversely, suppose that R/Nil(R) is a quasi-Schreier
domain. Let I, J1, J2 be nonnil φ-invertible ideals of R and I ⊇ J1J2. Then,
by Lemma 2.12, I/Nil(R), J1/Nil(R), J2/Nil(R) are nonzero invertible ideals
of R/Nil(R) and I/Nil(R) ⊇ (J1/Nil(R))(J2/Nil(R)). So

I/Nil(R) = (I1/Nil(R))(I2/Nil(R))

for invertible ideals I1/Nil(R) and I2/Nil(R) of R/Nil(R) with I1/Nil(R) ⊇
J1/Nil(R) and I2/Nil(R) ⊇ J2/Nil(R). Therefore, I = I1I2 for φ-invertible
ideals I1, I2 of R by Lemma 2.12, with I1 ⊇ J1 and I2 ⊇ J2. Therefore R is a
φ-quasi-Schreier ring. �

Theorem 2.14. Let R ∈ H. Then R is a φ-quasi-Schreier ring if and only if

φ(R) is a quasi-Schreier ring.

Proof. Let R be a φ-quasi-Schreier ring, then by Theorem 2.13, R/Nil(R)
is a quasi-Schreier domain and so by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is a
quasi-Schreier domain. Let φ(I) ⊇ φ(J1)φ(J2) for regular invertible ideals
φ(I), φ(J1), φ(J2) of φ(R). Then

φ(I)/Nil(φ(R)) ⊇ (φ(J1)/Nil(φ(R)))(φ(J2)/Nil(φ(R)))

for invertible ideals φ(I)/Nil(φ(R)), φ(J1)/Nil(φ(R)), φ(J2)/Nil(φ(R)) of
φ(R)/Nil(φ(R)) by [14, Lemma 2.4]. So

φ(I)/Nil(φ(R)) = (φ(I1)/Nil(φ(R)))(φ(I2)/Nil(φ(R)))

for invertible ideals φ(I1)/Nil(φ(R)), φ(I2)/Nil(φ(R)) of φ(R)/Nil(φ(R)) with
φ(I1)/Nil(φ(R)) ⊇ φ(J1)/Nil(φ(R)) and φ(I2)/Nil(φ(R)) ⊇ φ(J2)/Nil(φ(R)).
Thus φ(I) = φ(I1)φ(I2) for regular invertible ideals φ(I1), φ(I2) of φ(R) by [14,
Lemma 2.4], with φ(I1) ⊇ φ(J1) and φ(I2) ⊇ φ(J2). Therefore φ(R) is a quasi-
Schreier ring. Conversely, let φ(R) be a quasi-Schreier ring. Let I ⊇ J1J2 for
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nonnil φ-invertible ideals I, J1, J2 of R. Then φ(I) ⊇ φ(J1)φ(J2) for regular
invertible ideals φ(I), φ(J1), φ(J2) of φ(R). So

φ(I)/Nil(φ(R)) ⊇ (φ(J1)/Nil(φ(R)))(φ(J2)/Nil(φ(R)))

for invertible ideals φ(I)/Nil(φ(R)), φ(J1)/Nil(φ(R)) and φ(J2)/Nil(φ(R)) of
φ(R)/Nil(φ(R)) by [14, Lemma 2.4]. Since φ(I) = φ(I1)φ(I2) for regular in-
vertible ideals φ(I1), φ(I2) of φ(R) with φ(I1) ⊇ φ(J1) and φ(I2) ⊇ φ(J2),
then

φ(I)/Nil(φ(R)) = (φ(I1)/Nil(φ(R)))(φ(I2)/Nil(φ(R)))

for invertible ideals φ(I1)/Nil(φ(R)), φ(I2)/Nil(φ(R)) of φ(R)/Nil(φ(R)) by
[14, Lemma 2.4], in which

φ(I1)/Nil(φ(R))⊇ φ(J1)/Nil(φ(R)) and φ(I2)/Nil(φ(R))⊇ φ(J2)/Nil(φ(R)).

Hence, φ(R)/Nil(φ(R)) is a quasi-Schreier domain and so by [5, Lemma 2.5],
R/Nil(R) is a quasi-Schreier domain. Therefore, by Theorem 2.13, R is a
φ-quasi-Schreier ring. �

Corollary 2.15. Let R ∈ H. The following are equivalent:
(1) R is a φ-quasi-Schreier ring;
(2) φ(R) is a quasi-Schreier ring;
(3) R/Nil(R) is a quasi-Schreier domain;
(4) φ(R)/Nil(φ(R)) is a quasi-Schreier domain.

Theorem 2.16. Let R ∈ H. If R is a φ-quasi-Schreier ring, then R is a

quasi-Schreier ring.

Proof. Suppose that R is a φ-quasi-Schreier ring. Then, by 2.13, R/Nil(R)
is a quasi-Schreier domain. Let I, J1, J2 be regular invertible ideals of R and
I ⊇ J1J2. Then I/Nil(R), J1/Nil(R), J2/Nil(R) are nonzero invertible ideals
of R/Nil(R) by [14, Lemma 2.4], and I/Nil(R) ⊇ (J1/Nil(R))(J2/Nil(R)).
So, I/Nil(R) = (I1/Nil(R))(I2/Nil(R)) for some nonzero invertible ideals
I1/Nil(R), I2/Nil(R) of R/Nil(R) with Ii/Nil(R) ⊇ Ji/Nil(R) for i = 1, 2.
Therefore I = I1I2 for some regular invertible ideals I1, I2 of R by [14, Lemma
2.4], with Ii ⊇ Ji for i = 1, 2 and thus R is quasi-Schreier ring. �

Theorem 2.17. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-quasi-
Schreier ring if and only if R is a quasi-Schreier ring.

Proof. Suppose that R is a quasi-Schreier ring. Then φ(R) = R is a quasi-
Schreier ring. Hence, by Theorem 2.14, R is a φ-quasi-Schreier ring. The
converse is clear by Theorem 2.16. �

Corollary 2.18. Let R ∈ H. If R is a φ-pre-Schreier ring, then R is a φ-
quasi-Schreier ring.

Proof. Let R be a φ-pre-Schreier ring, then R/Nil(R) is a pre-Schreier domain.
So, by [18, Proposition 2.3], R/Nil(R) is a quasi-Schreier domain and hence
by Theorem 2.13, R is a φ-quasi-Schreier ring. �
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Definition 2.19. We say that a regular element x of a ring R is strongly
primal, whenever x | ab for regular elements a, b of R, then there exist k ≥ 1
and regular elements a′, b′ of R such that xk = a′b′ with a′ | ak and b′ | bk.
Definition 2.20. A nonnil element x of R is called φ-strongly primal in R if
and only if φ(x) is strongly primal in φ(R).

Another generalization of the φ-pre-Schreier rings defined as follow.

Definition 2.21. A ring R is called a φ-almost-Schreier ring (φ-AS ring) if
every nonnil element of R is φ-strongly primal.

Lemma 2.22. Let R ∈ H and x ∈ R. Then x is a φ-strongly primal element

in R if and only if x+Nil(R) is a strongly primal element in R/Nil(R).

Proof. Let x be a φ-strongly primal element of R. Let x + Nil(R) | (a +
Nil(R))(b+Nil(R)) = ab+Nil(R) in R/Nil(R) for nonnil elements x, a, b of R.
Then there exists y+Nil(R) in R/Nil(R) such that ab+Nil(R) = xy+Nil(R).
So ab − xy ∈ Nil(R). Thus ab = xy + w for some w ∈ Nil(R). Since Nil(R)
is a divided prime ideal. Then Nil(R) ⊆ (x). So w = xz for some z ∈ Nil(R).
Therefore ab = xy+xz = x(y+z). Hence x | ab inR for nonnil elements x, a, b of
R. In this case φ(x) | φ(ab) = φ(a)φ(b) in φ(R) for regular elements φ(x), φ(a),
φ(b) of φ(R). Since x is φ-strongly primal in R, φ(x) is strongly primal in φ(R),
by definition. So φ(xk) = φ(a′)φ(b′) = φ(a′b′) for some regular elements φ(a′),
φ(b′) of φ(R) and some integer k ≥ 1 with φ(a′) | φ(ak) and φ(b′) | φ(bk). Hence
〈φ(xk)〉 = 〈φ(a′b′)〉 with 〈φ(ak)〉 ⊆ 〈φ(a′)〉 and 〈φ(bk)〉 ⊆ 〈φ(b′)〉. Therefore,
φ(〈xk〉) = φ(〈a′b′〉) with φ(〈ak〉) ⊆ φ(〈a′〉) and φ(〈bk〉) ⊆ φ(〈b′〉). Hence, by
[14, Lemma 2.1], 〈xk〉 = 〈a′b′〉 with 〈ak〉 ⊆ 〈a′〉 and 〈bk〉 ⊆ 〈b′〉. So there
exists a unit element u of R such that xk = ua′b′ with a′ | ak and b′ | bk.
Since u is invertible, u /∈ Z(R) and so u is not a nonnil element of R. Hence
xk +Nil(R) = ua′b′ +Nil(R) = (ua′ +Nil(R))(b′ +Nil(R)) with ua′ | (ua)k
and b′ | bk. Therefore x+Nil(R) is strongly primal in R/Nil(R). Conversely,
let x+Nil(R) be a strongly primal element of R/Nil(R). Since, by [5, Lemma
2.5], φ(R)/Nil(φ(R)) is ring- homomorphic to R/Nil(R), then φ(x)+Nil(φ(R))
is strongly primal in φ(R)/Nil(φ(R)). Now, let x | ab for nonnil elements of
R. Then φ(x) +Nil(φ(R)) | φ(a) +Nil(φ(R))φ(b) +Nil(φ(R)) and so (φ(x) +
Nil(φ(R)))k = (φ(a′)+Nil(φ(R)))(φ(b′)+Nil(φ(R))) = φ(a′)φ(b′)+Nil(φ(R))
for nonzero elements φ(a′) +Nil(φ(R)), φ(b′) +Nil(φ(R)) of φ(R)/Nil(φ(R))
for some k ≥ 1 with φ(a′) + Nil(φ(R)) | (φ(a) + Nil(φ(R))k and φ(b′) +
Nil(φ(R)) | (φ(b) + Nil(φ(R)))k. Therefore φ(x)k − φ(a′)φ(b′) ∈ Nil(φ(R)).
Since Nil(φ(R)) = Z(φ(R), we conclude that φ(x)k = φ(a′)φ(b′) for some k ≥ 1
with φ(a′) | (φ(a))k and φ(b′) | (φ(b))k. So φ(x) is strongly primal in φ(R) and
by definition of φ-strongly primal element, x is a φ-strongly primal element of
R. �

Theorem 2.23. Let R ∈ H. Then R is a φ-AS ring if and only if R/Nil(R)
is AS domain.
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Proof. It is clear by Lemma 2.22. �

Theorem 2.24. Let R ∈ H. Then R is a φ-AS ring if and only if φ(R) is an

AS ring.

Proof. Suppose that R is a φ-AS ring, then by Theorem 2.23, R/Nil(R) is
a AS domain. So, by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is a AS domain.
Let φ(x) | φ(a)φ(b) for regular elements φ(x), φ(a), φ(b) of φ(R). Then
φ(x) +Nil(φ(R)) | (φ(a) +Nil(φ(R)))(φ(b) +Nil(φ(R))) for nonzero elements
φ(x)+Nil(φ(R)), φ(a)+Nil(φ(R)), φ(b)+Nil(φ(R)) of φ(R)/Nil(φ(R)). Thus
(φ(x)+Nil(φ(R)))K = (φ(a′)+Nil(φ(R)))(φ(b′)+Nil(φ(R))) for nonzero ele-
ments φ(a′)+Nil(φ(R)), φ(b′)+Nil(φ(R)) of φ(R)/Nil(φ(R)) and for some k ≥
1 with φ(a′)+Nil(φ(R)) | (φ(a)+Nil(φ(R)))k and φ(b′)+Nil(φ(R)) | (φ(b)+
Nil(φ(R)))k. Therefore φ(x)k − φ(a′)φ(b′) ∈ Nil(φ(R)). Since Nil(φ(R)) =
Z(φ(R), we conclude that φ(x)k = φ(a′)φ(b′) for regular elements φ(a′), φ(b′)
of φ(R) with φ(a′) | (φ(a))k and φ(b′) | (φ(b))k . Hence φ(R) is an AS ring.
Conversely, let φ(R) be an AS ring. Let x | ab for nonnil elements of R.
Then φ(x) | φ(a)φ(b) for regular elements φ(x), φ(a), φ(b) of φ(R). So φ(x) +
Nil(φ(R)) | (φ(a)+Nil(φ(R)))(φ(b)+Nil(φ(R))) for nonzero elements φ(x)+
Nil(φ(R)), φ(a) + Nil(φ(R)), φ(b) + Nil(φ(R)) of φ(R)/Nil(φ(R)). Since
φ(x)k = φ(a′)φ(b′) for regular elements φ(a′), φ(b′) of φ(R) and for some k ≥ 1
with φ(a′) | (φ(a))k and φ(b′) | (φ(b))k, so (φ(x))k + Nil(φ(R)) = (φ(a′) +
Nil(φ(R)))(φ(b′)+Nil(φ(R))) for nonzero elements φ(a′)+Nil(φ(R)), φ(b′)+
Nil(φ(R)) of φ(R)/Nil(φ(R)) with φ(a′) + Nil(φ(R)) | (φ(a))k + Nil(φ(R))
and φ(b′) +Nil(φ(R)) | (φ(b))k +Nil(φ(R)). Therefore φ(R)/Nil(φ(R)) is an
AS domain. Since, by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is ring-homomorphic
to R/Nil(R), then R/Nil(R) is an AS domain. Hence, by Theorem 2.23, R is
a φ-AS ring. �

Corollary 2.25. Let R ∈ H. The following are equivalent:
(1) R is a φ-AS ring;
(2) φ(R) is a AS ring;
(3) R/Nil(R) is a AS domain;
(4) φ(R)/Nil(φ(R) is a AS domain.

Lemma 2.26. Let R ∈ H and x ∈ R. If x is φ-strongly primal, then x is

strongly primal.

Proof. If x is φ-strongly primal, then by Lemma 2.22, x + Nil(R) is strongly
primal in R/Nil(R). If x | ab for regular elements x, a, b of R. Then with a
same way of proof Theorem 2.24, we conclude that x is strongly primal. �

Theorem 2.27. Let R ∈ H. If R is a φ-AS ring, then R is a AS ring.

Proof. It is obvious by Lemma 2.26. �

Theorem 2.28. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-AS ring if

and only if R is a AS ring.
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Proof. Suppose that R is a AS ring. Then φ(R) = R is a AS ring. Hence, by
Theorem 2.24, R is a φ-AS ring. The converse is clear by Theorem 2.27. �

Corollary 2.29. Let R ∈ H. If R is a φ-pre-Schreier ring, then R is a φ-AS
ring.

Proof. Let R be a φ-pre-Schreier ring, then R/Nil(R) is a pre-Schreier domain.
So R/Nil(R) is a AS domain and hence R is a φ-AS ring. �

Definition 2.30. A ring R is called a φ-almost-quasi-Schreier ring (φ-AQS
ring) if whenever I, J1, J2 are nonnil φ-invertible ideals of R such that I ⊇ J1J2
there exist an integer k ≥ 1 and nonnil φ-invertible ideals I1, I2 of R such that
Ik = I1I2 and Ii ⊇ Jk

i for i = 1, 2.

Theorem 2.31. Let R ∈ H. Then R is a φ-AQS ring if and only if R/Nil(R)
is an AQS domain.

Proof. Suppose that R is a φ-AQSring and let I/Nil(R), J1/Nil(R) and
J2/Nil(R) be nonzero invertible ideals ofR/Nil(R) and I/Nil(R)⊇(J1/Nil(R))
(J2/Nil(R)). Then, by Lemma 2.12, I, J1, J2 are nonnil φ-invertible ideals of R
and I ⊇ J1J2. So I

k = I1I2 for φ-invertible ideals I1, I2 of R and for some k ≥ 1
with I1 ⊇ Jk

1 and I2 ⊇ Jk
2 . Therefore Ik/Nil(R) = (I1/Nil(R))(I2/Nil(R))

for invertible ideals I1/Nil(R) and I2/Nil(R) of R/Nil(R) by Lemma 2.12 and
for some k ≥ 1, with I1/Nil(R) ⊇ Jk

1 /Nil(R) and I2/Nil(R) ⊇ Jk
2 /Nil(R).

Hence, R/Nil(R) is an AQS domain. Conversely, suppose that R/Nil(R) is
an AQS domain. Let I, J1, J2 be nonnil φ-invertible ideals of R and I ⊇ J1J2.
Then, by Lemma 2.12, I/Nil(R), J1/Nil(R), J2/Nil(R) are nonzero invertible
ideals of R/Nil(R) and I/Nil(R) ⊇ (J1/Nil(R))(J2/Nil(R)). So Ik/Nil(R) =
(I1/Nil(R))(I2/Nil(R)) for invertible ideals I1/Nil(R), I2/Nil(R) ofR/Nil(R)
and for some k ≥ 1 with I1/Nil(R) ⊇ Jk

1 /Nil(R) and I2/Nil(R) ⊇ Jk
2 /Nil(R).

Therefore, Ik = I1I2 for φ-invertible ideals I1, I2 of R by Lemma 2.12 and for
some k ≥ 1, with I1 ⊇ Jk

1 and I2 ⊇ Jk
2 . Therefore R is a φ-AQS ring. �

Theorem 2.32. Let R ∈ H. Then R is a φ-AQS ring if and only if φ(R) is a

AQS ring.

Proof. Let R be a φ-AQS ring, then by Theorem 2.31, R/Nil(R) is a AQS
domain and so by [5, Lemma 2.5], φ(R)/Nil(φ(R)) is a AQS domain. Let
φ(I) ⊇ φ(J1)φ(J2) for regular invertible ideals φ(I), φ(J1), φ(J2) of φ(R). Then
φ(I)/Nil(φ(R)) ⊇ (φ(J1)/Nil(φ(R)))(φ(J2)/Nil(φ(R))) for invertible ideals
φ(I)/Nil(φ(R)), φ(J1)/Nil(φ(R)), φ(J2)/Nil(φ(R)) of φ(R)/Nil(φ(R)) by [14,
Lemma 2.4]. So (φ(I)/Nil(φ(R)))K = (φ(I1)/Nil(φ(R)))(φ(I2)/Nil(φ(R))) for
invertible ideals φ(I1)/Nil(φ(R)), φ(I2)/Nil(φ(R)) of φ(R)/Nil(φ(R)) and for
some k ≥ 1 with φ(I1)/Nil(φ(R)) ⊇ (φ(J1)/Nil(φ(R)))k and φ(I2)/Nil(φ(R))
⊇ (φ(J2)/Nil(φ(R)))k. Thus (φ(I))k = φ(I1)φ(I2) for regular invertible ideals
φ(I1), φ(I2) of φ(R) by [14, Lemma 2.4] and for some k ≥ 1, with φ(I1) ⊇
(φ(J1))

k and φ(I2) ⊇ (φ(J2))
k. Therefore φ(R) is an AQS ring. Conversely, let
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φ(R) be an AQS ring. Let I ⊇ J1J2 for nonnil φ-invertible ideals I, J1, J2 of R.
Then φ(I) ⊇ φ(J1)φ(J2) for regular invertible ideals φ(I), φ(J1), φ(J2) of φ(R).
So φ(I)/Nil(φ(R)) ⊇ (φ(J1)/Nil(φ(R)))(φ(J2)/Nil(φ(R))) for invertible ideals
φ(I)/Nil(φ(R)), φ(J1)/Nil(φ(R)), φ(J2)/Nil(φ(R)) of φ(R)/Nil(φ(R)) by [14,
Lemma 2.4]. Since (φ(I))k = φ(I1)φ(I2) for regular invertible ideals φ(I1) and
φ(I2) of φ(R) and for some k ≥ 1 with φ(I1) ⊇ (φ(J1))

k and φ(I2) ⊇ (φ(J2))
k,

then (φ(I)/Nil(φ(R)))k = (φ(I1)/Nil(φ(R)))(φ(I2)/Nil(φ(R))) for invertible
ideals φ(I1)/Nil(φ(R)), φ(I2)/Nil(φ(R)) of φ(R)/Nil(φ(R)) by [14, Lemma
2.4] and for some k ≥ 1, with φ(I1)/Nil(φ(R)) ⊇ (φ(J1)/Nil(φ(R)))k and
φ(I2)/Nil(φ(R)) ⊇ (φ(J2)/Nil(φ(R)))k. Hence, φ(R)/Nil(φ(R)) is a AQS do-
main and so by [5, Lemma 2.5], R/Nil(R) is an AQS domain. Therefore, by
Theorem 2.31, R is a φ-AQS ring. �

Corollary 2.33. Let R ∈ H. The following are equivalent:
(1) R is a φ-AQS ring;
(2) φ(R) is a AQS ring;
(3) R/Nil(R) is a AQS domain;
(4) φ(R)/Nil(φ(R)) is a AQS domain.

Theorem 2.34. Let R ∈ H. If R is a φ-AQS ring, then R is an AQS ring.

Proof. Suppose that R is a φ-AQS ring, then by Theorem 2.31, R/Nil(R) is an
AQS domain. Let I, J1, J2 be regular invertible ideals ofR and I ⊇ J1J2. Then,
by [14, Lemma 2.4], I/Nil(R), J1/Nil(R), J2/Nil(R) are nonzero invertible
ideals of R/Nil(R) and I/Nil(R) ⊇ J1/Nil(R)J2/Nil(R). So, (I/Nil(R))k =
I1/Nil(R)I2/Nil(R) for an integer k ≥ 1 and for some nonzero invertible ideals
I1/Nil(R), I2/Nil(R) of R/Nil(R) with Ii/Nil(R) ⊇ (Ji/Nil(R))k for i = 1, 2.
Therefore Ik = I1I2 for an integer k ≥ 1 and some regular invertible ideals
I1, I2 of R by [14, Lemma 2.4], with Ii ⊇ Jk

i for i = 1, 2. Hence R is AQS
ring. �

Theorem 2.35. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-AQS ring if

and only if R is an AQS ring.

Proof. Suppose that R is a AQS ring. Then φ(R) = R is an AQS ring.
Hence, by Theorem 2.32, R is a φ-AQS ring. The converse is clear by Theorem
2.34. �

Corollary 2.36. Let R ∈ H. If R is a φ-AS ring, then R is a φ-AQS ring.

Proof. Let R be a φ-AS ring, then R/Nil(R) is an AS domain. So, by [1,
Proposition 2.3], R/Nil(R) is an AQS domain. Therefore, by Theorem 2.31,
R is a φ-AQS ring. �

Corollary 2.37. Let R ∈ H. If R is a φ-quasi-Schreier ring, then R is a

φ-AQS ring.
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Proof. Let R be a φ-quasi-Schreier ring, then by Theorem 2.13 R/Nil(R) is a
quasi-Schreier domain. So R/Nil(R) is a AQS domain. Therefore, by Theorem
2.31, R is a φ-AQS ring. �

3. φ-GCD ring

Recall that a ring R is called a GCD ring if every two regular elements of
R have a greatest common divisor.

Definition 3.1. A ring R is called a φ-GCD ring if every two nonnil elements
of R have a greatest common divisor.

Theorem 3.2. Let R ∈ H. Then R is a φ-GCD ring if and only if φ(R) is a

GCD ring.

Proof. Let R be a φ-GCD ring and φ(x), φ(y) two regular elements of φ(R), i.e.,
φ(x), φ(y) ∈ φ(R) \ Z(φ(R)) = φ(R) \Nil(φ(R)). Then x, y ∈ R \Nil(R). So,
there is d ∈ R\Nil(R) such that d | x and d | y and if c ∈ R\Nil(R) with c | x
and c | y, then c | d. Therefore, φ(d) ∈ φ(R) \ Nil(φ(R)) = φ(R) \ Z(φ(R))
such that φ(d) | φ(x) and φ(d) | φ(y) and if φ(c) ∈ φ(R) \ Nil(φ(R)) =
φ(R) \ Z(φ(R)) with φ(c) | φ(x) and φ(c) | φ(y), then φ(c) | φ(d). So, φ(R)
is a GCD ring. Conversely, let φ(R) be a GCD ring and x, y ∈ R \ Nil(R).
Then φ(x), φ(y) ∈ φ(R) \ Nil(φ(R)) = φ(R) \ Z(φ(R)). So, there is φ(d) ∈
φ(R) \ Z(φ(R)) = φ(R) \ Nil(φ(R)) such that φ(d) | φ(x), φ(y) and if φ(c) ∈
φ(R) \ Z(φ(R)) = φ(R) \ Nil(φ(R)) with φ(c) | φ(x), φ(y), then φ(c) | φ(d).
Thus, there is d ∈ R \Nil(R) such that d | x and d | y and if c ∈ R \ Nil(R)
with c | x and c | y, then c | d. Therefore R is a φ-GCD ring. �

Theorem 3.3. Let R ∈ H. Then R is a φ-GCD ring if and only if R/Nil(R)
is a GCD domain.

Proof. Suppose that R is a φ-GCD ring and x + Nil(R), y + Nil(R) be two
nonzero elements of R/Nil(R). Then x, y are two nonnil elements of R and
so x, y have greatest common divisor. Hence x + Nil(R), y + Nil(R) have a
greatest common divisor. Therefore R/Nil(R) is a GCD domain. Conversely,
let R/Nil(R) is a GCD domain and x, y be two nonnil elements of R. Then
x + Nil(R), y + Nil(R) are two nonzero elements of R/Nil(R). Thus x +
Nil(R), y + Nil(R) have a greatest common divisor. So x, y have a greatest
common divisor. Therefore R is a φ-GCD ring. �

Corollary 3.4. Let R ∈ H. The following are equivalent:
(1) R is a φ-GCD ring;
(2) φ(R) is a GCD ring;
(3) R/Nil(R) is a GCD domain;
(4) φ(R)/Nil(φ(R)) is a GCD domain.

Theorem 3.5. Let R ∈ H. If R is a φ-GCD ring, then R is a GCD ring.
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Proof. Suppose that R is a φ-GCD ring, then R/Nil(R) is a GCD domain.
Let a, b be two regular elements of R. Then a + Nil(R), b + Nil(R) are two
elements of R/Nil(R). So a+Nil(R), b+Nil(R) have greatest common divisor.
So, a, b have greatest common divisors. Therefore R is a GCD ring. �

Theorem 3.6. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-GCD ring if

and only if R is a GCD ring.

Proof. Suppose that R is a GCD ring. Then φ(R) = R is a GCD ring. Hence,
by Theorem 3.2, R is a φ-GCD ring. The converse is clear by Theorem 3.5. �

Corollary 3.7. Let R ∈ H. If R is a φ-GCD ring, then R is a φ-Schreier
ring.

Proof. Let R be a φ-GCD ring. So R/Nil(R) is a GCD domain and thus, by
[15, Theorem 2.4], R/Nil(R) is a Schreier domain. Therefore R is a φ-Schreier
ring. �

Definition 3.8. A φ-generalized GCD ring (φ-GGCD ring) is a ring in which
every intersection of two φ-invertible ideals is a φ-invertible ideal.

Theorem 3.9. Let R ∈ H. Then R is a φ-GGCD ring if and only if R/Nil(R)
is a GGCD domain.

Proof. Suppose that R is a φ-GGCD ring and let I/Nil(R), J/Nil(R) be two
nonzero invertible ideals of R/Nil(R). So, by Lemma 2.12, I, J are two φ-
invertible ideals of R. Therefore, I ∩ J is a φ-invertible ideal of R. Thus,
by Lemma 2.12, I ∩ J/Nil(R) = I/Nil(R) ∩ J/Nil(R) is an invertible ideal
of R/Nil(R). Hence R/Nil(R) is a GGCD domain. Conversely, suppose
that R/Nil(R) is a GGCD domain. let I, J be two φ-invertible ideals of R.
Then, by Lemma 2.12, I/Nil(R), J/Nil(R) are two nonzero invertible ideals of
R/Nil(R). So I ∩ J/Nil(R) = I/Nil(R) ∩ J/Nil(R) is an invertible ideal of
R/Nil(R). Therefore, by Lemma 2.12, I ∩J is a φ-invertible ideal of R. Hence
R is a φ-GGCD ring. �

Theorem 3.10. Let R ∈ H. Then R is a φ-GGCD ring if and only if φ(R)
is a GGCD ring.

Proof. Let R be a φ-GGCD ring and φ(I), φ(J) be two invertible ideals of φ(R).
Then I, J are two φ-invertible ideals of R and so I ∩ J is a φ-invertible ideal
of R. Hence φ(I) ∩ φ(J) = φ(I ∩ J) is an invertible ideal of φ(R). Therefore
φ(R) is a GGCD ring. Conversely, let φ(R) be a GGCD ring and I, J be two
φ-invertible ideals of R. Then φ(I), φ(J) are two invertible ideals of φ(R) and
so φ(I ∩ J) = φ(I) ∩ φ(J) is an invertible ideal of φ(R). Therefore I ∩ J is a
φ-invertible ideal of R. Thus R is a φ-GGCD ring. �

Corollary 3.11. Let R ∈ H. The following are equivalent:
(1) R is a φ-GGCD ring;
(2) φ(R) is a GGCD ring;



ON φ-SCHREIER RINGS 1071

(3) R/Nil(R) is a GGCD domain;
(4) φ(R)/Nil(φ(R)) is a GGCD domain.

Theorem 3.12. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-GGCD ring

if and only if R is a GGCD ring.

Proof. In this case φ(R) = R. �

Corollary 3.13. Let R ∈ H. If R is a φ-GCD ring, then R is a φ-GGCD
ring.

Corollary 3.14. Let R ∈ H. If R is a φ-Prüfer ring, then R is a φ-GGCD
ring.

Proof. Let R be a φ-Prüfer ring. So, by [5, Theorem 2.6], R/Nil(R) is a Prüfer
domain. Then, by [4, Theorem 1], R/Nil(R) is a GGCD domain. Therefore,
by Theorem 3.9, R is a φ-GGCD ring. �

Corollary 3.15. Let R ∈ H. If R is a φ-GGCD ring, then R is a φ-quasi-
Schreier ring.

Proof. Let R be a φ-GGCD ring. So, by Theorem 3.9, R/Nil(R) is a GGCD
domain. Then, by [18, Proposition 2.2], R/Nil(R) is a quasi-Schreier domain.
Therefore, by Theorem 2.13, R is a φ-quasi-Schreier ring. �

Definition 3.16. A φ-almost GCD ring (φ-AGCD ring) is a ring in which for
every two nonnil principal ideals I and J of R, there exists some k ≥ 1 such
that Ik ∩ Jk is a nonnil principal ideal of R.

Theorem 3.17. Let R ∈ H. Then R is a φ-AGCD ring if and only if

R/Nil(R) is a AGCD domain.

Proof. Suppose that R is a φ-AGCD ring and let I/Nil(R), J/Nil(R) be two
nonzero principal ideals of R/Nil(R). Then, by [5, Lemma 3.1], I, J are two
nonnil principal ideals of R. So, there exists some k ≥ 1 such that Ik ∩ Jk

is a nonnil principal ideal of R. Therefore, by [5, Lemma 3.1], (I/Nil(R))k ∩
(J/Nil(R))k = Ik ∩ Jk/(Nil(R))k is a nonzero principal ideal of R/Nil(R).
Hence, R/Nil(R) is a AGCD domain. Conversely, suppose that R/Nil(R) is
a AGCD domain. Let I, J be two nonnil principal ideal of R. Then, by [5,
Lemma 3.1], I/Nil(R), J/Nil(R) be two nonzero principal ideals of R/Nil(R).
Therefore there exists some k ≥ 1 such that (I/Nil(R))k ∩ (J/Nil(R))k =
Ik ∩ Jk/(Nil(R))k is a nonzero principal ideal of R/Nil(R). So, by [5, Lemma
3.1], Ik ∩ Jk is a nonnil principal ideal of R. Hence, R is a φ-AGCD ring. �

Theorem 3.18. Let R ∈ H. Then R is a φ-AGCD ring if and only if φ(R)
is a AGCD ring.

Proof. Let R be a φ-AGCD ring and φ(I), φ(J) be two regular principal ideals
of φ(R). Then I, J are two nonnil principal ideals of R and so there exists some
k ≥ 1 such that Ik ∩Jk is a nonnil principal ideal of R. Hence φ(I)k ∩φ(J)k =
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φ(Ik ∩ Jk) is an regular principal ideal of φ(R). Therefore φ(R) is a AGCD
ring. Conversely, let φ(R) is a AGCD ring and I, J be two nonnil principal
ideals of R. Then φ(I), φ(J) are two regular principal ideals of φ(R) and so
there exists some k ≥ 1 such that φ(Ik ∩ Jk) = φ(I)k ∩ φ(J)k is a regular
principal ideal of φ(R). Therefore Ik∩Jk is a nonnil principal ideal of R. Thus
R is a φ-AGCD ring. �

Corollary 3.19. Let R ∈ H. The following are equivalent:
(1) R is a φ-AGCD ring;
(2) φ(R) is a AGCD ring;
(3) R/Nil(R) is a AGCD domain;
(4) φ(R)/Nil(φ(R)) is a AGCD domain.

Theorem 3.20. Let R ∈ H. If R is a φ-AGCD ring, then R is an AGCD
ring.

Proof. Suppose that R is a φ-AGCD ring. Then, by Theorem 3.17, R/Nil(R)
is a AGCD domain. Let I and J be two regular principal ideal of R. So, by
[5, Lemma 3.1], I/Nil(R) and J/Nil(R) are two principal ideals of R/Nil(R).
So there exists k ≥ 1 such that (I/Nil(R))k ∩ (J/Nil(R))k is a principal ideal
of R/Nil(R). Therefore Ik ∩ Jk is a principal ideal of R. Hence R is a AGCD
ring. �

Theorem 3.21. Let R ∈ H with Nil(R) = Z(R). Then R is a φ-AGCD ring

if and only if R is an AGCD ring.

Proof. Suppose that R is an AGCD ring. Then φ(R) = R is an AGCD
ring. Hence, by Theorem 3.18, R is a φ-AGCD ring. The converse is clear by
Theorem 3.20. �

Corollary 3.22. Let R ∈ H. If R is a φ-AGCD ring, then R is a φ-AS ring.

Proof. Let R be a φ-AGCD ring. So, by Theorem 3.17, R/Nil(R) is an AGCD
domain. Thus, by [17, Proposition 2.2], R/Nil(R) is an AS domain. Therefore,
by Theorem 2.23, R is a φ-AS ring. �

Therefore, by Corollaries 2.18, 2.29, 2.36, 2.37, 3.7, 3.13, 3.14, 3.15 and 3.22,
we have the following implications.

φ− Prüfer

��

φ−GCD

��

+3 φ−GGCD

��

φ− Schreier +3 φ− pre − Schreier

��

+3 φ− quasi− Schreier

��

φ−AGCD +3 φ−AS +3 φ−AQS
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4. Examples

Our non-domain examples of φ-X- rings where X = Schreier, quasi-Schreier,
AS, AQS, GCD, GGCD, AGCD are provided by the idealization construction
R(+)B arising from a ring R and an R-module B as in [21]. We recall this
construction. For a ring R, let B be an R-module. Consider R(+)B = {(r, b) :
r ∈ R and b ∈ B}, and let (r, b) and (s, c) be to elements of R(+)B. Define

(1) (r, b) = (s, c) if r = s and b = c.
(2) (r, b) + (s, c) = (r + s, b+ c).
(3) (r, b)(s, c) = (rs, bs+ rc).
Under these definitions R(+)B becomes a commutative ring with identity.

Example 4.1. LetD be aX-domain with quotient field L whereX = Schreier,
quasi-Schreier, AS, AQS, GCD, GGCD, AGCD. Set R = D(+)L. Then R ∈ H
and R is a φ-X-ring which is not a X-domain.

Proof. Since D is a domain, {0} is a prime ideal of D and Nil(D) = {0}. Hence
Nil(R) = {0}(+)L is a prime ideal of R. Nil(R) is a divided ideal, because
let (a, x) ∈ R \ Nil(R) and (0, y) ∈ Nil(R). Since (0, y) = (a, x)(0, y/a),
(0, y) ∈ (a, x). Hence R ∈ H. Also, R/Nil(R) is ring-isomorphic to D. Since
D is a X-domain, so R/Nil(R) is a X-domain and therefore R is a φ-X ring.
But R is not a domain, because (0, l1)(0, l2) = (0, 0) for each l1, l2 ∈ L. �

The following is an example of a ring R ∈ H which is a X-ring but not a
φ-X-ring where X =Schreier, quasi-Schreier, AS, AQS, GCD, GGCD, AGCD.

Example 4.2. Let D be an integral domain with quotient field L which is
not a X-domain where X = Schreier, quasi-Schreier, AS, AQS, GCD, GGCD,
AGCD. Set R = D(+)(L/D). Then R ∈ H is a X-ring which is not a φ-X-ring.

Proof. By previous example, Nil(R) = {0}(+)(L/D) is a divided prime ideal
of R and thus R ∈ H. Since every nonunit of R is zero divisor, we conclude
that R is a X-ring. Since R/Nil(R) is ring-isomorphic to D and D is not a
X-domain, so R is not a φ-X-ring. �

It is clear that a φ-pre-Schreier ring is a φ-AS ring. In following example we
show that the converse is not true.

Example 4.3. Let D = Z[
√
−3]. So by [17], D is an AS domain such that

is not a pre-Schreier domain. Let R = D(+)L where L is the quotient field of
D. Then Nil(R) = {0}(+)L and R ∈ H. Since R/Nil(R) is ring-isomorphic
to D, so R/Nil(R) is an AS domain such that is not a pre-Schreier domain.
Therefore, by Theorem 2.5 and Theorem 2.23, R is a φ-AS ring which is not a
φ-pre-Schreier ring.

Example 4.4. Let D = Z[X2, X3]. So, by [1, Proposition 4.8], D is an AQS
domain which is neitherAS domain nor quasi-Schreier domain. SetR = D(+)L
where L is the quotient field of D. Hence Nil(R) = {0}(+)L, R ∈ H and
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R/Nil(R) is ring-isomorphic to D. So R/Nil(R) is an AQS domain which is
neither AS domain nor quasi-Schreier domain. Therefore, by Theorem 2.31,
Theorem 2.23 and Theorem2.13, R is a φ-AQS ring which is neither φ-AS-ring
nor φ-quasi-Schreier ring.

Example 4.5. Let D be a Dedekind non-principal domain. Then by [18], D
is a quasi-Schreier domain but is not a pre-Schreier domain. Let R = D(+)L
where L is the quotient field of D. Hence Nil(R) = {0}(+)L, R ∈ H and
R/Nil(R) is ring-isomorphic to D. So R/Nil(R) is a quasi-Schreier domain
such that is not a pre-Schreier domain. Hence, by Theorem 2.13 and Theorem
2.5, R is a φ-quasi-Schreier ring which is not a φ-pre-Schreier ring.

Example 4.6. Let D = Q[[X2, X3]]. So, by [17, Remark 2.4], D is an AS
domain which is not AGCD domain. Set R = D(+)L where L is the quotient
field of D. By the same argument, R is a φ-AS ring which is not a φ-AGCD
ring.

Example 4.7. Let D be a Prüfer non Bezout domain. Then D is a GGCD
domain which is not a GCD domain. Let R = D(+)L where L is the quotient
field of D. Hence Nil(R) = {0}(+)L, R ∈ H and R/Nil(R) is ring-isomorphic
to D. Thus R/Nil(R) is a GGCD domain which is not a GCD domain.
Therefore, by Theorem 3.9 and Theorem 3.3, R is a φ-GGCD ring which is
not a φ-GCD ring.

Example 4.8. Let A be a Prüfer domain which has two nonzero nonunits a, b
such that a ∈ ⋂

n b
nA. Consider the domain D = A +XA[1/b][X ]. Then, by

[7, Example 11], D is a quasi-Schreier domain which is not a GGCD domain.
Set R = D(+)L where L is the quotient field of D. Hence Nil(R) = {0}(+)L,
R ∈ H and R/Nil(R) is ring-isomorphic to D. So R/Nil(R) is a quasi-Schreier
domain which is not a GGCD domain. Therefore, by Theorem 2.13 and The-
orem 3.9, R is a φ-quasi-Schreier ring but is not a φ-GGCD ring.

Acknowledgement. The authors would like to thank the referee for carefully
reading the manuscript and for giving constructive comments which substan-
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[20] M. Griffin, Prüfer rings with zerodivisors, J. Reine Angew. Math. 240 (1970), 55–67.
[21] J. A. Huckaba, Commutative rings with zero divisors, New York, Dekker, 1988.
[22] S. McAdam and D. E. Rush, Schreier rings, Bull. London Math. Soc. 10 (1978), no. 1,

77–80.
[23] M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), no.

1-3, 29–62.
[24] , On a property of pre-Schreier domains, Comm. Algebra 15 (1987), no. 9, 1895–

1920.

Ahmad Yousefian Darani

Department of Mathematics and Applications

University of Mohaghegh Ardabili

P. O. Box 179, Ardabil, Iran

E-mail address: yousefian@uma.ac.ir, youseffian@gmail.com

Mahdi Rahmatinia

Department of Mathematics and Applications

University of Mohaghegh Ardabili

P. O. Box 179, Ardabil, Iran

E-mail address: m.rahmati@uma.ac.ir, mahdi.rahmatinia@gmail.com




