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ON ¢-SCHREIER RINGS

AHMAD YOUSEFIAN DARANI AND MAHDI RAHMATINIA

ABSTRACT. Let R be a ring in which Nil(R) is a divided prime ideal of
R. Then, for a suitable property X of integral domains, we can define
a ¢-X-ring if R/Nil(R) is an X-domain. This device was introduced by
Badawi [8] to study rings with zero divisors with a homomorphic image a
particular type of domain. We use it to introduce and study a number of
concepts such as ¢-Schreier rings, ¢-quasi-Schreier rings, ¢-almost-rings,
¢-almost-quasi-Schreier rings, ¢-GCD rings, ¢-generalized GCD rings
and ¢-almost GCD rings as rings R with Nil(R) a divided prime ideal
of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain,
almost domain, almost-quasi-Schreier domain, GC'D domain, generalized
GCD domain and almost GC'D domain, respectively.

We study some generalizations of these concepts, in light of general-
izations of these concepts in the domain case, as well. Here a domain D is
pre-Schreier if for all z,y,z € D\0, « | yz in D implies that z = rs where
r | y and s | z. An integrally closed pre-Schreier domain was initially
called a Schreier domain by Cohn in [15] where it was shown that a GCD
domain is a Schreier domain.

1. Introduction

We assume throughout that all rings are commmutative with 1 # 0. Let
R be a ring. Then T(R) denotes the total quotient ring of R, Nil(R) de-
notes the set of nilpotent elements of R and Z(R) denotes the set of zero-
divisors of R. Recall that a nonzerodivisor of a ring R is called a regular
element and an ideal of R is said to be regular if it contains a regular ele-
ment. A ring R is called a Priifer ring, in the sense of [20], if every finitely
generated regular ideal of R is invertible, i.e., if I is finitely generated regu-
lar ideal of R and I=! = {x € T(R) | I C R}, then II-! = R [5]. Recall
from [16] and [9], that a prime ideal P of R is called a divided prime ideal
if P C (z) for every x € R\ P; thus a divided prime ideal is comparable
to every ideal of R. In [8], [10], [11], [12] and [13], the scond-named author
investigated the class of rings H = {R | R is a commutative ring with 1 #
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0 and Nil(R) is a divided prime ideal of R}. An ideal I of a ring R is said to
be a nonnil ideal if I ¢ Nil(R). Recall from [8] that for a ring R € H with
total quotient ring T'(R), if a € R and b € R\ Z(R), then ¢ : T(R) — Ryu(r)
such that ¢(a/b) = a/b is a ring homomorphism from T'(R) into Ry (g) and
¢ restricted to R is also a ring homomorphism from R into Ry r) given by
¢(x) = x/1 for every x € R. A nonnil ideal I of R is said to be a ¢-invertible
it ¢(I) is an invertible ideal of ¢(R). If every nonnil finitely generated ideal of
R is ¢-invertible, then we say that R is a ¢-Priifer ring [5]. In [5, Lemma 2.5],
it is shown that, if R € H and P an ideal of R, then R/P is ring-isomorphic
to ¢(R)/d(P). A ring R € H is called ¢-integrally closed if ¢(R) is integrally
closed in T'(¢(R)) = Ryy(ry- It is shown that R is ¢-integrally closed if and
only if R/NilR is integrally closed if and only if ¢(R)/Nil(¢(R)) is integrally
closed.

Observe that if R € H, then ¢(R) € H, Ker(¢) C Nil(R), Nil(T(R)) =
Nil(R), Nil(Ryur) = ¢(Nil(R)) = Nil(¢(R)) = Z(6(R)), T(6(R)) =
Ryi(r) is quasilocal with maximal ideal Nil(¢(R)) and Ry ry/Nil(p(R)) =
T(P(R))/Nil(¢(R)) is the quotient field of ¢(R)/Nil(¢(R)). Therefore we have
x € R\ Nil(R) if and only if ¢(z) € ¢(R) \ Z(¢(R)). Let R € H. Then I is
a finitely generated nonnil ideal of R if and only if ¢(I) is a finitely generated
regular ideal of ¢(R) [5, Lemma 2.1]. Let R € H with Nil(R) = Z(R) and let
I be an ideal of R. Then I is an invertible ideal of R if and only if I/Nil(R)
is an invertible ideal of R/Nil(R) [5, Lemma 2.3]. Let R € H and let I be
an ideal od R. Then I is a finitely generated nonnil ideal of R if and only if
I/Nil(R) is a finitely generated nonzero ideal of R/Nil(R) [5, Lemma 2.4].

An element z of a ring R is called primal if whenever x | y1y2, with z,y1,y2 €
R, then & = z129 where 21 | y1 and 23 | y2. P. M. Cohen in [15] introduced
the concept of Schreier domain. A domain D is called a pre-Schreier domain if
every nonzero element of D is primal. If in addition D is integrally closed, then
D is called a Schreier domain. The study of Schreier domains was continued in
MacAdam and Rush [22] and M. Zafrullah [24]. In [18] and [7], an extension
of the class of pre-Schreier domains was studied. A domain D as called quasi-
Schreier domain if whenever I, J1, Jo are invertible ideals of D and I D JiJs,
then I = I; 15 for some invertible ideals Iy, Is of D with I; O J; for i = 1,2. In
[17], another generalization of the pre-Schreier domains was studied. A domain
D was called an almost-Schreier domain (AS domain) if whenever a, by, by are
nonzero elements of D and a | b1ba, there exist an integer k£ > 1 and nonzero
elements a1,as of D such that a* = ajas and a; | bf for i = 1,2. In [1],
Z. Ahmad and T. Dumitrescu introduced another generalization of the pre-
Schreier domains which includes the pre-Schreier domains and the AS domains.
They called this domain almost quasi-Schreier domain. A domain D is called
almost-quasi-Schreier domain (AQS domain) if whenever I, Jy, Jo are nonzero
invertible ideals of D such that I O JjJo there exist an integer kK > 1 and
nonzero invertible ideals I;, I of D such that I* = I;I, and I; D Jik for
i =1,2. A GCD domain is a domain in which every two elements have greatest
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common divisor. Anderson [3] and Anderson and Anderson [4] introduced and
investigated a class of domains called generalized GCD domains. A generalized
GCD domain (GGCD domain) is a domain in which every intersection of two
invertible nonzero ideals is an invertible ideal, [4]. An almost GCD domain
(AGCD domain) D is a domain in which for every two principal ideals I, J of
D there exists some k > 1 such that I* N J* is a principal ideal of D, [23].
Now we generalize above concepts. A ring R is called a pre-Schreier ring if
every regular element of R is primal. If in addition R is integrally closed, then
R is called a Schreier ring. A ring R is called a quasi-Schreier ring if whenever
1,J1,Js are regular invertible ideals of R and I O JyJs, then I = I1, for
regular invertible ideals I, I of R with I; O J; for i = 1,2. We say that a ring
R is almost-Schreier ring (AS ring) if whenever a, b1, by are regular elements of
R and a | bybs, there exist an integer & > 1 and regular elements a1, a2 of R
such that a* = ajas and a; | bf for i = 1,2. A ring R is called almost-quasi-
Schreier ring (AQS ring) if whenever I, Jy, Jo are regular invertible ideals of R
such that I O J;J; there exist an integer £ > 1 and regular invertible ideals
I, I> of R such that I* = I I, and I; D Ji’c for i = 1,2. A ring R is called a
GCD ring if every two regular elements of R have a greatest common divisor.
We say that a ring R is a generalized GCD ring (GGCD ring) if R is a ring in
which every intersection of two regular invertible ideals is an invertible ideal of
R. A generalized GCD ring (GGCD ring) was introduced by M. M. Ali and D.
J. Smith in [2]. They called a ring R a GGCD ring if in R the intersection of
every two finitely generated faithful multiplication ideals is a finitely generated
faithful multiplication ideal. In fact two above definitions for GGCD ring are
equivalent. For proof, it is sufficient to consider the following remarks in [19]:

Remark 1. Every invertible ideal is finitely generated ideal.
Remark 2. Every invertible ideal is a multiplication ideal.
Remark 3. An ideal I is multiplication if and only if I is locally principal.

Remark 4. Let I be a finitely generated ideal of R. Then [ is an invertible
ideal if and only if I is locally principal.

Here an ideal I of a ring R is called a multiplication ideal if every ideal
contained in I is a multiple of I [19].

An almost GCD ring (AGCD ring) is a ring in which for every two regular
principal ideals I and .J of R, there exists some k > 1 such that I* N J¥ is a
regular principal ideal of R.

In this paper, we define a ¢-primal element. We say that a nonnil element
x € R is ¢-primal if and only if ¢(x) is primal in ¢(R). In Lemma 2.2, we show
that € R is ¢-primal if and only if z + Nil(R) is primal in R/Nil(R). A ring
R is called a ¢-pre-Schreier ring if every element of R is ¢-primal. In addition
if R is ¢-integrally closed, then we say that R is a ¢-Schreier ring. A ring R
called a ¢-quasi-Schreier ring if whenever I, J1, Jo are nonnil ¢-invertible ideals
of Rand I D JyJs, then I = I; I, for nonnil ¢-invertible ideals I, Is of R with
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I; O J; for i = 1,2. we show that a ¢-pre-Schreier ring is a ¢-quasi-Schreier
ring, Corollary 2.18. We say that a regular element = of a ring R is strongly
primal, whenever z | ab for regular elements a,b of R, then there exists k > 1
and regular elements a’,b" of R such that 2* = a’b’ with a’ | a* and ¥’ | b*. An
element x of R is called ¢-strongly primal in R if and only if ¢(x) is strongly
primal in ¢(R). In Lemma 2.22, we show that z € R is a ¢-strongly primal
element if and only if  + Nil(R) is a strongly primal element in R/Nil(R). A
ring R is called a ¢-almost-Schreier ring (¢-AS ring) if every nonnil element
of R is ¢-strongly primal. In Corollary 2.29, we show that a ¢-pre-Schreier
ring is a ¢-AS ring. A ring R called a ¢-almost-quasi-Schreier ring (¢-AQS
ring) if whenever I, Ji, Jo are nonnil ¢-invertible ideals of R such that I D J;Jo
there exist an integer k£ > 1 and nonnil ¢-invertible ideals I, Is of R such that
I* = I and I; O JF for i = 1,2. In Corollary 2.36, we show that a ¢-AS
ring is a ¢-AQ.S ring and in Corollary 2.37, we prove that a ¢-quasi-Schreier
ring is a ¢-AQS ring. A ring R is called a ¢-GCD ring is a ring in which
every two nonnil elements of R have a greatest common divisor. A ¢-GCD
ring is a ¢-Schreier ring, Corollary 3.7. A ¢-generalized GCD ring (¢-GGCD
ring) is a ring in which every intersection of two nonnil principal ideals is a ¢-
invertible ideal. In Corollary 3.13, we show that a ¢-GCD ring is a ¢-GGCD
ring and in Corollary 3.14, we prove that a ¢-Priifer ring is a ¢-GGCD ring.
A ¢-GGCD ring is a ¢-quasi-Schreier ring, Corollary 3.15. A ¢-almost GC'D
ring (¢-AGCD ring) is a ring in which for every two nonnil principal ideals T
and J of R, there exists some k& > 1 such that I* N J* is a nonnil principal
ideal of R. In Corollary 3.22, we show that a ¢-AGCD ring is a ¢-AS ring.

2. ¢-Schreier rings

Definition 2.1. Let R € H. A nonnil element x € R is said to be ¢-primal if
and only if ¢(x) is primal in ¢(R).

Lemma 2.2. Let R € H and x € R. Then x is ¢-primal in R if and only if
x + Nil(R) is primal in R/Nil(R).

Proof. Let x be ¢-primal in R and let 2 4+ Nil(R) | (a+ Nil(R))(b+ Nil(R)) =
ab + Nil(R) in R/Nil(R) for nonnil elements z,a,b of R. Then there exists
y + Nil(R) in R/Nil(R) such that ab+ Nil(R) = zy + Nil(R). So ab —zy €
Nil(R). Thus ab = xy + w for some w € Nil(R). Since Nil(R) is a divided
prime ideal. Then Nil(R) C (z). So w = xz for some z € Nil(R). Therefore
ab = xy + 2z = x(y + z). Hence x | ab and so x = a’b’ for nonnil elements
a’,t/ of R with @’ | aand b | bin R. So x 4+ Nil(R) = a'b' + Nil(R) = (a' +
Nil(R))('+ Nil(R)) with o/ + Nil(R) | a+ Nil(R) and b+ Nil(R) | b+Nil(R).
Thus x + Nil(R) is primal in R/Nil(R). Conversely, let x + Nil(R) be primal
in R/Nil(R). Since, by [5, Lemma 2.5], ¢(R)/Nil(¢(R)) is ring-homomorphic
to R/Nil(R), then ¢(x) + Nil(¢(R)) is primal in ¢(R)/Nil(¢(R)). Now, let
2 | ab for nonnil elements of R. Then ¢(x)+ Nil(¢(R)) | ¢(a)+Nil(p(R))p(b)+
Nil(¢(R)) and so ¢(z)+ Nil(¢(R)) = (¢(a') +Nil(¢(R)))($(b)+ Nil(¢(R))) =
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¢(a") o)+ Nil(¢(R)) for nonzero elements ¢(a’)+Nil(p(R)), p(b')+Nil(¢p(R))
of ¢(R)/Nil(¢(R)) with ¢(a’) + Nil(¢(R)) | ¢(a) + Nil(¢(R)) and ¢(b') +
Nil(¢(R)) | ¢(b) + Nzl( (R)). Therefore ¢p(z) — ¢(a')p(b') € Nil(¢(R)). Since
Nil(¢(R)) = Z(¢(R), we conclude that ¢(z) = ¢(a’)p(b') with ¢(a’) | p(a) and

o) | 9(b). So ¢(x) is primal in ¢(R) and by definition of ¢-primal element,
x is a ¢-primal element of R. O

Proposition 2.3. Let R € H. Any product of ¢-primal elements in R is
¢-primal.

Proof. Let p,q € R\ Nil(R). Then pg € R\ Nil(R). Suppose that pq | ajas
with a1, a2 € R\ Nil(R). So ajas = pgs for some nonnil element s of R. Hence
p | arae. Then p = p1py for some py1,p2 € R\Nil(R) and p; | a; in Rfori =1,2.
Writing a; = p;r; with r; € R\ Nil(R). Thus, we have ajas = p1r1para = pgs.
Hence r1r9 = gs, i.e., q | 1172, whence ¢ = q1g2 with ¢; | 7; and ¢; € R\ Nil(R).
Therefore pg = p1qip2qe and pig; | piri = a; and p;g; € R\ Nil(R). So pq
is ¢-primal. by induction it follows that any product of ¢-primal elements is
again ¢-primal. (I

Definition 2.4. A ring R is called a ¢-pre-Schreier ring if every element of
R is ¢-primal. In addition if R is ¢-integrally closed, then we say that R is a
¢-Schreier ring.

Theorem 2.5. Let R € H. Then R is a ¢-Schreier ring if and only if
R/Nil(R) is a Schreier domain.

Proof. By [6], R is ¢-integrally closed if and only if R/Nil(R) is integrally
closed. Then, by Lemma 2.2, R is a ¢-Schreier ring if and only if R/Nil(R) is
a Schreier domain. O

Theorem 2.6. Let R € H. Then R is a ¢-Schreier ring if and only if ¢(R) is
a Schreier ring.

Proof. Note that R is ¢-integrally closed in T(R) if and only if ¢(R) is in-
tegrally closed in T'(¢(R)) = Ryir), by the definition of ¢ being integrally
closed. Now, let R be a ¢-Schreier ring, then by Theorem 2.5, R/Nil(R) is
a Schreier domain. So, by [5, Lemma 2.5], ¢(R)/Nil(¢(R)) is a Schreier do-
main. Let ¢(z) | ¢(a)p(b) for regular elements ¢(z), #(a), $(b) of ¢(R). Then
o(z )+Nzl( (R)) | (¢(a)+ Nil(o ( )))(¢(b) + Nil(¢(R))) for nonzero elements
() +Nil($(R)), p(a) + Nil(¢(R)), p(b)+ Nil($(R)) 0f¢( )/Nil(¢(R)). Thus
()+Nil(¢(R)) = (¢(a )—i—Nzl(qﬁ(R ))(p(b')+Nil(¢(R))) for nonzero elements
(a')+Nil($(R)), p(b")+Nil(¢(R)) of o(R)/Nil($(R)) Wlth ¢(a’)+Nil($(R)) |
(a) + Nil(¢(R)) and ¢(b') + Nil(¢p(R)) | ¢(b) + Nil(¢(R)). Therefore ¢(x) —
(a")p(b') € Nil(¢(R)). Since Nil(p(R)) = Z(¢(R), we conclude that ¢(x) =
(a")p(') for regular elements ¢(a’), ¢p(b') of ¢(R) with ¢(a’) | ¢(a) and ¢(b') |
(b). Hence ¢(R) is a Schreier ring. Conversely, let ¢(R) be a Schreier ring. Let
2 | ab for nonnil elements of R. Then ¢(x) | ¢p(a)p(b) for regular elements ¢(z),

¢
¢
¢
¢
¢
¢
¢
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600, 60) of o). S0 40) 4 NG | (e 4 NU(URIN 1)+ Nl
for nonzero elements ¢(z) + Nil(¢(R)), ¢(a) + Nil(¢p(R)), ¢(b) + Nil(¢p(R
of (R)/Nil(¢(R)). Since ¢(z) = ¢(a’)p(b') for regular elements qﬁ( "), p(b

of ¢(R) with ¢(a’) | ¢(a) and G(b') | ¢(b), so () + Nil(p(R)) = (d(a’) +
Nil(¢(R)))(¢(b') + Nil(¢(R))) for nonzero elements ¢(a )+Nzl(¢( )) o(b')+

Nil(o(R)) of (R)/Nil((R)) with 6(a’) + Nil($(R)) | (a) + Nil(#(R)) and
d(b') + Nil(¢(R)) | ¢(b) + Nil(¢(R)). Therefore ¢(R)/Nil(¢(R)) is a Schreier
domain. Since, by [5, Lemma 2.5], ¢(R)/Nil(¢(R)) is ring-homomorphic to
R/Nil(R), then R/Nil(R) is a Schreier domain. Hence, by Theorem 2.5, R is
a ¢-Schreier ring. O

Corollary 2.7. Let R € H. The following are equivalent:
(1) R is a ¢-Schreier ring;
(2) #(R) is a Schreier ring;

(3) R/Nil(R) is a Schreier domain;

(4) ¢(R)/Nil(¢(R)) is a Schreier domain.

Lemma 2.8. Let R€ H and x € R. If x is ¢-primal, then x is primal.

Proof. If  is ¢-primal, then by Lemma 2.2, 2+ Nil(R) is primal in R/Nil(R).
If | ab for regular elements x,a,b of R. Then with a same way of proof
Theorem 2.6, we conclude that z is primal. (I

Theorem 2.9. Let R € H. If R is a ¢-Schreier ring, then R is a Schreier
ring.

Proof. Let R be a ¢-Schreier ring. Then, by Theorem 2.6, ¢(R) is a Schreier
ring. So ¢(R) is integrally closed in T(¢(R)). Thus, by [5, Lemma 2.13], R is
integrally closed in T(R). Now, by Lemma 2.8, it is clear that R is a Schreier
ring. (I

Theorem 2.10. Let R € H with Nil(R) = Z(R). Then R is a ¢-Schreier ring
if and only if R is a Schreier ring.

Proof. Suppose that R is a Schreier ring. Then ¢(R) = R is a Schreier ring.
Hence, by Theorem 2.6, R is a ¢-Schreier ring. The converse is clearly by
Theorem 2.9. O

Note that the above results are satisfied for ¢-pre-Schreier rings. Now, we
define an extension of the class ¢-pre-Schreier rings.

Definition 2.11. A ring R is called a ¢-quasi-Schreier ring if whenever I, Ji, Jo
are nonnil ¢-invertible ideals of R and I 2 J;Js, then I = I115 for nonnil ¢-
invertible ideals Iy, Is of R with I; O J; for i = 1, 2.

Lemma 2.12. Let R € H and I be a nonnil ideal of R. Then I is ¢-invertible
ideal of R if and only if I/Nil(R) is an invertible ideal of R/Nil(R).
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Proof. Let I be ¢-invertible ideal of R. Then ¢(I) is an invertible ideal of
#(R). So, by [14, Lemma 2.4], I/Nil(R) is an invertible ideal of R/Nil(R).
Conversely, if I/Nil(R) is an invertible ideal of R/Nil(R), then by [14, Lemma
2.4], ¢(I) is an invertible ideal of ¢(R). Hence, by definition of a ¢-invertible
ideal, I is ¢-invertible ideal of R. (|

Theorem 2.13. Let R € H. Then R is a ¢-quasi-Schreier ring if and only if
R/Nil(R) is a quasi-Schreier domain.

Proof. Suppose that R is a ¢-quasi-Schreier ring and let I/Nil(R), J;/Nil(R)
and J2/Nil(R) be nonzero invertible ideals of R/Nil(R) and I/Nil(R) 2
(J1/Nil(R))(J2/Nil(R)). Then, by Lemma 2.12, I, .J;, J; are nonnil ¢-inverti-
ble ideals of R and I O JyJs. So I = I 15 for ¢-invertible ideals I, Is of R
with Iy D Jy and Iz O Jo. Therefore I/Nil(R) = (I1/Nil(R))(I2/Nil(R))
for invertible ideals I /Nil(R), Is/Nil(R) of R/Nil(R) by Lemma 2.12, with
Li/Nil(R) 2 J1/Nil(R) and Iz/Nil(R) 2 J2/Nil(R). Hence, R/Nil(R) is a
quasi-Schreier domain. Conversely, suppose that R/Nil(R) is a quasi-Schreier
domain. Let I, J7,Js be nonnil ¢-invertible ideals of R and I O JiJs. Then,
by Lemma 2.12, I/Nil(R), J1/Nil(R), Jo/Nil(R) are nonzero invertible ideals
of R/Nil(R) and I/Nil(R) 2 (J1/Nil(R))(J2/Nil(R)). So
I/Nil(R) = (I /Nil(R))(I2/Nil(R))

for invertible ideals I1 /Nil(R) and Is/Nil(R) of R/Nil(R) with I /Nil(R) 2
J1/Nil(R) and I3/Nil(R) D J3/Nil(R). Therefore, I = I;I5 for ¢-invertible

ideals I, Is of R by Lemma 2.12, with I; O J; and Iy O Js. Therefore R is a
¢-quasi-Schreier ring. (I

Theorem 2.14. Let R € H. Then R is a ¢-quasi-Schreier ring if and only if
@(R) is a quasi-Schreier ring.

Proof. Let R be a ¢-quasi-Schreier ring, then by Theorem 2.13, R/Nil(R)
is a quasi-Schreier domain and so by [5, Lemma 2.5], ¢(R)/Nil(¢(R)) is a
quasi-Schreier domain. Let ¢(I) D ¢(J1)d(J2) for regular invertible ideals

o(I), d(J1), d(J2) of ¢(R). Then
(1) /Nil(¢(R)) 2 (¢(J1)/Nil(¢(R)))(d(J2)/Nil((R)))

)
for invertible ideals ¢(I)/Nil(p(R)), &(J1)/Nil(p(R)), ¢(J2)/Nil(¢(R)) of
¢(R)/Nil(¢(R)) by [14, Lemma 2.4]. So

o(I)/Nil(¢(R)) = (¢(11)/Nil($(R)))(¢(I2)/Nil($(R)))
);

for invertible ideals (b(Il)/Nz'l( (R)), ¢(I2)/Nil(¢(R)) of ¢(R)/Nil(¢(R)) with
H(1)INiL(G(R)) 2 6(1)/Nill$(R)) and ¢(L)/Nil($(R)) 2 6(J2) /Nil(H(R)).
Thus ¢(I) = ¢(I1)p(I2) for regular invertible ideals ¢(I4), ¢(I2) of ¢(R) by [14,
Lemma 2.4], with ¢(I1) 2 ¢(J1) and ¢(I2) 2 ¢(J2). Therefore ¢(R) is a quasi-
Schreier ring. Conversely, let ¢(R) be a quasi-Schreier ring. Let I 2 J;.J3 for
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nonnil ¢-invertible ideals I, J;, J2 of R. Then (b(I) D ¢(J1)p(J2) for regular
invertible ideals ¢(I), ¢(J1), ¢(J2) of ¢(R). S

o(I)/Nil(¢(R)) 2 (6(J1)/Nil($p(R )))(fb(Jz)/Nll( (R)))
for invertible ideals ¢(I)/Nil(#(R)), ¢(J1)/Nil(¢(R)) and ¢(J2)/Nil(¢(R)) of
¢(R)/Nil(¢(R)) by [14, Lemma 2.4]. Since ¢(I) = ¢(I1)¢(I2) for regular in-
vertible ideals ¢(I1), ¢(I2) of ¢(R) with ¢(I1) O ¢(J1) and ¢(I2) 2 ¢(J2),

then

P(D)/Nil(p(R)) = (6(1)/Nil(¢(R)))((12)/Nil(¢(R)))
for invertible ideals ¢(I1)/Nil(¢(R)), ¢p(I2)/Nil(¢(R)) of ¢(R)/Nil(¢p(R)) by
[14, Lemma 2.4], in which

¢(1)/Nil(¢(R)) 2 ¢(J1)/Nil(¢(R)) and ¢(I2)/Nil(¢(R)) 2 ¢(J2)/Nil(¢(R)).
Hence, ¢(R)/Nil(¢(R)) is a quasi-Schreier domain and so by [5, Lemma 2.5],
R/Nil(R) is a quasi-Schreier domain. Therefore, by Theorem 2.13, R is a
¢-quasi-Schreier ring. O

Corollary 2.15. Let R € H. The following are equivalent:
(1) R is a ¢-quasi-Schreier ring;
(2) ¢(R) is a quasi-Schreier ring;
(3) R/Nil(R) is a quasi-Schreier domain
(4) ¢(R)/Nil(¢p(R)) is a quasi-Schreier domain.

Theorem 2.16. Let R € H. If R is a ¢-quasi-Schreier ring, then R is a
quasi-Schreier ring.

Proof. Suppose that R is a ¢-quasi-Schreier ring. Then, by 2.13, R/Nil(R)
is a quasi-Schreier domain. Let I, J;, Jo be regular invertible ideals of R and
I D JiJs. Then I/Nil(R), J1/Nil(R), Jo/Nil(R) are nonzero invertible ideals
of R/Nil(R) by [14, Lemma 2.4], and I/Nil(R) 2 (J1/Nil(R))(J2/Nil(R))
So, I/Nil(R) = (I1/Nil(R))(I2/Nil(R)) for some nonzero invertible ideals
I /Nil(R), Is/Nil(R) of R/Nil(R) with I;/Nil(R) 2 J;/Nil(R) for i = 1,2.
Therefore I = I 1, for some regular invertible ideals I1, I of R by [14, Lemma
2.4], with I; 2 J; for ¢ = 1,2 and thus R is quasi-Schreier ring. (]

Theorem 2.17. Let R € H with Nil(R) = Z(R). Then R is a ¢-quasi-
Schreier ring if and only if R is a quasi-Schreier ring.

Proof. Suppose that R is a quasi-Schreier ring. Then ¢(R) = R is a quasi-
Schreier ring. Hence, by Theorem 2.14, R is a ¢-quasi-Schreier ring. The
converse is clear by Theorem 2.16. O

Corollary 2.18. Let R € H. If R is a ¢-pre-Schreier ring, then R is a ¢-
quasi-Schreier ring.

Proof. Let R be a ¢-pre-Schreier ring, then R/Nil(R) is a pre-Schreier domain.
So, by [18, Proposition 2.3], R/Nil(R) is a quasi-Schreier domain and hence
by Theorem 2.13, R is a ¢-quasi-Schreier ring. (]
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Definition 2.19. We say that a regular element = of a ring R is strongly
primal, whenever x | ab for regular elements a,b of R, then there exist k > 1
and regular elements a’, b’ of R such that 2% = a’d’ with o’ | a¥ and b’ | bF.

Definition 2.20. A nonnil element x of R is called ¢-strongly primal in R if
and only if ¢(x) is strongly primal in ¢(R).

Another generalization of the ¢-pre-Schreier rings defined as follow.

Definition 2.21. A ring R is called a ¢-almost-Schreier ring (¢-AS ring) if
every nonnil element of R is ¢-strongly primal.

Lemma 2.22. Let R € H and x € R. Then x is a ¢-strongly primal element
in R if and only if x + Nil(R) is a strongly primal element in R/Nil(R).

Proof. Let x be a ¢-strongly primal element of R. Let  + Nil(R) | (a +
Nil(R))(b+Nil(R)) = ab+ Nil(R) in R/Nil(R) for nonnil elements z, a, b of R.
Then there exists y+ Nil(R) in R/Nil(R) such that ab+ Nil(R) = zy+ Nil(R).
So ab — xy € Nil(R). Thus ab = xy + w for some w € Nil(R). Since Nil(R)
is a divided prime ideal. Then Nil(R) C (z). So w = xz for some z € Nil(R).
Therefore ab = zy+xz = x(y+z). Hence 2 | abin R for nonnil elements x, a, b of
R. In this case ¢(z) | #(ab) = ¢(a)p(b) in ¢(R) for regular elements ¢(x), ¢(a),
@(b) of p(R). Since x is ¢-strongly primal in R, ¢(z) is strongly primal in ¢(R),
by definition. So ¢(x) = ¢(a’)p(b') = ¢(a’b’) for some regular elements ¢(a’),
#(V') of ¢(R) and some integer k > 1 with ¢(a’) | ¢(a*) and ¢(b') | #(b*). Hence
(p(x*)) = (d(a'd)) with (p(a*)) C (p(a)) and (p(b*)) C (¢(b')). Therefore,
¢((z")) = ¢((a't')) with ¢((a*)) C $((a’)) and ¢((b*)) € ¢((v')). Hence, by
[14, Lemma 2.1], (z*) = (a’t') with (a¥) C (a’) and (b*) C (V'). So there
exists a unit element u of R such that x* = ua’b’ with o’ | a* and o' | b*.
Since w is invertible, u ¢ Z(R) and so u is not a nonnil element of R. Hence
2F 4+ Nil(R) = ua'’ + Nil(R) = (ua’ + Nil(R))(0' + Nil(R)) with ua’ | (ua)*
and b’ | b¥. Therefore x + Nil(R) is strongly primal in R/Nil(R). Conversely,
let 4+ Nil(R) be a strongly primal element of R/Nil(R). Since, by [5, Lemma
2.5], ¢(R)/Nil(¢(R)) is ring- homomorphic to R/Nil(R), then ¢(z)+Nil(¢(R))
is strongly primal in ¢(R)/Nil(¢(R)). Now, let = | ab for nonnil elements of
R. Then ¢(x) + Nil(¢(R)) | ¢(a) + Nil(¢p(R))p(b) + Nil(¢(R)) and so (¢p(z) +
Nil(¢(R)))* = (¢(a')+Nil($(R)))(¢(t')+ Nil(¢(R))) = ¢(a')(b')+ Nil(¢(R))
for nonzero elements ¢(a’) + Nil(¢p(R)), (V') + Nil(¢(R)) of ¢(R)/Nil(¢(R))
for some k > 1 with ¢(a’) + Nil(¢(R)) | (¢(a) + Nil(¢(R))* and ¢(b') +
Nil(g(R)) | (6(b) + Nill9(R)))*. Therefore p(x)* — d(a")olt) € Nil(4(R)).
Since Nil(¢(R)) = Z(¢(R), we conclude that ¢(x)* = ¢(a’)p(b') for some k > 1
with ¢(a’) | (¢(a))* and ¢(b') | (#(b))*. So é(x) is strongly primal in ¢(R) and
by definition of ¢-strongly primal element, x is a ¢-strongly primal element of
R. O

Theorem 2.23. Let R € H. Then R is a ¢-AS ring if and only if R/Nil(R)
is AS domain.
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Proof. Tt is clear by Lemma 2.22. O

Theorem 2.24. Let R € H. Then R is a ¢-AS ring if and only if ¢(R) is an
AS ring.

Proof. Suppose that R is a ¢-AS ring, then by Theorem 2.23, R/Nil(R) is
a AS domain. So, by [5, Lemma 2.5], ¢(R)/Nil(¢(R)) is a AS domain.
Let ¢(x) | ¢(a)p(b ) for regular elements ¢(z), ¢(a), ¢(b) of ¢(R). Then
¢(z) + Nil(p(R)) | (¢(a) + Nil(¢p(R)))(¢(b) + Nil(¢(R))) for nonzero elements
¢(x)+Nil($(R)), ¢(a)+Nil($(R)), ¢(b) + Nil(¢(R)) of ¢(R)/Nil(p()). Thus
(6()+ Nil(d(R)X = (é(a’)+Nil(6(R)))(6(5) + Nil(6(R))) for nonzero ele-
ments ¢(a’)+Nil(p(R)), (b )+ Nil(p(R)) of ¢(R)/Nil(¢p(R)) and for some k >
1 with () + Nil(6(R)) | (6(a) + Nil(@(R)))* and 6(t') + Nil(6(R)) | (6(b) +
Nil(¢(R)))*. Therefore ¢(z)k — ¢(a’)p(b') € Nil(¢(R)). Since Nil(¢(R)) =
Z(¢(R), we conclude that ¢(z)* = ¢(a’)p(b') for regular elements ¢(a’), ¢(b')
of ¢(R) with ¢(a’) | (¢(a))* and ¢(V') | (¢(b))*. Hence ¢(R) is an AS ring.
Conversely, let ¢(R) be an AS ring. Let = | ab for nonnil elements of R.
Then ¢(x) | p(a)p(b) for regular elements ¢(z), p(a), d(b) of ¢(R). So ¢(z) +
Nil(¢(R)) | (¢(a) + Nil(p(R)))(¢(b) + Nil(¢(R))) for nonzero elements ¢(x) +
Nil(p(R)), o(a) + Nill#(R)), 6(b) + Nill#(R)) of 6(R)/Nil(4(R)). Since
(z)* = ¢p(a’)p(V') for regular elements qb( "), ¢(b") of ¢(R) and for some k > 1
with ¢(a’) | (¢(a))* and ¢(b') | (4(b))", so (¢(x))* + Nil(¢(R)) = (¢(a’) +
Nil(¢(R)))(p(b') + Nil(¢(R))) for nonzero elements o(a’) + Nil(¢(R)), o(V)+
Nil(p(R)) of 6(R)/Nil((R)) with ¢(a’) + Nil(4(R)) | (6(a)) + Nil(6(R))
and ¢(b') + Nil(¢(R)) | (¢(b))* + Nil(¢(R)). Therefore ¢(R)/Nil(¢(R)) is an
AS domain. Since, by [5, Lemma 2.5], ¢(R)/Nil(¢(R)) is ring-homomorphic
to R/Nil(R), then R/Nil(R) is an AS domain. Hence, by Theorem 2.23, R is
a ¢-AS ring. O

Corollary 2.25. Let R € H. The following are equivalent:
(1) R is a ¢p-AS ring;
(2) #(R) is a AS ring,
(3) R/Nil(R) is a AS domain;
(4) #(R)/Nil(¢(R) is a AS domain.

Lemma 2.26. Let R € H and © € R. If x is ¢-strongly primal, then x is
strongly primal.

Proof. If x is ¢-strongly primal, then by Lemma 2.22, 2 + Nil(R) is strongly
primal in R/Nil(R). If = | ab for regular elements z,a,b of R. Then with a

same way of proof Theorem 2.24, we conclude that x is strongly primal. O
Theorem 2.27. Let R € H. If R is a ¢p-AS ring, then R is a AS ring.
Proof. 1t is obvious by Lemma 2.26. ]

Theorem 2.28. Let R € H with Nil(R) = Z(R). Then R is a ¢-AS ring if
and only if R is a AS ring.
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Proof. Suppose that R is a AS ring. Then ¢(R) = R is a AS ring. Hence, by
Theorem 2.24, R is a ¢-AS ring. The converse is clear by Theorem 2.27. [

Corollary 2.29. Let R € H. If R is a ¢-pre-Schreier ring, then R is a ¢p-AS
ring.

Proof. Let R be a ¢-pre-Schreier ring, then R/Nil(R) is a pre-Schreier domain.
So R/Nil(R) is a AS domain and hence R is a ¢-AS ring. O

Definition 2.30. A ring R is called a ¢-almost-quasi-Schreier ring (¢-AQS
ring) if whenever I, Ji, Jo are nonnil ¢-invertible ideals of R such that I O J;Jo
there exist an integer k£ > 1 and nonnil ¢-invertible ideals I1, Is of R such that
I* =NLI, and I; D Jik fori=1,2.

Theorem 2.31. Let R € H. Then R is a ¢-AQS ring if and only if R/Nil(R)
is an AQS domain.

Proof. Suppose that R is a ¢-AQSring and let I/Nil(R), J1/Nil(R) and
Ja/Nil(R) be nonzero invertible ideals of R/Nil(R) and I /Nil(R)2(J1/Nil(R))
(J2/Nil(R)). Then, by Lemma 2.12, I, J;, J2 are nonnil ¢-invertible ideals of R
and I D JiJo. So I¥ = I I, for ¢-invertible ideals I, I» of R and for some k > 1
with I; D JF and I, O J§. Therefore I*/Nil(R) = (I;/Nil(R))(I2/Nil(R))
for invertible ideals I /Nil(R) and Iz /Nil(R) of R/Nil(R) by Lemma 2.12 and
for some k > 1, with I, /Nil(R) D JFf/Nil(R) and I,/Nil(R) 2 JY/Nil(R).
Hence, R/Nil(R) is an AQS domain. Conversely, suppose that R/Nil(R) is
an AQS domain. Let I, Jy, Jo be nonnil ¢-invertible ideals of R and I D JyJs.
Then, by Lemma 2.12, I/Nil(R), J1/Nil(R), JQ/Nz'l( ) are nonzero invertible
ideals of R/Nil(R) and I/Nil(R) 2 (J1/Nil(R))(Jo/Nil(R)). So I* /Nil(R)
(I1/Nil(R))(I2/Nil(R)) for invertible ideals I /Nil(R), Ig/Nzl( R) of R/Nzl(
and for some k > 1 with I; /Nil(R) D JF/Nil(R) and I /Nil(R) 2 J5/Nil(R).
Therefore, I* = I, I, for ¢-invertible ideals I, I of R by Lemma 2.12 and for
some k > 1, with I; D Jf and I D JQk. Therefore R is a ¢-AQS ring. [l

Theorem 2.32. Let R € H. Then R is a $-AQS ring if and only if #(R) is a
AQS ring.

Proof. Let R be a ¢-AQS ring, then by Theorem 2.31, R/Nil(R) is a AQS
domain and so by [5, Lemma 2.5], ¢(R)/Nil(¢p(R)) is a AQS domain. Let
d(I) 2 ¢(J1)é(J2) for regular invertible ideals ¢(I), ¢(J1), ¢(J2) of ¢(R). Then
d(I)/Nil(¢p(R)) 2 (é(J1)/Nil(¢(R)))(p(J2)/Nil(p(R))) for invertible ideals
P(I)/Nil(p(R)), ¢(J1)/Nil(¢(R)), ¢(J2)/Nil(¢(R)) of $(R)/Nil(p(R)) by [14,
Lemma 2.4]. So (¢(I)/Nil(¢(R)))* = (¢(I1)/Nil(¢(R)))(¢(I2) /Nil(¢(R))) for
invertible ideals ¢(I1)/Nil(¢p(R)), ¢(I2)/Nil(¢p(R)) of ¢(R)/Nil(¢(R)) and for
some & > 1 with o(1)/Nil(6(R) 2 (6(1)/NU(o(R)))* and o(5) /Nl (6(R))
D (¢(J2)/Nil(¢(R)))*. Thus (¢(I))* = ¢(11)¢(I2) for regular invertible ideals
o(I),d(I2) of ¢(R) by [14, Lemma 2.4] and for some k > 1, with ¢(I1) 2
(¢(J1))F and ¢(I2) D (¢(J2))%. Therefore ¢(R) is an AQS ring. Conversely, let
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¢(R) be an AQS ring. Let I D JyJo for nonnil ¢-invertible ideals I, Ji, Ja of R.
Then ¢(I) D ¢(J1)p(J2) for regular invertible ideals ¢(I), ¢(J1), #(J2) of ¢(R).
So ¢(I)/Nil(¢(R)) 2 (¢(J1)/Nil(p(R)))((J2)/Nil(¢(R))) for invertible ideals
o(1)/Nil(g(R)). o()/Nil(o(R)). 6(Jo) [Nil(6(R)) of 6(R)/Nil(é(R)) by [14.
Lemma 2.4]. Since (¢(1))* = ¢(I1)¢(I2) for regular invertible ideals ¢(I;) and
#(I2) of ¢(R) and for some k > 1 with ¢(I1) 2 (¢(J1))* and ¢(I2) 2 (¢(J2))*,
then (¢(I)/Nil(¢(R)))* = (¢(I1)/Nil(¢(R)))(¢(I2)/Nil(#(R))) for invertible
ideals ¢(I1)/Nil(¢(R)), ¢(I2)/Nil(¢p(R)) of ¢(R)/Nil(¢(R)) by [14, Lemma
2.4] and for some k > 1, with ¢(I1)/Nil(¢(R)) 2 (é(J1)/Nil(¢(R)))* and
6(12)Nil(B(R)) 2 (6(J2) [Nil(6(R))F. Hence, 6(R)/Nil(6(R)) is a AQS do-
main and so by [5, Lemma 2.5], R/Nil(R) is an AQS domain. Therefore, by
Theorem 2.31, R is a ¢-AQS ring. O

Corollary 2.33. Let R € H. The following are equivalent:
(1) R is a ¢-AQS ring;
(2) ¢(R) is a AQS ring;

(3) R/Nil(R) is a AQS domain

(4) #(R)/Nil(¢(R)) is a AQS domain.

Theorem 2.34. Let R € H. If R is a $-AQS ring, then R is an AQS ring.

Proof. Suppose that R is a ¢-AQS ring, then by Theorem 2.31, R/Nil(R) is an
AQS domain. Let I, Jy, Jo be regular invertible ideals of R and I O J;J5. Then,
by [14, Lemma 2.4], I/Nil(R), J1/Nil(R), J2/Nil(R) are nonzero invertible
ideals of R/Nil(R) and I/Nil(R) 2 Jy/Nil(R)J2/Nil(R). So, (I/Nil(R))* =
I /Nil(R)I2/Nil(R) for an integer k > 1 and for some nonzero invertible ideals
I, /Nil(R), I,/Nil(R) of R/Nil(R) with I;/Nil(R) 2 (J;/Nil(R))* for i = 1,2.
Therefore I* = I I, for an integer £k > 1 and some regular invertible ideals
I, I of R by [14, Lemma 2.4], with I; D JF for i = 1,2. Hence R is AQS
ring. (I

Theorem 2.35. Let R € H with Nil(R) = Z(R). Then R is a ¢-AQS ring if
and only if R is an AQS ring.

Proof. Suppose that R is a AQS ring. Then ¢(R) = R is an AQS ring.
Hence, by Theorem 2.32; R is a ¢-AQS ring. The converse is clear by Theorem
2.34. O

Corollary 2.36. Let R € H. If R is a ¢-AS ring, then R is a $p-AQS ring.

Proof. Let R be a ¢-AS ring, then R/Nil(R) is an AS domain. So, by [1,
Proposition 2.3], R/Nil(R) is an AQS domain. Therefore, by Theorem 2.31,
Ris a ¢-AQS ring. O

Corollary 2.37. Let R € H. If R is a ¢-quasi-Schreier ring, then R is a
¢-AQS ring.
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Proof. Let R be a ¢-quasi-Schreier ring, then by Theorem 2.13 R/Nil(R) is a
quasi-Schreier domain. So R/Nil(R)is a AQS domain. Therefore, by Theorem
2.31, R is a ¢-AQS ring. O

3. ¢-GCD ring

Recall that a ring R is called a GC'D ring if every two regular elements of
R have a greatest common divisor.

Definition 3.1. A ring R is called a ¢-GCD ring if every two nonnil elements
of R have a greatest common divisor.

Theorem 3.2. Let R € H. Then R is a $-GCD ring if and only if $(R) is a
GCD ring.

Proof. Let Rbe a ¢-GCD ring and ¢(x), ¢(y) two regular elements of ¢(R), i.e
o(x),0(y) € ¢(R)\ Z(¢(R)) = ¢(R) \ Nil(¢(R)). Then z,y € R\ Nil(R). So
there is d € R\ Nil(R) such that d | x and d | y and if ¢ € R\ Nil(R) with ¢ |
and ¢ | y, then ¢ | d. Therefore, ¢(d) € ¢(R) \ Nil(¢p(R)) = ¢(R) \ Z(¢(R))
sh thnk 8) | o) and o) | () i ) € 6 \ Nilg(R)
o(R) \ Z($(R)) with ¢(c) | ¢(z) and ¢(c) | d(y), then ¢(c) | ¢(d). So, $(R)
is a GCD ring. Conversely, let ¢(R) be a GCD ring and z,y € R \ NZZ(R
Then 6(2), 6(y) € G(R) \ Nil(6(R)) = 6(R) \ Z(4(R)). So, there is (d)
6(R) \ Z(6(R)) = 6(R) \ Nil(¢(R)) such that ¢(d) | 6(x),(y) and if 6(c)

P(R)\ Z(¢(R)) = ¢(R) \ Nil(¢(R)) with ¢(c) | ¢(x),¢(y), then ¢(c) | ¢(d).
Thus, there is d € R\ Nil(R) such that d | x and d | y and if ¢ € R\ Nil(R)

with ¢ | 2 and ¢ | y, then ¢ | d. Therefore R is a ¢-GC'D ring. O

Theorem 3.3. Let R € H. Then R is a p-GCD ring if and only if R/Nil(R)
is a GCD domain.

Proof. Suppose that R is a ¢-GCD ring and = + Nil(R),y + Nil(R) be two
nonzero elements of R/Nil(R). Then x,y are two nonnil elements of R and
so x,y have greatest common divisor. Hence z + Nil(R),y + Nil(R) have a
greatest common divisor. Therefore R/Nil(R) is a GCD domain. Conversely,
let R/Nil(R) is a GCD domain and x,y be two nonnil elements of R. Then
x + Nil(R),y + Nil(R) are two nonzero elements of R/Nil(R). Thus z +
Nil(R),y + Nil(R) have a greatest common divisor. So z,y have a greatest
common divisor. Therefore R is a ¢-GCD ring. O

Corollary 3.4. Let R € H. The following are equivalent:
(1) R is a 9-GCD ring;
(2) ¢(R) is a GCD ring;

(3) R/Nil(R) is a GCD domain;

(4) #(R)/Nil(¢(R)) is a GCD domain.

Theorem 3.5. Let R€ H. If R is a ¢-GCD ring, then R is a GCD ring.
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Proof. Suppose that R is a ¢-GCD ring, then R/Nil(R) is a GCD domain.
Let a,b be two regular elements of R. Then a + Nil(R),b+ Nil(R) are two
elements of R/Nil(R). So a+ Nil(R), b+ Nil(R) have greatest common divisor.
So, a, b have greatest common divisors. Therefore R is a GC'D ring. Il

Theorem 3.6. Let R € H with Nil(R) = Z(R). Then R is a $-GCD ring if
and only if R is a GC'D ring.

Proof. Suppose that R is a GCD ring. Then ¢(R) = R is a GCD ring. Hence,
by Theorem 3.2, R is a ¢-GCD ring. The converse is clear by Theorem 3.5. [

Corollary 3.7. Let R € H. If R is a $-GCD ring, then R is a ¢-Schreier
ring.

Proof. Let R be a ¢-GCD ring. So R/Nil(R) is a GCD domain and thus, by
[15, Theorem 2.4], R/Nil(R) is a Schreier domain. Therefore R is a ¢-Schreier
ring. O

Definition 3.8. A ¢-generalized GCD ring (¢-GGCD ring) is a ring in which
every intersection of two ¢-invertible ideals is a ¢-invertible ideal.

Theorem 3.9. Let R € H. Then R is a 9-GGCD ring if and only if R/Nil(R)
is a GGCD domain.

Proof. Suppose that R is a ¢-GGCD ring and let I/Nil(R), J/Nil(R) be two
nonzero invertible ideals of R/Nil(R). So, by Lemma 2.12, I,J are two ¢-
invertible ideals of R. Therefore, I N J is a ¢-invertible ideal of R. Thus,
by Lemma 2.12, T N J/Nil(R) = I/Nil(R) N J/Nil(R) is an invertible ideal
of R/Nil(R). Hence R/Nil(R) is a GGCD domain. Conversely, suppose
that R/Nil(R) is a GGCD domain. let I,J be two ¢-invertible ideals of R.
Then, by Lemma 2.12, I/Nil(R), J/Nil(R) are two nonzero invertible ideals of
R/Nil(R). So I NJ/Nil(R) = I/Nil(R) N J/Nil(R) is an invertible ideal of
R/Nil(R). Therefore, by Lemma 2.12, I N J is a ¢-invertible ideal of R. Hence
R is a ¢-GGCD ring. O

Theorem 3.10. Let R € H. Then R is a $-GGCD ring if and only if ¢(R)
is a GGCD ring.

Proof. Let Rbe a »-GGCD ring and ¢(I), ¢(J) be two invertible ideals of ¢(R).
Then I, J are two ¢-invertible ideals of R and so I N J is a ¢-invertible ideal
of R. Hence ¢(I) N ¢(J) = ¢(I N J) is an invertible ideal of ¢(R). Therefore
¢(R) is a GGCD ring. Conversely, let ¢(R) be a GGCD ring and I, J be two
¢-invertible ideals of R. Then ¢(I), ¢(J) are two invertible ideals of ¢(R) and
so p(INJ) = ¢(I)N¢(J) is an invertible ideal of ¢p(R). Therefore I NJ is a
¢-invertible ideal of R. Thus R is a ¢-GGCD ring. O

Corollary 3.11. Let R € H. The following are equivalent:
(1) R is a 9-GGCD ring;
(2) #(R) is a GGCD ring;
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(3) R/Nil(R) is a GGCD domain;
(4) #(R)/Nil(¢(R)) is a GGCD domain.

Theorem 3.12. Let R € H with Nil(R) = Z(R). Then R is a ¢-GGCD ring
if and only if R is a GGCD ring.

Proof. In this case ¢(R) = R. O
Corollary 3.13. Let R € H. If R is a ¢-GCD ring, then R is a ¢-GGCD

ring.

Corollary 3.14. Let R € ‘H. If R is a ¢-Priifer ring, then R is a ¢-GGCD
ring.

Proof. Let R be a ¢-Priifer ring. So, by [5, Theorem 2.6], R/Nil(R) is a Priifer
domain. Then, by [4, Theorem 1], R/Nil(R) is a GGCD domain. Therefore,
by Theorem 3.9, R is a ¢-GGC'D ring. O

Corollary 3.15. Let R € ‘H. If R is a -GGCD ring, then R is a ¢-quasi-
Schreier ring.

Proof. Let R be a ¢-GGCD ring. So, by Theorem 3.9, R/Nil(R) is a GGCD
domain. Then, by [18, Proposition 2.2], R/Nil(R) is a quasi-Schreier domain.
Therefore, by Theorem 2.13, R is a ¢-quasi-Schreier ring. (|

Definition 3.16. A ¢-almost GCD ring (¢-AGCD ring) is a ring in which for
every two nonnil principal ideals I and J of R, there exists some k£ > 1 such
that I* N J* is a nonnil principal ideal of R.

Theorem 3.17. Let R € H. Then R is a ¢-AGCD ring if and only if
R/Nil(R) is a AGCD domain.

Proof. Suppose that R is a ¢-AGCD ring and let I/Nil(R), J/Nil(R) be two
nonzero principal ideals of R/Nil(R). Then, by [5, Lemma 3.1], I, J are two
nonnil principal ideals of R. So, there exists some k > 1 such that I* N J*
is a nonnil principal ideal of R. Therefore, by [5, Lemma 3.1], (I/Nil(R))* N
(J/Nil(R))* = I* N J*/(Nil(R))* is a nonzero principal ideal of R/Nil(R).
Hence, R/Nil(R) is a AGCD domain. Conversely, suppose that R/Nil(R) is
a AGCD domain. Let I,J be two nonnil principal ideal of R. Then, by [5,
Lemma 3.1], I/Nil(R), J/Nil(R) be two nonzero principal ideals of R/Nil(R).
Therefore there exists some k& > 1 such that (I/Nil(R))* N (J/Nil(R))* =
I* N J*/(Nil(R))F is a nonzero principal ideal of R/Nil(R). So, by [5, Lemma
3.1], I*¥ N J* is a nonnil principal ideal of R. Hence, R is a ¢-AGCD ring. [

Theorem 3.18. Let R € H. Then R is a ¢-AGCD ring if and only if ¢(R)
is a AGCD ring.

Proof. Let R be a ¢-AGCD ring and ¢(I), ¢(J) be two regular principal ideals
of ¢(R). Then I, J are two nonnil principal ideals of R and so there exists some
k > 1 such that I* NJ* is a nonnil principal ideal of R. Hence ¢(I)* Np(J)* =
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#(I* N J*) is an regular principal ideal of ¢(R). Therefore ¢(R) is a AGCD
ring. Conversely, let ¢(R) is a AGCD ring and I, J be two nonnil principal
ideals of R. Then ¢(I),¢(J) are two regular principal ideals of ¢(R) and so
there exists some k > 1 such that ¢(I* N J*) = ¢(I)* N ¢(J)* is a regular
principal ideal of ¢(R). Therefore I* N.J* is a nonnil principal ideal of R. Thus
Ris a ¢-AGCD ring. O

Corollary 3.19. Let R € H. The following are equivalent:

(1) R is a p-AGCD ring;

(2) #(R) is a AGCD ring;

(3) R/Nil(R) is a AGCD domain;

(4) ¢(R)/Nil(¢(R)) is a AGCD domain.
Theorem 3.20. Let R € H. If R is a $-AGCD ring, then R is an AGCD
7ing.
Proof. Suppose that R is a ¢-AGCD ring. Then, by Theorem 3.17, R/Nil(R)
is a AGCD domain. Let I and J be two regular principal ideal of R. So, by
[5, Lemma 3.1}, I/Nil(R) and J/Nil(R) are two principal ideals of R/Nil(R).
So there exists k > 1 such that (I/Nil(R))* N (J/Nil(R))* is a principal ideal
of R/Nil(R). Therefore I* N J* is a principal ideal of R. Hence R is a AGCD
ring. ([
Theorem 3.21. Let R € H with Nil(R) = Z(R). Then R is a $-AGCD ring
if and only if R is an AGCD ring.
Proof. Suppose that R is an AGCD ring. Then ¢(R) = R is an AGCD

ring. Hence, by Theorem 3.18, R is a ¢-AGCD ring. The converse is clear by
Theorem 3.20. 0

Corollary 3.22. Let R€ H. If R is a p-AGCD ring, then R is a ¢-AS ring.

Proof. Let Rbe a »-AGCD ring. So, by Theorem 3.17, R/Nil(R) is an AGCD
domain. Thus, by [17, Proposition 2.2], R/Nil(R) is an AS domain. Therefore,
by Theorem 2.23, R is a ¢-AS ring. O

Therefore, by Corollaries 2.18, 2.29, 2.36, 2.37, 3.7, 3.13, 3.14, 3.15 and 3.22,
we have the following implications.

¢ — Priifer

é—GCD ¢ — GGCD

ﬂ

¢ — Schreier —=> ¢ — pre — Schreier —=> ¢ — quasi — Schreier

|

¢ — AGCD —= ¢ — AS —= ¢ — AQS
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4. Examples

Our non-domain examples of ¢-X- rings where X = Schreier, quasi-Schreier,
AS, AQS, GCD, GGCD, AGCD are provided by the idealization construction
R(+)B arising from a ring R and an R-module B as in [21]. We recall this
construction. For a ring R, let B be an R-module. Consider R(+)B = {(r,b) :
r € R and b € B}, and let (r,b) and (s, ¢) be to elements of R(+)B. Define

(1) (r,b) = (s,¢) if r=s and b=c.

(2) (r,b) 4+ (s,¢) = (r+s,b+c).

(3) (r,b)(s,c) = (rs,bs + rc).

Under these definitions R(+)B becomes a commutative ring with identity.

Example 4.1. Let D be a X-domain with quotient field L where X = Schreier,
quasi-Schreier, AS, AQS, GCD, GGCD, AGCD. Set R = D(+)L. Then R€ H
and R is a ¢-X-ring which is not a X-domain.

Proof. Since D is a domain, {0} is a prime ideal of D and Nil(D) = {0}. Hence
Nil(R) = {0}(+)L is a prime ideal of R. Nil(R) is a divided ideal, because
let (a,2) € R\ Nil(R) and (0,y) € Nil(R). Since (0,y) = (a,2)(0,y/a),
(0,y) € (a,z). Hence R € H. Also, R/Nil(R) is ring-isomorphic to D. Since
D is a X-domain, so R/Nil(R) is a X-domain and therefore R is a ¢-X ring.
But R is not a domain, because (0,11)(0,12) = (0,0) for each ly,12 € L. O

The following is an example of a ring R € ‘H which is a X-ring but not a
¢-X-ring where X =Schreier, quasi-Schreier, AS, AQS, GCD, GGCD, AGCD.

Example 4.2. Let D be an integral domain with quotient field L which is
not a X-domain where X = Schreier, quasi-Schreier, AS, AQS, GCD, GGCD,
AGCD. Set R = D(+)(L/D). Then R € H is a X-ring which is not a ¢-X-ring,.

Proof. By previous example, Nil(R) = {0}(4)(L/D) is a divided prime ideal
of R and thus R € H. Since every nonunit of R is zero divisor, we conclude
that R is a X-ring. Since R/Nil(R) is ring-isomorphic to D and D is not a
X-domain, so R is not a ¢-X-ring. (I

It is clear that a ¢-pre-Schreier ring is a ¢-AS ring. In following example we
show that the converse is not true.

Example 4.3. Let D = Z[\/=3]. So by [17], D is an AS domain such that
is not a pre-Schreier domain. Let R = D(+)L where L is the quotient field of
D. Then Nil(R) = {0}(+)L and R € H. Since R/Nil(R) is ring-isomorphic
to D, so R/Nil(R) is an AS domain such that is not a pre-Schreier domain.
Therefore, by Theorem 2.5 and Theorem 2.23, R is a ¢-AS ring which is not a
¢-pre-Schreier ring.

Example 4.4. Let D = Z[X?, X3]. So, by [1, Proposition 4.8], D is an AQS
domain which is neither AS domain nor quasi-Schreier domain. Set R = D(+)L
where L is the quotient field of D. Hence Nil(R) = {0}(+)L, R € H and
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R/Nil(R) is ring-isomorphic to D. So R/Nil(R) is an AQS domain which is
neither AS domain nor quasi-Schreier domain. Therefore, by Theorem 2.31,
Theorem 2.23 and Theorem?2.13, R is a ¢-AQS ring which is neither ¢-AS-ring
nor ¢-quasi-Schreier ring.

Example 4.5. Let D be a Dedekind non-principal domain. Then by [18], D
is a quasi-Schreier domain but is not a pre-Schreier domain. Let R = D(+)L
where L is the quotient field of D. Hence Nil(R) = {0}(+)L, R € H and
R/Nil(R) is ring-isomorphic to D. So R/Nil(R) is a quasi-Schreier domain
such that is not a pre-Schreier domain. Hence, by Theorem 2.13 and Theorem
2.5, R is a ¢-quasi-Schreier ring which is not a ¢-pre-Schreier ring.

Example 4.6. Let D = Q[[X?, X?]]. So, by [17, Remark 2.4], D is an AS
domain which is not AGC'D domain. Set R = D(+)L where L is the quotient
field of D. By the same argument, R is a ¢-AS ring which is not a ¢-AGCD
ring.

Example 4.7. Let D be a Priifer non Bezout domain. Then D is a GGCD
domain which is not a GCD domain. Let R = D(+)L where L is the quotient
field of D. Hence Nil(R) = {0}(+)L, R € H and R/Nil(R) is ring-isomorphic
to D. Thus R/Nil(R) is a GGCD domain which is not a GCD domain.
Therefore, by Theorem 3.9 and Theorem 3.3, R is a ¢-GGC'D ring which is
not a ¢-GCD ring.

Example 4.8. Let A be a Priifer domain which has two nonzero nonunits a, b
such that a € (N, 0™ A. Consider the domain D = A+ X A[1/b][X]. Then, by
[7, Example 11], D is a quasi-Schreier domain which is not a GGCD domain.
Set R = D(+4)L where L is the quotient field of D. Hence Nil(R) = {0}(+)L,
R € H and R/Nil(R) is ring-isomorphic to D. So R/Nil(R) is a quasi-Schreier
domain which is not a GGC'D domain. Therefore, by Theorem 2.13 and The-
orem 3.9, R is a ¢-quasi-Schreier ring but is not a ¢-GGC'D ring.

Acknowledgement. The authors would like to thank the referee for carefully
reading the manuscript and for giving constructive comments which substan-
tially helped improving the quality of the paper.
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