Commun. Korean Math. Soc. **38** (2023), No. 1, pp. 11–19 https://doi.org/10.4134/CKMS.c210272 pISSN: 1225-1763 / eISSN: 2234-3024

A QUESTION ABOUT MAXIMAL NON ϕ -CHAINED SUBRINGS

ATUL GAUR AND RAHUL KUMAR

ABSTRACT. Let \mathcal{H}_0 be the set of rings R such that Nil(R) = Z(R) is a divided prime ideal of R. The concept of maximal non ϕ -chained subrings is a generalization of maximal non valuation subrings from domains to rings in \mathcal{H}_0 . This generalization was introduced in [20] where the authors proved that if $R \in \mathcal{H}_0$ is an integrally closed ring with finite Krull dimension, then R is a maximal non ϕ -chained subring of T(R) if and only if R is not local and $|[R, T(R)]| = \dim(R) + 3$. This motivates us to investigate the other natural numbers n for which R is a maximal non ϕ -chained subring of some overring S. The existence of such an overring S of R is shown for $3 \le n \le 6$, and no such overring exists for n = 7.

1. Introduction

This paper can be seen as a sequel to [20]. All rings considered below are commutative with nonzero identity and all ring extensions are unital. If R is a ring, then R is local if R has a unique maximal ideal. Also, T(R) denotes the total quotient ring of R, Nil(R) the set of all nilpotent elements of R, and Z(R) the set of all zero-divisors of R. A ring is said to be integrally closed if it is integrally closed in its total quotient ring. Recall from [7] that a prime ideal Q of a ring R is called a divided prime ideal if Q is comparable to every ideal of R. Let \mathcal{H}_0 denote the set of all rings R such that Nil(R) is a divided prime ideal of R with Nil(R) = Z(R). This class of rings were studied by Badawi et al. in [1,2,8–16]. We also worked on this class in [23].

For a ring extension $R \subset T$, R is said to be a maximal non- \mathcal{P} subring of T(where \mathcal{P} is a ring-theoretic property) if R does not satisfy \mathcal{P} but each subring of T which properly contains R satisfies \mathcal{P} . Recently studied properties are

©2023 Korean Mathematical Society

11

Received August 9, 2021; Accepted June 15, 2022.

²⁰²⁰ Mathematics Subject Classification. Primary 13B02, 13B22.

Key words and phrases. Maximal non $\phi\text{-chained ring},$ integrally closed ring, $\phi\text{-Prüfer ring}.$

The first author was supported by the MATRICS grant from DST-SERB, No. MTR/2018 /000707 and the second author was supported by the Research Initiation Grant Scheme from Birla Institute of Technology and Science Pilani, Pilani, India.

 $\mathcal{P}:=$ valuation domain, Noetherian domain, ACCP domain, Jaffard domain, universally catenarian domain and λ -domain, see [4, 5, 17, 22, 24, 25].

Let \mathcal{H} denote the set of all rings R such that Nil(R) is a divided prime ideal of R. If $R \in \mathcal{H}$, then Badawi [8] defined a ring homomorphism $\phi : T(R) \longrightarrow R_{Nil(R)}$ given by $\phi(r/s) = r/s$, where $r \in R$ and $s \in R \setminus Z(R)$, and ϕ restricted to R is also a ring homomorphism given by $\phi(r) = r/1$, where $r \in R$. A ring R is said to be a Prüfer ring if each finitely generated regular ideal of R is invertible, see [21]. A ring $R \in \mathcal{H}$ is said to be a ϕ -Prüfer ring if $\phi(R)$ is a Prüfer ring, see [1]. Recall from [10] that a ring $R \in \mathcal{H}$ is said to be a ϕ -chained ring if for each $x \in R_{Nil(R)} \setminus \phi(R)$, we have $x^{-1} \in \phi(R)$.

For a ring extension $R \subset S$, $[R, S] = \{T \mid R \subseteq T \subseteq S, T \text{ is a subring of } S\}$. For an extension $R \subset S$ of integral domains, R is a maximal non valuation subring of S [18] if R is not a valuation domain but each $T \in [R, S] \setminus \{R\}$ is a valuation domain. In [20], we generalized the concept of maximal non valuation subrings to the maximal non chained subrings and maximal non ϕ chained subrings. A ring R is said to be a maximal non ϕ -chained subring of Sif R is not a ϕ -chained ring but every $T \in [R, S] \setminus \{R\}$ is a ϕ -chained ring. This paper can also be seen as a sequel of [22] as all the results of [22] are extended to rings in \mathcal{H}_0 . As usual, |X| denotes the cardinality of a set X. If R is a ring, then $\operatorname{Spec}(R)$ denotes the set of all prime ideals of R, $\operatorname{Max}(R)$ denotes the set of all maximal ideals of R, and $\dim(R)$ refers to the Krull dimension of R.

We now recall some results on ϕ -rings which are already in literature and are frequently used in this paper. Note that the first five results are from [8] whereas as the last one is from [2]. Let $R \in \mathcal{H}$. Then

- (A) $\phi(R) \in \mathcal{H}_0$.
- (B) $Ker(\phi) \subseteq Nil(R)$.
- (C) Nil(T(R)) = Nil(R).
- (D) $Nil(R_{Nil(R)}) = \phi(Nil(R)) = Nil(\phi(R)) = Z(\phi(R)).$
- (E) $T(\phi(R)) = R_{Nil(R)}$ is a local ring with maximal ideal $Nil(\phi(R))$, and $R_{Nil(R)}/Nil(\phi(R)) = T(\phi(R))/Nil(\phi(R)) = T(\phi(R)/Nil(\phi(R))).$
- (F) (R/Nil(R))' = R'/Nil(R) provided $R \in \mathcal{H}_0$.

2. Results

Throughout this paper we are assuming that \mathcal{H}_1 is the set of all rings R in \mathcal{H}_0 such that |[R, T(R)]| is finite. Let $R \in \mathcal{H}_1$. Then $\dim(R)$ is finite as $\dim(R) < |[R, T(R)]|$. Thus,

(*)
$$|[R, T(R)]| = \dim(R) + n$$

for some $n \in \mathbb{N}$. In the first result we give a necessary condition and a sufficient condition for $n \geq 3$. Note that this can be seen as a generalization of [22, Proposition 2].

Proposition 2.1. Let $R \in \mathcal{H}_1$ and $|[R, T(R)]| = \dim(R) + n$. Then the following hold:

- (i) If R is not local, then $n \geq 3$.
- (ii) If R is integrally closed and $n \ge 3$, then R is not local.

Proof. Since $R \in \mathcal{H}_1$, R/Nil(R) is a finite dimensional integral domain. Also, we have T(R/Nil(R)) = T(R)/Nil(R) by (E). It follows that

 $|[R/Nil(R), T(R/Nil(R))]| = |[R, T(R)]| = \dim(R/Nil(R)) + n.$

- (i) If R is not local, then R/Nil(R) is not local. Thus, by [22, Proposition 2], $n \ge 3$.
- (ii) Let R be integrally closed and $n \ge 3$. Then R/Nil(R) is integrally closed by (F). Therefore, by [22, Proposition 2], R/Nil(R) is not local and thus R is not local.

If we take n = 3 or 4 in (*), then we have the following generalization of [22, Lemma 1].

Proposition 2.2. Let $R \in \mathcal{H}_1$ be such that either $|[R, T(R)]| = \dim(R) + 3$ or $|[R, T(R)]| = \dim(R) + 4$. Then R is integrally closed if and only if R is not local.

Proof. Note that by (E), we have R/Nil(R) is a finite dimensional domain such that either $|[R/Nil(R), T(R/Nil(R))]| = |[R, T(R)]| = \dim(R/Nil(R)) + 3$ or $|[R/Nil(R), T(R/Nil(R))]| = |[R, T(R)]| = \dim(R/Nil(R)) + 4$. Now, if R is integrally closed, then R is not local by Proposition 2.1. Conversely, assume that R is not local. Then R/Nil(R) is not local. Thus, by [22, Lemma 1], R/Nil(R) is integrally closed. Hence, by (F), R is integrally closed. \Box

An integral domain R is said to be a treed domain if incomparable prime ideals of R are coprime, see [19]. We say that a ring $R \in \mathcal{H}$ is a ϕ -treed ring if $\phi(R)$ is a treed ring, that is, incomparable prime ideals of $\phi(R)$ are coprime.

Proposition 2.3. Let $R \in \mathcal{H}$. Then R is a ϕ -treed ring if and only if R/Nil(R) is a treed domain.

Proof. Let R be a ϕ -treed ring. Then $\phi(R)$ is a treed ring in \mathcal{H}_0 by (A). We claim that $\phi(R)/Nil(\phi(R))$ is a treed domain. Let P, Q be incomparable prime ideals of $\phi(R)/Nil(\phi(R))$. Then $P = \phi(\mathfrak{p})/Nil(\phi(R))$ and $Q = \phi(\mathfrak{q})/Nil(\phi(R))$ for some incomparable prime ideals $\mathfrak{p}, \mathfrak{q}$ of R. Since $\phi(R)$ is a treed ring, $\phi(\mathfrak{p}) + \phi(\mathfrak{q}) = \phi(R)$. It follows that $P + Q = \phi(R)/Nil(\phi(R))$. Thus, our claim holds. Note that $Nil(\phi(R)) = \phi(Nil(R))$ by (D). It follows that R/Nil(R) is a treed domain, by [1, Lemma 2.5].

Conversely, assume that R/Nil(R) is a treed domain. Then $\phi(R)/Nil(\phi(R))$ is a treed domain by (D) and [1, Lemma 2.5]. Let P, Q be incomparable prime ideals of $\phi(R)$. Then $P/Nil(\phi(R))$ and $Q/Nil(\phi(R))$ are incomparable and so $P/Nil(\phi(R)) + Q/Nil(\phi(R)) = \phi(R)/Nil(\phi(R))$. Consequently, $P+Q = \phi(R)$. Thus, $\phi(R)$ is a treed ring, that is, R is a ϕ -treed ring.

If $n \leq 6$ in (*), then we have the following generalization of [22, Lemma 2].

Proposition 2.4. Let $R \in \mathcal{H}_1$ be such that $|[R, T(R)]| \leq \dim(R) + 6$. Then the following hold:

- (i) $|Max(R)| \le 2$.
- (ii) If R is a non local ϕ -treed ring, then $Max(R) = \{M, N\}$ and $Spec(R) = \{Nil(R) = P_0 \subset P_1 \subset \cdots \subset P_r = M, N\}$, where $r = \dim(R)$.

Proof. Note that by (E), we have

$$|[R/Nil(R), T(R/Nil(R))]| = |[R, T(R)]| \le \dim(R/Nil(R)) + 6.$$

Thus, by [22, Lemma 2], $|Max(R/Nil(R))| \le 2$ and so $|Max(R)| \le 2$.

Now, suppose that R is a non local ϕ -treed ring. Then by Proposition 2.3, R/Nil(R) is a non local treed domain. Again by [22, Lemma 2],

$$Max(R/Nil(R)) = \{M/Nil(R), N/Nil(R)\} \text{ and }$$

 $\operatorname{Spec}(R/Nil(R)) = \{(0) \subset P_1/Nil(R) \subset \cdots$

$$P_r/Nil(R) = M/Nil(R), N/Nil(R)\},\$$

where $r = \dim(R/Nil(R))$. Thus, the result holds.

If R is a ring and M is an R-module, then Nagata defined the idealization R(+)M (see [26, cf. Nagata, 1962, p. 2]) as follows: its additive structure is that of the abelian group $R \oplus M$, and multiplication is defined by $(r_1, m_1) (r_2, m_2) := (r_1r_2, r_1m_2 + r_2m_1)$ for all $r_1, r_2 \in R$ and $m_1, m_2 \in M$. For further study on idealization, see [3].

Remark 2.5. (i) Let A be a one dimensional Prüfer domain with exactly three maximal ideals. Then by [1, Example 2.18], $R = A(+)qf(A) \in \mathcal{H}_0$ is a one dimensional ϕ -Prüfer ring. Also, R has exactly three maximal ideals by [3, Theorem 3.2(1)]. Note that by (E), we have

$$|[R, T(R)]| = |[R/Nil(R), T(R)/Nil(R)]| = |[R/Nil(R), T(R/Nil(R))]|.$$

Moreover, by [3, Theorem 4.1(3)], T(R) = qf(A)(+)qf(A). Consequently, |[R, T(R)]| = |[A, qf(A)]|. Now, by [6, Corollary 2.6], we conclude that

$$|[A, qf(A)]| = \dim(A) + 7,$$

that is, $|[R, T(R)]| = \dim(R) + 7$. Thus, if n > 6 in (*), then (i) of Proposition 2.4 fails, or if (i) of Proposition 2.4 does not hold, then n may be greater than 6 in (*).

(ii) Let A be a Prüfer domain with exactly two maximal ideals M and N such that $\operatorname{Spec}(A) = \{(0) \subset P_1 \subset M, (0) \subset P_2 \subset N\}$. Then $R = A(+)\operatorname{qf}(A) \in \mathcal{H}_0$ is a ϕ -Prüfer ring with exactly two maximal ideals $M(+)\operatorname{qf}(A)$ and $N(+)\operatorname{qf}(A)$ such that

$$Spec(R) = \{(0)(+)qf(A) \subset P_1(+)qf(A) \subset M(+)qf(A), \\ (0)(+)qf(A) \subset P_2(+)qf(A) \subset N(+)qf(A)\}.$$

14

Now, by [6, Corollary 2.6], $|[A, qf(A)]| = \dim(A) + 7$. It follows that $|[R, T(R)]| = \dim(R) + 7$. Thus, if (ii) of Proposition 2.4 does not hold, then n may be greater than 6 in (*).

Let $R \in \mathcal{H}$ be a ϕ -Prüfer ring with exactly two maximal ideals, say M and N. Then by [1, Theorem 2.6], R/Nil(R) is a Prüfer domain with exactly two maximal ideals, namely M/Nil(R) and N/Nil(R). Thus, the set of prime ideals of R/Nil(R) contained in $(M/Nil(R)) \cap (N/Nil(R))$ has a unique maximal element. Consequently, the same holds in R. We denote this a unique prime ideal of R by M * N.

Note that the ring R in (i) of above remark is not a maximal non ϕ -chained subring of any overing of R, by [20, Theorem 2.6]. However, when $3 \le n \le 6$, then there exists an overring S of R (depending on n) such that R is a maximal non ϕ -chained subring of S. This we show in the remaining paper. We start with n = 3.

Theorem 2.6. For a ring $R \in \mathcal{H}_1$, the following are equivalent:

- (1) R is integrally closed and $|[R, T(R)]| = \dim(R) + 3;$
- (2) *R* is not local and $|[R, T(R)]| = \dim(R) + 3;$
- (3) R is a ϕ -Prüfer ring with exactly two maximal ideals M and N and $Spec(R) = \{Nil(R) = P_0 \subset P_1 \subset \cdots \subset P_{r-1} \subset P_r = M, P_{r-1} \subset N\};$
- (4) R is a maximal non ϕ -chained subring of R_{M*N} and ht(N) = ht(M) =
 - $\dim(R).$

Proof. (1) \Leftrightarrow (2): It follows from Proposition 2.2.

 $(2) \Rightarrow (3)$: We have R/Nil(R) is not local and $|[R/Nil(R), T(R)/Nil(R)]| = \dim(R/Nil(R)) + 3$. Now, by (E), it follows that

 $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 3.$

Thus, by [22, Theorem 1], R/Nil(R) is a Prüfer domain with exactly two maximal ideals M/Nil(R) and N/Nil(R) and

$$Spec(R/Nil(R)) = \{(0) \subset P_1/Nil(R) \subset \cdots \subset P_{r-1}/Nil(R) \\ \subset P_r/Nil(R) = M/Nil(R), P_{r-1}/Nil(R) \subset N/Nil(R)\}.$$

Finally, R is ϕ -Prüfer, by [1, Theorem 2.6] and hence (3) holds.

(3) \Rightarrow (4): Since $R \in \mathcal{H}_1$, R is a Prüfer ring and $R \subseteq R_{M*N} \subseteq T(R)$. It follows that $R_{M*N} \in \mathcal{H}$. Also, by (C), $Nil(R_{M*N}) = Nil(R)$. Thus, (4) follows from [20, Theorem 2.6].

(4) \Rightarrow (1): Note that $Nil(R_{M*N}) = Nil(R)$ and $R_{M*N} \in \mathcal{H}$. Thus, R/Nil(R) is a maximal non valuation subring of $R_{M*N}/Nil(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 1], we have R/Nil(R) is integrally closed and $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 3$. Now, (1) follows by (E) and (F).

For n = 4 in (*), we have the following generalization of [22, Theorem 2].

Theorem 2.7. For $R \in \mathcal{H}_1$, the following are equivalent:

- (1) R is integrally closed and $|[R, T(R)]| = \dim(R) + 4;$
- (2) R is not local and $|[R, T(R)]| = \dim(R) + 4;$
- (3) R is a ϕ -Prüfer ring with exactly two maximal ideals M and N, dim(R) ≥ 2 , and

 $Spec(R) = \{Nil(R) \subset P_1 \subset \cdots \subset P_{r-1} \subset P_r = M, P_{r-1} \not\subseteq N, P_{r-2} \subset N\};$

(4) R is a maximal non ϕ -chained subring of R_M , dim $(R) \ge 2$ and $ht(N) = ht(M) - 1 = \dim(R) - 1$.

Proof. (1) \Leftrightarrow (2): It follows from Proposition 2.2.

 $(2) \Rightarrow (3)$: Note that R/Nil(R) is not local and $|[R/Nil(R), T(R)/Nil(R)]| = \dim(R/Nil(R)) + 4$. Therefore, by (E), we have

$$|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 4.$$

Now, by [22, Theorem 2], it follows that R/Nil(R) is a Prüfer domain with exactly two maximal ideals M/Nil(R) and N/Nil(R), $\dim(R/Nil(R)) \ge 2$ and

 $Spec(R/Nil(R)) = \{(0) \subset P_1/Nil(R) \subset \cdots \\ \subset P_{r-1}/Nil(R) \subset P_r/Nil(R) = M/Nil(R), \\ P_{r-1}/Nil(R) \not\subseteq N/Nil(R), P_{r-2}/Nil(R) \subset N/Nil(R)\}.$

Finally, R is ϕ -Prüfer, by [1, Theorem 2.6] and hence (3) holds.

(3) \Rightarrow (4): Since $R \in \mathcal{H}_1$, R is a Prüfer ring and $R \subseteq R_M \subseteq T(R)$. It follows that $R_M \in \mathcal{H}$. Also, by (C), $Nil(R_M) = Nil(R)$. Thus, (4) follows from [20, Theorem 2.6].

 $(4) \Rightarrow (1)$: Note that $Nil(R_M) = Nil(R)$ and $R_M \in \mathcal{H}$. Thus, R/Nil(R) is a maximal non valuation subring of $R_M/Nil(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 2], we conclude that R/Nil(R) is integrally closed and $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 4$. Now, (1) follows by (E) and (F).

For n = 5 in (*), we have the following generalization of [22, Theorem 3].

Theorem 2.8. For $R \in \mathcal{H}_1$, the following are equivalent:

- (1) R is integrally closed and $|[R, T(R)]| = \dim(R) + 5;$
- (2) R is a ϕ -Prüfer ring with exactly two maximal ideals M and N, dim(R) ≥ 3 , and

 $Spec(R) = \{ Nil(R) \subset P_1 \subset \cdots \subset P_{r-1} \subset P_r = M, P_{r-2} \not\subseteq N, P_{r-3} \subset N \};$

(3) R is a maximal non ϕ -chained subring of R_M , dim $(R) \geq 3$, and $ht(N) = ht(M) - 2 = \dim(R) - 2$.

Proof. (1) \Rightarrow (2): Note that R/Nil(R) is an integrally closed domain and $|[R/Nil(R), T(R)/Nil(R)]| = \dim(R/Nil(R)) + 5$. Therefore, by (E), we have $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 5$.

16

Now, by [22, Theorem 3], it follows that R/Nil(R) is a Prüfer domain with exactly two maximal ideals M/Nil(R) and N/Nil(R), $\dim(R/Nil(R)) \ge 3$, and

 $Spec(R/Nil(R)) = \{(0) \subset P_1/Nil(R) \subset \cdots \\ \subset P_{r-1}/Nil(R) \subset P_r/Nil(R) = M/Nil(R), \\ P_{r-2}/Nil(R) \not\subseteq N/Nil(R), P_{r-3}/Nil(R) \subset N/Nil(R)\}.$

Finally, R is ϕ -Prüfer, by [1, Theorem 2.6] and hence (2) holds.

(2) \Rightarrow (3): Since $R \in \mathcal{H}_1$, R is a Prüfer ring and $R \subseteq R_M \subseteq T(R)$. It follows that $R_M \in \mathcal{H}$. Also, by (C), $Nil(R_M) = Nil(R)$. Thus, (3) follows from [20, Theorem 2.6].

 $(3) \Rightarrow (1)$: Note that $Nil(R_M) = Nil(R)$ and $R_M \in \mathcal{H}$. Thus, R/Nil(R) is a maximal non valuation subring of $R_M/Nil(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 3], we conclude that R/Nil(R) is integrally closed and $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 5$. Now, (1) follows by (E) and (F).

For n = 6 in (*), we have the following generalization of [22, Theorem 4].

Theorem 2.9. For $R \in \mathcal{H}_1$, the following are equivalent:

- (1) R is integrally closed and $|[R, T(R)]| = \dim(R) + 6;$
- (2) R is a ϕ -Prüfer ring with exactly two maximal ideals M and N, dim(R) ≥ 4 , and

$$Spec(R) = \{Nil(R) \subset P_1 \subset \cdots \subset P_{r-1} \subset P_r = M, P_{r-3} \not\subseteq N, P_{r-4} \subset N\};$$

(3) R is a maximal non ϕ -chained subring of R_M , dim $(R) \ge 4$, and $ht(N) = ht(M) - 3 = \dim(R) - 3$.

Proof. (1) \Rightarrow (2): Clearly, R/Nil(R) is an integrally closed domain and $|[R/Nil(R), T(R)/Nil(R)]| = \dim(R/Nil(R)) + 6$. Therefore, by (E), we have

 $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 6.$

Now, by [22, Theorem 4], it follows that R/Nil(R) is a Prüfer domain with exactly two maximal ideals M/Nil(R) and N/Nil(R), $\dim(R/Nil(R)) \ge 4$, and

 $Spec(R/Nil(R)) = \{(0) \subset P_1/Nil(R) \subset \cdots \\ \subset P_{r-1}/Nil(R) \subset P_r/Nil(R) = M/Nil(R), \\ P_{r-3}/Nil(R) \not\subseteq N/Nil(R), P_{r-4}/Nil(R) \subset N/Nil(R)\}.$

Finally, R is ϕ -Prüfer, by [1, Theorem 2.6] and hence (2) holds.

 $(2) \Rightarrow (3)$: Since $R \in \mathcal{H}_1$, R is a Prüfer ring and $R \subseteq R_M \subseteq T(R)$. It follows that $R_M \in \mathcal{H}$. Also, by (C), $Nil(R_M) = Nil(R)$. Thus, (3) follows from [20, Theorem 2.6].

 $(3) \Rightarrow (1)$: Note that $Nil(R_M) = Nil(R)$ and $R_M \in \mathcal{H}$. Thus, R/Nil(R) is a maximal non valuation subring of $R_M/Nil(R)$, by [20, Theorem 2.4]. Consequently, by [22, Theorem 4], we conclude that R/Nil(R) is integrally closed and $|[R/Nil(R), T(R/Nil(R))]| = \dim(R/Nil(R)) + 6$. Now, (1) follows by (E) and (F).

References

- D. F. Anderson and A. Badawi, On *\phi-Pr\u00fcfer rings and \phi-Bezout rings*, Houston J. Math. **30** (2004), no. 2, 331–343.
- [2] D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007–1022.
- [3] D. D. Anderson and M. Winders, *Idealization of a module*, J. Commut. Algebra 1 (2009), no. 1, 3–56. https://doi.org/10.1216/JCA-2009-1-1-3
- [4] A. Ayache, D. E. Dobbs, and O. Echi, On maximal non-ACCP subrings, J. Algebra Appl. 6 (2007), no. 5, 873–894. https://doi.org/10.1142/S0219498807002545
- [5] A. Ayache and N. Jarboui, Maximal non-Noetherian subrings of a domain, J. Algebra 248 (2002), no. 2, 806-823. https://doi.org/10.1006/jabr.2001.9045
- [6] A. Ayache and N. Jarboui, An algorithm for computing the number of intermediary rings in normal pairs, J. Pure Appl. Algebra 212 (2008), no. 1, 140–146. https://doi. org/10.1016/j.jpaa.2007.05.016
- [7] A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465–1474. https://doi.org/10.1080/00927879908826507
- [8] A. Badawi, On φ-pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101–110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
- [9] A. Badawi, On Φ-pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473– 480.
- [10] A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725–736.
- [11] A. Badawi, On divided rings and φ-pseudo-valuation rings, Commutative rings, 5–14, Nova Sci. Publ., Hauppauge, NY, 2002.
- [12] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669–1677. https://doi.org/10.1081/AGB-120018502
- [13] A. Badawi, Factoring nonnil ideals into prime and invertible ideals, Bull. London Math. Soc. 37 (2005), no. 5, 665–672. https://doi.org/10.1112/S0024609305004509
- [14] A. Badawi and A. Jaballah, Some finiteness conditions on the set of overrings of a ϕ -ring, Houston J. Math. **34** (2008), no. 2, 397–408.
- [15] A. Badawi and T. G. Lucas, *Rings with prime nilradical*, in Arithmetical properties of commutative rings and monoids, 198–212, Lect. Notes Pure Appl. Math., 241, Chapman & Hall/CRC, Boca Raton, FL, 2005.
- [16] A. Badawi and T. G. Lucas, On φ-Mori rings, Houston J. Math. 32 (2006), no. 1, 1–32.
- [17] M. Ben Nasr and N. Jarboui, Maximal non-Jaffard subrings of a field, Publ. Mat. 44 (2000), no. 1, 157–175. https://doi.org/10.5565/PUBLMAT_44100_05
- [18] M. Ben Nasr and N. Jarboui, On maximal non-valuation subrings, Houston J. Math. 37 (2011), no. 1, 47–59.
- [19] D. E. Dobbs, On treed overrings and going-down domains, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 317–322.
- [20] A. Gaur and R. Kumar, Maximal non \u03c6-chained rings and maximal non chained rings, Results Math. 74 (2019), no. 3, Paper No. 121, 18 pp. https://doi.org/10.1007/ s00025-019-1043-6
- [21] M. Griffin, Prüfer rings with zero divisors, J. Reine Angew. Math. 239(240) (1969), 55-67. https://doi.org/10.1515/crll.1969.239-240.55

- [22] N. Jarboui, A question about maximal non-valuation subrings, Ric. Mat. 58 (2009), no. 2, 145–152. https://doi.org/10.1007/s11587-009-0053-1
- [23] R. Kumar and A. Gaur, λ -rings, ϕ - λ -rings, and ϕ - Δ -rings, Filomat **33** (2019), no. 16, 5125–5134.
- [24] R. Kumar and A. Gaur, Maximal non λ -subrings, Czechoslovak Math. J. **70** (2020), no. 2, 323–337.
- [25] R. Kumar and A. Gaur, Maximal non valuation domains in an integral domain, Czechoslovak Math. J. 70 (2020), no. 4, 1019–1032.
- [26] M. Nagata, Local Rings, Interscience, New York, 1962.

Atul Gaur Department of Mathematics University of Delhi Delhi 110007, India Email address: gaursatul@gmail.com

RAHUL KUMAR DEPARTMENT OF MATHEMATICS BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI PILANI 333031, INDIA Email address: rahulkmr977@gmail.com