A QUESTION ABOUT MAXIMAL NON ϕ-CHAINED SUBRINGS

Atul Gaur and Rahul Kumar

Abstract

Let \mathcal{H}_{0} be the set of rings R such that $N i l(R)=Z(R)$ is a divided prime ideal of R. The concept of maximal non ϕ-chained subrings is a generalization of maximal non valuation subrings from domains to rings in \mathcal{H}_{0}. This generalization was introduced in [20] where the authors proved that if $R \in \mathcal{H}_{0}$ is an integrally closed ring with finite Krull dimension, then R is a maximal non ϕ-chained subring of $T(R)$ if and only if R is not local and $|[R, T(R)]|=\operatorname{dim}(R)+3$. This motivates us to investigate the other natural numbers n for which R is a maximal non ϕ-chained subring of some overring S. The existence of such an overring S of R is shown for $3 \leq n \leq 6$, and no such overring exists for $n=7$.

1. Introduction

This paper can be seen as a sequel to [20]. All rings considered below are commutative with nonzero identity and all ring extensions are unital. If R is a ring, then R is local if R has a unique maximal ideal. Also, $T(R)$ denotes the total quotient ring of $R, \operatorname{Nil}(R)$ the set of all nilpotent elements of R, and $Z(R)$ the set of all zero-divisors of R. A ring is said to be integrally closed if it is integrally closed in its total quotient ring. Recall from [7] that a prime ideal Q of a ring R is called a divided prime ideal if Q is comparable to every ideal of R. Let \mathcal{H}_{0} denote the set of all rings R such that $\operatorname{Nil}(R)$ is a divided prime ideal of R with $\operatorname{Nil}(R)=Z(R)$. This class of rings were studied by Badawi et al. in $[1,2,8-16]$. We also worked on this class in [23].

For a ring extension $R \subset T, R$ is said to be a maximal non- \mathcal{P} subring of T (where \mathcal{P} is a ring-theoretic property) if R does not satisfy \mathcal{P} but each subring of T which properly contains R satisfies \mathcal{P}. Recently studied properties are

[^0]$\mathcal{P}:=$ valuation domain, Noetherian domain, ACCP domain, Jaffard domain, universally catenarian domain and λ-domain, see $[4,5,17,22,24,25]$.

Let \mathcal{H} denote the set of all rings R such that $\operatorname{Nil}(R)$ is a divided prime ideal of R. If $R \in \mathcal{H}$, then Badawi [8] defined a ring homomorphism $\phi: T(R) \longrightarrow$ $R_{N i l(R)}$ given by $\phi(r / s)=r / s$, where $r \in R$ and $s \in R \backslash Z(R)$, and ϕ restricted to R is also a ring homomorphism given by $\phi(r)=r / 1$, where $r \in R$. A ring R is said to be a Prüfer ring if each finitely generated regular ideal of R is invertible, see [21]. A ring $R \in \mathcal{H}$ is said to be a ϕ-Prüfer ring if $\phi(R)$ is a Prüfer ring, see [1]. Recall from [10] that a ring $R \in \mathcal{H}$ is said to be a ϕ-chained ring if for each $x \in R_{N i l(R)} \backslash \phi(R)$, we have $x^{-1} \in \phi(R)$.

For a ring extension $R \subset S,[R, S]=\{T \mid R \subseteq T \subseteq S, T$ is a subring of $S\}$. For an extension $R \subset S$ of integral domains, R is a maximal non valuation subring of S [18] if R is not a valuation domain but each $T \in[R, S] \backslash\{R\}$ is a valuation domain. In [20], we generalized the concept of maximal non valuation subrings to the maximal non chained subrings and maximal non $\phi-$ chained subrings. A ring R is said to be a maximal non ϕ-chained subring of S if R is not a ϕ-chained ring but every $T \in[R, S] \backslash\{R\}$ is a ϕ-chained ring. This paper can also be seen as a sequel of [22] as all the results of [22] are extended to rings in \mathcal{H}_{0}. As usual, $|X|$ denotes the cardinality of a set X. If R is a ring, then $\operatorname{Spec}(R)$ denotes the set of all prime ideals of $R, \operatorname{Max}(R)$ denotes the set of all maximal ideals of R, and $\operatorname{dim}(R)$ refers to the Krull dimension of R.

We now recall some results on ϕ-rings which are already in literature and are frequently used in this paper. Note that the first five results are from [8] whereas as the last one is from [2]. Let $R \in \mathcal{H}$. Then
(A) $\phi(R) \in \mathcal{H}_{0}$.
(B) $\operatorname{Ker}(\phi) \subseteq \operatorname{Nil}(R)$.
(C) $\operatorname{Nil}(T(R))=\operatorname{Nil}(R)$.
(D) $\operatorname{Nil}\left(R_{N i l(R)}\right)=\phi(\operatorname{Nil}(R))=\operatorname{Nil}(\phi(R))=Z(\phi(R))$.
(E) $T(\phi(R))=R_{N i l(R)}$ is a local ring with maximal ideal $\operatorname{Nil}(\phi(R))$, and $R_{N i l(R)} / \operatorname{Nil}(\phi(R))=T(\phi(R)) / \operatorname{Nil}(\phi(R))=T(\phi(R) / N i l(\phi(R)))$.
(F) $(R / \operatorname{Nil}(R))^{\prime}=R^{\prime} / \operatorname{Nil}(R)$ provided $R \in \mathcal{H}_{0}$.

2. Results

Throughout this paper we are assuming that \mathcal{H}_{1} is the set of all rings R in \mathcal{H}_{0} such that $|[R, T(R)]|$ is finite. Let $R \in \mathcal{H}_{1}$. Then $\operatorname{dim}(R)$ is finite as $\operatorname{dim}(R)<|[R, T(R)]|$. Thus,

$$
\begin{equation*}
|[R, T(R)]|=\operatorname{dim}(R)+n \tag{*}
\end{equation*}
$$

for some $n \in \mathbb{N}$. In the first result we give a necessary condition and a sufficient condition for $n \geq 3$. Note that this can be seen as a generalization of [22, Proposition 2].
Proposition 2.1. Let $R \in \mathcal{H}_{1}$ and $|[R, T(R)]|=\operatorname{dim}(R)+n$. Then the following hold:
(i) If R is not local, then $n \geq 3$.
(ii) If R is integrally closed and $n \geq 3$, then R is not local.

Proof. Since $R \in \mathcal{H}_{1}, R / N i l(R)$ is a finite dimensional integral domain. Also, we have $T(R / N i l(R))=T(R) / N i l(R)$ by (E). It follows that

$$
|[R / N i l(R), T(R / N i l(R))]|=|[R, T(R)]|=\operatorname{dim}(R / N i l(R))+n
$$

(i) If R is not local, then $R / \operatorname{Nil}(R)$ is not local. Thus, by [22, Proposition 2], $n \geq 3$.
(ii) Let R be integrally closed and $n \geq 3$. Then $R / N i l(R)$ is integrally closed by (F). Therefore, by [22, Proposition 2], $R / \operatorname{Nil}(R)$ is not local and thus R is not local.

If we take $n=3$ or 4 in $(*)$, then we have the following generalization of [22, Lemma 1].

Proposition 2.2. Let $R \in \mathcal{H}_{1}$ be such that either $|[R, T(R)]|=\operatorname{dim}(R)+3$ or $|[R, T(R)]|=\operatorname{dim}(R)+4$. Then R is integrally closed if and only if R is not local.

Proof. Note that by (E), we have $R / \operatorname{Nil}(R)$ is a finite dimensional domain such that either $|[R / N i l(R), T(R / N i l(R))]|=|[R, T(R)]|=\operatorname{dim}(R / N i l(R))+3$ or $|[R / \operatorname{Nil}(R), T(R / N i l(R))]|=|[R, T(R)]|=\operatorname{dim}(R / N i l(R))+4$. Now, if R is integrally closed, then R is not local by Proposition 2.1. Conversely, assume that R is not local. Then $R / \operatorname{Nil}(R)$ is not local. Thus, by [22, Lemma 1], $R / \operatorname{Nil}(R)$ is integrally closed. Hence, by (F), R is integrally closed.

An integral domain R is said to be a treed domain if incomparable prime ideals of R are coprime, see [19]. We say that a ring $R \in \mathcal{H}$ is a ϕ-treed ring if $\phi(R)$ is a treed ring, that is, incomparable prime ideals of $\phi(R)$ are coprime.

Proposition 2.3. Let $R \in \mathcal{H}$. Then R is a ϕ-treed ring if and only if $R / \operatorname{Nil}(R)$ is a treed domain.

Proof. Let R be a ϕ-treed ring. Then $\phi(R)$ is a treed ring in \mathcal{H}_{0} by (A). We claim that $\phi(R) / \operatorname{Nil}(\phi(R))$ is a treed domain. Let P, Q be incomparable prime ideals of $\phi(R) / \operatorname{Nil}(\phi(R))$. Then $P=\phi(\mathfrak{p}) / \operatorname{Nil}(\phi(R))$ and $Q=\phi(\mathfrak{q}) / N i l(\phi(R))$ for some incomparable prime ideals $\mathfrak{p}, \mathfrak{q}$ of R. Since $\phi(R)$ is a treed ring, $\phi(\mathfrak{p})+\phi(\mathfrak{q})=\phi(R)$. It follows that $P+Q=\phi(R) / N i l(\phi(R))$. Thus, our claim holds. Note that $\operatorname{Nil}(\phi(R))=\phi(\operatorname{Nil}(R))$ by (D). It follows that $R / \operatorname{Nil}(R)$ is a treed domain, by [1, Lemma 2.5].

Conversely, assume that $R / N i l(R)$ is a treed domain. Then $\phi(R) / N i l(\phi(R))$ is a treed domain by (D) and [1, Lemma 2.5]. Let P, Q be incomparable prime ideals of $\phi(R)$. Then $P / N i l(\phi(R))$ and $Q / N i l(\phi(R))$ are incomparable and so $P / \operatorname{Nil}(\phi(R))+Q / \operatorname{Nil}(\phi(R))=\phi(R) / \operatorname{Nil}(\phi(R))$. Consequently, $P+Q=\phi(R)$. Thus, $\phi(R)$ is a treed ring, that is, R is a ϕ-treed ring.

If $n \leq 6$ in $(*)$, then we have the following generalization of [22, Lemma 2].

Proposition 2.4. Let $R \in \mathcal{H}_{1}$ be such that $|[R, T(R)]| \leq \operatorname{dim}(R)+6$. Then the following hold:
(i) $|\operatorname{Max}(R)| \leq 2$.
(ii) If R is a non local ϕ-treed ring, then $\operatorname{Max}(R)=\{M, N\}$ and $\operatorname{Spec}(R)=$ $\left\{\operatorname{Nil}(R)=P_{0} \subset P_{1} \subset \cdots \subset P_{r}=M, N\right\}$, where $r=\operatorname{dim}(R)$.
Proof. Note that by (E), we have

$$
|[R / N i l(R), T(R / N i l(R))]|=|[R, T(R)]| \leq \operatorname{dim}(R / N i l(R))+6
$$

Thus, by $[22$, Lemma 2], $|\operatorname{Max}(R / \operatorname{Nil}(R))| \leq 2$ and so $|\operatorname{Max}(R)| \leq 2$.
Now, suppose that R is a non local ϕ-treed ring. Then by Proposition 2.3, $R / \operatorname{Nil}(R)$ is a non local treed domain. Again by [22, Lemma 2],

$$
\operatorname{Max}(R / \operatorname{Nil}(R))=\{M / \operatorname{Nil}(R), N / \operatorname{Nil}(R)\} \text { and }
$$

$\operatorname{Spec}(R / N i l(R))=\left\{(0) \subset P_{1} / N i l(R) \subset \cdots\right.$

$$
\left.\subset P_{r} / \operatorname{Nil}(R)=M / \operatorname{Nil}(R), N / \operatorname{Nil}(R)\right\}
$$

where $r=\operatorname{dim}(R / N i l(R))$. Thus, the result holds.
If R is a ring and M is an R-module, then Nagata defined the idealization $R(+) M$ (see [26, cf. Nagata, 1962, p. 2]) as follows: its additive structure is that of the abelian group $R \oplus M$, and multiplication is defined by $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right):=$ $\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$ for all $r_{1}, r_{2} \in R$ and $m_{1}, m_{2} \in M$. For further study on idealization, see [3].

Remark 2.5. (i) Let A be a one dimensional Prüfer domain with exactly three maximal ideals. Then by [1, Example 2.18], $R=A(+) q \mathrm{f}(A) \in \mathcal{H}_{0}$ is a one dimensional ϕ-Prüfer ring. Also, R has exactly three maximal ideals by [3, Theorem 3.2(1)]. Note that by (E), we have

$$
|[R, T(R)]|=|[R / N i l(R), T(R) / N i l(R)]|=|[R / N i l(R), T(R / N i l(R))]|
$$

Moreover, by [3, Theorem 4.1(3)], $T(R)=\mathrm{qf}(A)(+) \mathrm{qf}(A)$. Consequently, $|[R, T(R)]|=|[A, q \mathrm{f}(A)]|$. Now, by $[6$, Corollary 2.6], we conclude that

$$
|[A, \operatorname{qf}(A)]|=\operatorname{dim}(A)+7
$$

that is, $|[R, T(R)]|=\operatorname{dim}(R)+7$. Thus, if $n>6$ in $(*)$, then (i) of Proposition 2.4 fails, or if (i) of Proposition 2.4 does not hold, then n may be greater than 6 in (*).
(ii) Let A be a Prüfer domain with exactly two maximal ideals M and N such that $\operatorname{Spec}(A)=\left\{(0) \subset P_{1} \subset M,(0) \subset P_{2} \subset N\right\}$. Then $R=A(+) q \mathrm{f}(A) \in \mathcal{H}_{0}$ is a ϕ-Prüfer ring with exactly two maximal ideals $M(+) \mathrm{qf}^{(}(A)$ and $N(+) \operatorname{qf}(A)$ such that

$$
\left.\begin{array}{rl}
\operatorname{Spec}(R)=\{(0)(+) \operatorname{qf}(A) & \subset P_{1}(+) \operatorname{qf}(A) \\
& \subset M(+) \operatorname{qf}(A), \\
(0)(+) \operatorname{qf}(A) & \subset P_{2}(+) \operatorname{qf}(A)
\end{array} \subset N(+) \operatorname{qf}(A)\right\} .
$$

Now, by $[6$, Corollary 2.6], $|[A, \operatorname{qf}(A)]|=\operatorname{dim}(A)+7$. It follows that $|[R, T(R)]|$ $=\operatorname{dim}(R)+7$. Thus, if (ii) of Proposition 2.4 does not hold, then n may be greater than 6 in $(*)$.

Let $R \in \mathcal{H}$ be a ϕ-Prüfer ring with exactly two maximal ideals, say M and N. Then by [1, Theorem 2.6], $R / \operatorname{Nil}(R)$ is a Prüfer domain with exactly two maximal ideals, namely $M / \operatorname{Nil}(R)$ and $N / \operatorname{Nil}(R)$. Thus, the set of prime ideals of $R / \operatorname{Nil}(R)$ contained in $(M / \operatorname{Nil}(R)) \cap(N / N i l(R))$ has a unique maximal element. Consequently, the same holds in R. We denote this a unique prime ideal of R by $M * N$.

Note that the ring R in (i) of above remark is not a maximal non ϕ-chained subring of any overing of R, by [20, Theorem 2.6]. However, when $3 \leq n \leq 6$, then there exists an overring S of R (depending on n) such that R is a maximal non ϕ-chained subring of S. This we show in the remaining paper. We start with $n=3$.

Theorem 2.6. For a ring $R \in \mathcal{H}_{1}$, the following are equivalent:
(1) R is integrally closed and $|[R, T(R)]|=\operatorname{dim}(R)+3$;
(2) R is not local and $|[R, T(R)]|=\operatorname{dim}(R)+3$;
(3) R is a ϕ-Prüfer ring with exactly two maximal ideals M and N and

$$
\operatorname{Spec}(R)=\left\{\operatorname{Nil}(R)=P_{0} \subset P_{1} \subset \cdots \subset P_{r-1} \subset P_{r}=M, P_{r-1} \subset N\right\} ;
$$

(4) R is a maximal non ϕ-chained subring of $R_{M * N}$ and $h t(N)=h t(M)=$ $\operatorname{dim}(R)$.

Proof. (1) $\Leftrightarrow(2)$: It follows from Proposition 2.2.
$(2) \Rightarrow(3)$: We have $R / \operatorname{Nil}(R)$ is not local and $|[R / \operatorname{Nil}(R), T(R) / \operatorname{Nil}(R)]|=$ $\operatorname{dim}(R / N i l(R))+3$. Now, by (E), it follows that

$$
|[R / N i l(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+3 .
$$

Thus, by [22, Theorem 1], $R / \operatorname{Nil}(R)$ is a Prüfer domain with exactly two maximal ideals $M / \operatorname{Nil}(R)$ and $N / \operatorname{Nil}(R)$ and

$$
\begin{aligned}
\operatorname{Spec}(R / N i l(R))=\{(0) & \subset P_{1} / \operatorname{Nil}(R) \subset \cdots \subset P_{r-1} / \operatorname{Nil}(R) \\
& \left.\subset P_{r} / \operatorname{Nil}(R)=M / N i l(R), P_{r-1} / N i l(R) \subset N / N i l(R)\right\} .
\end{aligned}
$$

Finally, R is ϕ-Prüfer, by [1, Theorem 2.6] and hence (3) holds.
(3) $\Rightarrow(4)$: Since $R \in \mathcal{H}_{1}, R$ is a Prüfer ring and $R \subseteq R_{M * N} \subseteq T(R)$. It follows that $R_{M * N} \in \mathcal{H}$. Also, by (C), $\operatorname{Nil}\left(R_{M * N}\right)=\operatorname{Nil}(R)$. Thus, (4) follows from [20, Theorem 2.6].
(4) \Rightarrow (1): Note that $\operatorname{Nil}\left(R_{M * N}\right)=\operatorname{Nil}(R)$ and $R_{M * N} \in \mathcal{H}$. Thus, $R / \operatorname{Nil}(R)$ is a maximal non valuation subring of $R_{M * N} / \operatorname{Nil}(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 1], we have $R / \operatorname{Nil}(R)$ is integrally closed and $|[R / N i l(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+3$. Now, (1) follows by (E) and (F).

For $n=4$ in $(*)$, we have the following generalization of [22, Theorem 2].

Theorem 2.7. For $R \in \mathcal{H}_{1}$, the following are equivalent:
(1) R is integrally closed and $|[R, T(R)]|=\operatorname{dim}(R)+4$;
(2) R is not local and $|[R, T(R)]|=\operatorname{dim}(R)+4$;
(3) R is a ϕ-Prüfer ring with exactly two maximal ideals M and $N, \operatorname{dim}(R)$ ≥ 2, and
$\operatorname{Spec}(R)=\left\{N i l(R) \subset P_{1} \subset \cdots \subset P_{r-1} \subset P_{r}=M, P_{r-1} \nsubseteq N, P_{r-2} \subset N\right\} ;$
(4) R is a maximal non ϕ-chained subring of $R_{M}, \operatorname{dim}(R) \geq 2$ and $h t(N)=$ $h t(M)-1=\operatorname{dim}(R)-1$.

Proof. (1) $\Leftrightarrow(2)$: It follows from Proposition 2.2.
$(2) \Rightarrow(3)$: Note that $R / \operatorname{Nil}(R)$ is not local and $|[R / N i l(R), T(R) / N i l(R)]|$ $=\operatorname{dim}(R / \operatorname{Nil}(R))+4$. Therefore, by (E), we have

$$
|[R / \operatorname{Nil}(R), T(R / \operatorname{Nil}(R))]|=\operatorname{dim}(R / \operatorname{Nil}(R))+4 .
$$

Now, by [22, Theorem 2], it follows that $R / \operatorname{Nil}(R)$ is a Prüfer domain with exactly two maximal ideals $M / \operatorname{Nil}(R)$ and $N / \operatorname{Nil}(R), \operatorname{dim}(R / N i l(R)) \geq 2$ and

$$
\begin{aligned}
& \operatorname{Spec}(R / N i l(R))=\{(0) \subset P_{1} / N i l(R) \subset \cdots \\
& \subset P_{r-1} / \operatorname{Nil}(R) \subset P_{r} / N i l(R)=M / N i l(R) \\
&\left.P_{r-1} / \operatorname{Nil}(R) \nsubseteq N / N i l(R), P_{r-2} / N i l(R) \subset N / N i l(R)\right\} .
\end{aligned}
$$

Finally, R is ϕ-Prüfer, by [1, Theorem 2.6] and hence (3) holds.
(3) $\Rightarrow(4)$: Since $R \in \mathcal{H}_{1}, R$ is a Prüfer ring and $R \subseteq R_{M} \subseteq T(R)$. It follows that $R_{M} \in \mathcal{H}$. Also, by (C), $\operatorname{Nil}\left(R_{M}\right)=\operatorname{Nil}(R)$. Thus, (4) follows from [20, Theorem 2.6].
(4) $\Rightarrow(1)$: Note that $\operatorname{Nil}\left(R_{M}\right)=\operatorname{Nil}(R)$ and $R_{M} \in \mathcal{H}$. Thus, $R / \operatorname{Nil}(R)$ is a maximal non valuation subring of $R_{M} / \operatorname{Nil}(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 2], we conclude that $R / \operatorname{Nil}(R)$ is integrally closed and $|[R / \operatorname{Nil}(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+4$. Now, (1) follows by (E) and (F).

For $n=5$ in $(*)$, we have the following generalization of [22, Theorem 3].
Theorem 2.8. For $R \in \mathcal{H}_{1}$, the following are equivalent:
(1) R is integrally closed and $|[R, T(R)]|=\operatorname{dim}(R)+5$;
(2) R is a ϕ-Prüfer ring with exactly two maximal ideals M and $N, \operatorname{dim}(R)$ ≥ 3, and
$\operatorname{Spec}(R)=\left\{N i l(R) \subset P_{1} \subset \cdots \subset P_{r-1} \subset P_{r}=M, P_{r-2} \nsubseteq N, P_{r-3} \subset N\right\} ;$
(3) R is a maximal non ϕ-chained subring of R_{M}, $\operatorname{dim}(R) \geq 3$, and $h t(N)=h t(M)-2=\operatorname{dim}(R)-2$.

Proof. (1) $\Rightarrow(2)$: Note that $R / \operatorname{Nil}(R)$ is an integrally closed domain and $|[R / \operatorname{Nil}(R), T(R) / \operatorname{Nil}(R)]|=\operatorname{dim}(R / N i l(R))+5$. Therefore, by (E), we have

$$
|[R / \operatorname{Nil}(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+5
$$

Now, by [22, Theorem 3], it follows that $R / \operatorname{Nil}(R)$ is a Prüfer domain with exactly two maximal ideals $M / \operatorname{Nil}(R)$ and $N / N i l(R), \operatorname{dim}(R / N i l(R)) \geq 3$, and

$$
\begin{aligned}
& \operatorname{Spec}(R / N i l(R))=\{(0) \subset P_{1} / N i l(R) \subset \cdots \\
& \subset P_{r-1} / N i l(R) \subset P_{r} / N i l(R)=M / N i l(R) \\
&\left.P_{r-2} / N i l(R) \nsubseteq N / N i l(R), P_{r-3} / N i l(R) \subset N / N i l(R)\right\} .
\end{aligned}
$$

Finally, R is ϕ-Prüfer, by [1, Theorem 2.6] and hence (2) holds.
(2) $\Rightarrow(3)$: Since $R \in \mathcal{H}_{1}, R$ is a Prüfer ring and $R \subseteq R_{M} \subseteq T(R)$. It follows that $R_{M} \in \mathcal{H}$. Also, by (C), $\operatorname{Nil}\left(R_{M}\right)=\operatorname{Nil}(R)$. Thus, (3) follows from [20, Theorem 2.6].
$(3) \Rightarrow(1)$: Note that $\operatorname{Nil}\left(R_{M}\right)=\operatorname{Nil}(R)$ and $R_{M} \in \mathcal{H}$. Thus, $R / \operatorname{Nil}(R)$ is a maximal non valuation subring of $R_{M} / \operatorname{Nil}(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 3], we conclude that $R / \operatorname{Nil}(R)$ is integrally closed and $|[R / N i l(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+5$. Now, (1) follows by (E) and (F).

For $n=6$ in $(*)$, we have the following generalization of [22, Theorem 4].
Theorem 2.9. For $R \in \mathcal{H}_{1}$, the following are equivalent:
(1) R is integrally closed and $|[R, T(R)]|=\operatorname{dim}(R)+6$;
(2) R is a ϕ-Prüfer ring with exactly two maximal ideals M and $N, \operatorname{dim}(R)$ ≥ 4, and
$\operatorname{Spec}(R)=\left\{N i l(R) \subset P_{1} \subset \cdots \subset P_{r-1} \subset P_{r}=M, P_{r-3} \nsubseteq N, P_{r-4} \subset N\right\} ;$
(3) R is a maximal non ϕ-chained subring of R_{M}, $\operatorname{dim}(R) \geq 4$, and $h t(N)=h t(M)-3=\operatorname{dim}(R)-3$.

Proof. (1) $\Rightarrow(2)$: Clearly, $R / \operatorname{Nil}(R)$ is an integrally closed domain and $|[R / N i l(R), T(R) / N i l(R)]|=\operatorname{dim}(R / N i l(R))+6$. Therefore, by (E), we have

$$
|[R / N i l(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+6
$$

Now, by [22, Theorem 4], it follows that $R / \operatorname{Nil}(R)$ is a Prüfer domain with exactly two maximal ideals $M / N i l(R)$ and $N / N i l(R), \operatorname{dim}(R / N i l(R)) \geq 4$, and

$$
\begin{aligned}
& \operatorname{Spec}(R / N i l(R))=\{(0) \subset P_{1} / N i l(R) \subset \cdots \\
& \subset P_{r-1} / N i l(R) \subset P_{r} / \operatorname{Nil}(R)=M / N i l(R) \\
&\left.P_{r-3} / N i l(R) \nsubseteq N / N i l(R), P_{r-4} / N i l(R) \subset N / N i l(R)\right\} .
\end{aligned}
$$

Finally, R is ϕ-Prüfer, by [1, Theorem 2.6] and hence (2) holds.
$(2) \Rightarrow(3)$: Since $R \in \mathcal{H}_{1}, R$ is a Prüfer ring and $R \subseteq R_{M} \subseteq T(R)$. It follows that $R_{M} \in \mathcal{H}$. Also, by (C), $\operatorname{Nil}\left(R_{M}\right)=\operatorname{Nil}(R)$. Thus, (3) follows from [20, Theorem 2.6].
$(3) \Rightarrow(1)$: Note that $\operatorname{Nil}\left(R_{M}\right)=\operatorname{Nil}(R)$ and $R_{M} \in \mathcal{H}$. Thus, $R / \operatorname{Nil}(R)$ is a maximal non valuation subring of $R_{M} / \operatorname{Nil}(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 4], we conclude that $R / \operatorname{Nil}(R)$ is integrally closed and $|[R / N i l(R), T(R / N i l(R))]|=\operatorname{dim}(R / N i l(R))+6$. Now, (1) follows by (E) and (F).

References

[1] D. F. Anderson and A. Badawi, On ϕ-Prüfer rings and ϕ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343.
[2] D. F. Anderson and A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022.
[3] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
[4] A. Ayache, D. E. Dobbs, and O. Echi, On maximal non-ACCP subrings, J. Algebra Appl. 6 (2007), no. 5, 873-894. https://doi.org/10.1142/S0219498807002545
[5] A. Ayache and N. Jarboui, Maximal non-Noetherian subrings of a domain, J. Algebra 248 (2002), no. 2, 806-823. https://doi.org/10.1006/jabr. 2001.9045
[6] A. Ayache and N. Jarboui, An algorithm for computing the number of intermediary rings in normal pairs, J. Pure Appl. Algebra 212 (2008), no. 1, 140-146. https://doi. org/10.1016/j.jpaa.2007.05.016
[7] A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
[8] A. Badawi, On ϕ-pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101-110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
[9] A. Badawi, On Φ-pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473480.
[10] A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736.
[11] A. Badawi, On divided rings and ϕ-pseudo-valuation rings, Commutative rings, 5-14, Nova Sci. Publ., Hauppauge, NY, 2002.
[12] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
[13] A. Badawi, Factoring nonnil ideals into prime and invertible ideals, Bull. London Math. Soc. 37 (2005), no. 5, 665-672. https://doi.org/10.1112/S0024609305004509
[14] A. Badawi and A. Jaballah, Some finiteness conditions on the set of overrings of a ϕ-ring, Houston J. Math. 34 (2008), no. 2, 397-408.
[15] A. Badawi and T. G. Lucas, Rings with prime nilradical, in Arithmetical properties of commutative rings and monoids, 198-212, Lect. Notes Pure Appl. Math., 241, Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[16] A. Badawi and T. G. Lucas, On ϕ-Mori rings, Houston J. Math. 32 (2006), no. 1, 1-32.
[17] M. Ben Nasr and N. Jarboui, Maximal non-Jaffard subrings of a field, Publ. Mat. 44 (2000), no. 1, 157-175. https://doi.org/10.5565/PUBLMAT_44100_05
[18] M. Ben Nasr and N. Jarboui, On maximal non-valuation subrings, Houston J. Math. 37 (2011), no. 1, 47-59.
[19] D. E. Dobbs, On treed overrings and going-down domains, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 317-322.
[20] A. Gaur and R. Kumar, Maximal non ϕ-chained rings and maximal non chained rings, Results Math. 74 (2019), no. 3, Paper No. 121, 18 pp. https://doi.org/10.1007/ s00025-019-1043-6
[21] M. Griffin, Prüfer rings with zero divisors, J. Reine Angew. Math. 239(240) (1969), 55-67. https://doi.org/10.1515/crll.1969.239-240.55
[22] N. Jarboui, A question about maximal non-valuation subrings, Ric. Mat. 58 (2009), no. 2, 145-152. https://doi.org/10.1007/s11587-009-0053-1
[23] R. Kumar and A. Gaur, λ-rings, ϕ - λ-rings, and ϕ - Δ-rings, Filomat 33 (2019), no. 16, 5125-5134.
[24] R. Kumar and A. Gaur, Maximal non λ-subrings, Czechoslovak Math. J. 70 (2020), no. 2, 323-337.
[25] R. Kumar and A. Gaur, Maximal non valuation domains in an integral domain, Czechoslovak Math. J. 70 (2020), no. 4, 1019-1032.
[26] M. Nagata, Local Rings, Interscience, New York, 1962.
Atul Gaur
Department of Mathematics
University of Delhi
Delhi 110007, India
Email address: gaursatul@gmail.com
Rahul Kumar
Department of Mathematics
Birla Institute of Technology and Science Pilani
Pilani 333031, India
Email address: rahulkmr977@gmail.com

[^0]: Received August 9, 2021; Accepted June 15, 2022.
 2020 Mathematics Subject Classification. Primary 13B02, 13B22.
 Key words and phrases. Maximal non ϕ-chained ring, integrally closed ring, ϕ-Prüfer ring.

 The first author was supported by the MATRICS grant from DST-SERB, No. MTR/2018 $/ 000707$ and the second author was supported by the Research Initiation Grant Scheme from Birla Institute of Technology and Science Pilani, Pilani, India.

