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ON ¢-VON NEUMANN REGULAR RINGS

WEI ZHAO, FANGGUI WANG, AND GAOHUA TANG

ABSTRACT. Let R be a commutative ring with 1 # 0 and let X = {R|R
is a commutative ring and Nil(R) is a divided prime ideal}. If R € H,
then R is called a ¢-ring. In this paper, we introduce the concepts of
¢-torsion modules, ¢-flat modules, and ¢-von Neumann regular rings.

1. Introduction

Let R be a commutative ring with 1 # 0 and Nil(R) be its set of nilpotent
elements. Recall from [15] and [3] that a prime ideal of R is called a divided
prime if P C (z) for every x € R\P. Set H = {R| R is a commutative ring
and Nil(R) is a divided prime ideal of R}. If R € H, then R is called a ¢-ring.

Throughout this paper, it is assumed that all rings are commutative and
associative with identity 1 # 0 and all modules are unitary. Recently, the
authors in [1], [2], [14], and [18] generalized the concept of Priifer, Bezout
domains, Dedekind domains, Krull domains, Mori domains, and Strongly Mori
domains to the context of rings that are in the class H. Also, the authors
in [4], [3], [5], [6], [7], and [9], investigated the following classes of rings: ¢-
CR, ¢-PVR, and ¢-ZPUI. Furthermore, in [11], the authors investigated
going-down ¢-rings. The authors in [8], [13] and [16], introduced the notion
of nonnil-Noetherian rings (later called ¢-Noetherian rings). This notion was
extended to noncommutative rings in [19]. The authors in [10], stated many of
the main results on ¢-rings.

The classic homological algebra enlighten us that the categories of mod-
ules and homological dimensions are beneficial to characterize a ring from
its external structure. For example, w.gl.dim(R) = 0, equivalently, every R-
module is flat, if and only if R is a von Neumann regular ring. This naturally
leads to the question: How to characterize a ring R € H in terms of mod-
ules theoretic methods? To this end, we introduce a class of modules. Set
NN(R) = {J|J is a nonnil ideal of ring R}. Let M be an R-module. We
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define ¢-tor(M) = {z € M |Ix = 0 for some I € NN(R)}. If ¢-tor(M) = M,
then M is called a ¢-torsion module, and if ¢-tor(M) = 0, then M is called
a ¢-torsion free module. In Section 2, we investigate some basic properties of
¢-torsion modules and ¢-torsion free modules.

In Section 3, we define a ¢-flat module with the help of ¢-torsion modules.
An R-module M is called ¢-flat, if — Q) M is exact for every exact R-sequence
00— A— B— C — 0, where C is a ¢-torsion R-module. We show that an
R-module M is ¢-flat if and only if 0 = IQrM — R M is an exact
sequence for all nonnil ideals I of R. This helps us generalize the theory of flat
modules to the ¢-flat modules.

Recall that a ring R is said to be von Neumann regular if every R-module is
flat. A ring R is von Neumann regular, if and only if there is an element x € R
such that a = za? for each a € R, if and only if every principal ideal I of R is
generated by an idempotent, if and only if every finitely generated ideal I of R
is generated by an idempotent. We define a ¢-ring R to be a ¢-von Neumann
regular ring if every R-module is ¢-flat. In the last section of this paper, we
characterize ¢-von Neumann regular rings and we give an example of a ¢-von
Neumann regular ring that is not a von Neumann regular ring.

2. On ¢-torsion modules and ¢-torsion free modules

Set NN(R) = {I|I is a nonnil ideal of ring R}. Let M be an R-module.
We define

¢p-tor(M) ={xz € M| Iz =0 for some I € NN(R)}.

If ¢-tor(M) = M, then M is called a ¢-torsion module, and if ¢-tor(M) = 0,
then M is called a ¢-torsion free module. Clearly, submodules and quotient
modules of ¢-torsion modules are still ¢-torsion; submodules of ¢-torsion free
modules are still ¢-torsion free.

If Nil(R) is a prime ideal, then ¢-tor(M) is a submodule of M which is
called the total ¢-torsion submodule of M. Set T = ¢-tor(M). Then T is
always ¢-torsion and M/T is always ¢-torsion free.

Example 2.1. Let R be a commutative ring. Then R/I is a ¢-torsion R-
module for any nonnil ideal I of R.

Every regular ideal is a nonnil ideal, thus every torsion R-module is ¢-torsion
R-module, and every ¢-torsion free R-module is torsion free R-module. If Ris a
strong ¢-ring, in the sense that each zero divisor is nilpotent, or a domain, then
every ¢-torsion R-module is torsion R-module, and every torsion free R-module
is ¢-torsion free R-modules.

The following results give us a criterion to ¢-torsion module, and ¢-torsion
free module.

Theorem 2.2. An R-module M is ¢-torsion if and only if anng(x) is a nonnil
ideal for all x in M.
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Proof. M is ¢-torsion if and only if for any « € M, there is a nonnilpotent
element r € R such that rx = 0. ([

Theorem 2.3. The following statements are equivalent for a module M:
(1) M is ¢-torsion free.
(2) Homp(R/J,M) =0 for all J € NN(R).
(3) Homp(B, M) =0 for all J € NN(R) and all R/J-modules B.

Proof. (1)=(2). Let f € Homg(R/J, M) and write x = f(1). Thus Jz = 0,
whence x = 0. Consequently, f = 0.

(2)=(1). Let x € M and J € NN(R) with Jx = 0. Define f : R/J — M by
f(7) = rz. Then f is a well-defined homomorphism. As Homg(R/J,M) =0
we have z = f(1) = 0.

(2)=(3). Let F' = @(R/J) be a free R/J-module and let f : FF — B be
epimorphic. Then 0 — Hompg (B, M) — Hompg(F, M) is an exact sequence.
Since Hompg(F, M) = [[Homg(R/J, M) = 0, we have Hompg(B, M) = 0.

(3)=(2). Trivially. O

Theorem 2.4. Let R be a commutative ring with prime nil ideal Nil(R).

(1) A module M is ¢-torsion if and only if Homg(M,N) = 0 for any ¢-
torsion free module N .

(2) A module N is ¢-torsion free if and only if Homp(M,N) = 0 for any
¢-torsion module M.

Proof. (1) Let M be ¢-torsion and let f € Hompg(M,N). Then Im(f) is a
¢-torsion submodule of N. Since N is ¢-torsion free, we have f(M) = 0, and
hence f = 0.

Conversely, set T = ¢-tor(M) and N = M/T. Then N is ¢-torsion free.
Thus the natural homomorphism 7 : M — N is the zero homomorphism since
Homp(M, N) = 0. Therefore N = 0, that is, M = T.

(2) Let N be ¢-torsion free. By (1) we have Hompg(M,N) = 0 for any
¢-torsion module M.

Conversely, let M = ¢-tor(N). Then Homp(M, N) = 0. Thus the inclusion
homomorphism M — N is the zero homomorphism. Therefore M = 0, and
hence N is ¢-torsion free. (I

Theorem 2.5. Let R be a commutative ring with prime nil ideal Nil(R) and

{M;|i € T} be a family of ¢-torsion modules. Then @ M; is ¢-torsion.
i€l

Mz,N) gHieFHomR(MivN)' D

Theorem 2.6. Let f: R — T be an monomorphism from rings R toT. If M
is a ¢-torsion R-module, then M QT is a ¢-torsion T-module.

Proof. If I is a nonnil ideal of R, then f(I) is a nonnil ideal of T'. O

Corollary 2.7. If M is a ¢-torsion R-module, then Mx] = M @y Rlx], as
an R[x]-module, is also a ¢-torsion module.

Proof. We have that Homp (@D,
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Corollary 2.8. Let M be a ¢-torsion R-module, and S be a reqular multiplica-
tive set in the ring R. Then S~ M is a ¢-torsion S~ R-module.

Proof. If I is a nonnil ideal of R, then S~'I is a nonnil ideal of S™!'R. O

Theorem 2.9. Let f : R — T be an epimorphism from rings R to T. If M is
a ¢-torsion T-module, then M, as a R-module, is also a ¢-torsion module.

Proof. If J is a nonnil ideal of T, then f~!(J) is a nonnil ideal of R. O

Corollary 2.10. Let M be an R-module. If M/IM is a ¢-torsion R/I-module,
then M is a ¢-torsion R-module.

3. On ¢-flat modules

An R-module M is said to be flat if for every monomorphism f: A — B,
f®1:AQrM — By M is also monomorphic; equivalently, if 0 — A —
B — C — 0 is exact, then 0 = AQrM — BRQrM — CQrM — 0 is
exact. We give the definition of ¢-flat modules as follows.

Definition 3.1. An R-module M is said to be ¢-flat, if for every monomor-
phism f : A — B with ¢-torsion coker(f), f®1: AQ M — By M is also
monomorphic; equivalently, if 0 - A - B — C — 0 is an exact R-sequence
where C' is ¢-torsion, then 0 - AQ,M — BRQyM — CQzrM — 0is

exact.

Recall from [20] that M is flat if and only if 0 = T QM — RQp M is
exact for any ideal I (or any finitely generated ideal I), if and only if the natural
homomorphism o : I QM — IM given by o(a ® x) = ax, a € I, x € M,
is isomorphic for any ideal I (or any finitely generated ideal I), if and only if
Torf'(R/I, M) = 0 for any ideal I (or any finitely generated ideal I), if and
only if for any submodule N of a free R-module F', 0 = NQ,M - FQ, M
is exact, if and only if the character module M = Homyz (M, Q/Z) is injective.
We have the following results for ¢-flat modules.

Theorem 3.2. The following conditions are equivalent for a R-module M.
(a) M is ¢-flat.

(b) Torf(P, M) = 0 for all ¢-torsion R-modules P.

(¢) Torf(R/I, M) =0 for all nonnil ideals I of R.

(d)0=TQrM = RQQr M is an exact sequence for all nonnil ideals I of
R.

() IQprM = IM for all nonnil ideals I of R.

(f) —@r M is exact for every eract R-sequence 0 - N — F — C — 0,
where N, F, C are finitely generated, C' is a ¢-torsion R-module, and F is
free.

(g8) — Qg M is exact for every exact R-sequence 0 - N — F — C — 0,
where C' is a ¢-torsion R-module, and F' is free.

(h) Torf(R/I, M) =0 for all finitely generated nonnil ideals I of R.
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(i) 0=TQrM — RQprM is an exact sequence for all finitely generated
nonnil ideals I of R.

() IQrM =1IM for all finitely generated nonnil ideals I of R.

(k) Exty (I, M+) = 0 for any nonnil ideal I of R, where M+ denote by the
character module Homyz (M, Q/Z).

(1) Let 0 = K — F 2 M — 0 be an exact sequence of R-modules, where F
is free. Then K (\FI = IK for all nonnil ideals I of R.

(m) Let 0 - K — F I M — 0 be an ezact sequence of R-modules, where
F is free. Then K(\FI = 1K for all finite generated nonnil ideal I of R.

Proof. (a)<(b). We only need the long exact sequence
0= Tor((C,M) -+ AQQ)M — BRM — C Q) M — 0.
R R R

(b)=(c). If I is a nonnil ideal of R, then R/I is ¢-torsion R-module.

(c)e(d)e(e), (d)e(k), (d)e(1)<(m). Tt is similar to the flat modules.

(d)&(h)<(i)<(j). Every nonnil ideal I of R is the direct limit of all finitely
generated nonnil subideals I; of I, i.e., I = hg[z

(d)=(f). Let X = {e;}, be a basis of F. The case for n = 1 is true by
hypothesis and the following result. If 0 - I — R — R/I — 0 is exact, and
R/I is a ¢-torsion R-module, then I = Anng(1) € Nil(R). Therefore, I is a
nonnil ideal of R.

Suppose n > 1. Set F} = Rea @ --- P Re, and A= N[ Rey. Let [ = {r €
R|rey C A}. Then A = Ie; = I. Consider the following commutative diagram
with exact rows:

0—=A—=N-—5>N/A—0

Lo, b

0—>R61—>F—p>F1—>O

where 7 is the natural homomorphism, p is the projection, and f is the homo-
morphism induced by the left square. If w € N with f(u) = p(u) = 0, then
u € Rey. Thus u € A, whence f is monomorphic.

Consider the following commutative diagram:

0 0 0

ool

O—>A—>N—7F>N/A—>O

I

0—>R€1—>F—p>F1—>O

I

0 c’ c c” 0
L

0 0
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in which all columns and rows are exact. C'is a ¢-torsion R-module imply that
C’, C" are ¢-torsion R-modules.

Set N' =ker(AQr M — N Qp M). Tensoring by M we have the following
commutative diagram with the top row exact:

N’—>A®RM—>N®RM—>N/A®RM—>O

l | | |

0—Re1QyM —FQRQ M —FL QM —0

The bottom row is also exact because that F @z M = (Re1 @ F1) Q M =
(Rer @ M) B (F1 @ M). Notice that AQp M = Ie1 @z M — Rey @ M is
monomorphic by hypothesis and N/AQ , M — F1 @ M is monomorphic by
induction. Hence we obtain that N @, M — F @ M is monomorphic by
Five Lemma.

(f)=(g). Let u; € N and z; € M such that Y ;" | u; ® z; = 0in FQp M.
We show > u; @ x; = 0in N@p M. Set Ng = Ruy + -+ + Ruy,. Then
there are a finitely generated free submodule Fj and a free submodule F; of F
such that F = Fy @ Fy and Ny C Fy. In the following commutative diagram

O—>N0—>F0—TF>FO/NO—>O

Lol

0—=N F—L2.0o 0

f is monomorphic by Five Lemma, C is a ¢-torsion R-module imply that
Fy/Ny is a ¢-torsion R-module. Thus No @, M — Fy @ M is monomorphic
by hypothesis. Consider the following commutative diagram:

No@pM —NRQpM

! L

FoQrM —FQrM

Since Fy @ p M — F @ p M is monomorphic, and ;" u;®@x; = 0in Fy @ M.
Hence Y ;" u;®@z; = 0in No @ M by hypothesis. Thus we see > .| u;@z; =
0in N @ M from this diagram.

(g)=(a). Let A be a submodule of a module B. Pick a free module F' and
an epimorphism g : F — B. Set N = g~1(A) and K = ker(g). Then we have
the following commutative diagram (a pullback diagram) with exact rows and
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columns:

!

00— K —

00— K —

l

(@)

Tensoring by M we get the following commutative diagram with exact rows:

KQzM-—->NQQyM->AQ, M —0

H ! d

KQzM—>F®,M->BQyM—0

N®M%F®M
R R

is monomorphic by hypothesis, A, M — B M is monomorphic by Five
Lemma. O

Since

Example 3.3. Every flat R-module is ¢-flat. If R is a domain, then every
¢-flat R-module is flat.

We know that flatness of R-modules is a local property. The following two
results imply ¢-flatness is also a local property.

Theorem 3.4. Let M be a ¢-flat R-module, and S be a multiplicative set in
the ring R. Then Mg is a ¢-flat R-module.

Proof. If M is a ¢-flat R-module, then 0 — IM — M — M/IM — 0 is an
exact sequence for any nonnil ideal I. Consider the following commutative
diagram with exact rows:

0—IM@rRs —MQrRs — M/IMQpRs —0
0—I1QRQyzMs —RQQzMs — R/IQpMs —0
Thus Mg is a ¢-flat R-module. (|

Theorem 3.5. Let M be a R-module. The following conditions are equivalent:
(a) M is a ¢-flat R-module.
(b) Mp is a ¢-flat Rp-module for each prime ideal P of R.
(¢) My, is a ¢-flat Ry,-module for each prime ideal m of R.
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Proof. (a)=-(b). Let J be an ideal of Rp with J ¢ Nil(Rp) = (Nil(R))p.
Set I = {r € R|% € Rp}, we have Ip = J € (Nil(R))p, thus I ia a nonnil
ideal of R. The exact sequence 0 = I @M — RQpy M implies that 0 —
Ip ®Rp Mp — Rp ®RP Mp is exact. Therefore, Mp is a ¢-flat Rp-module
for each prime ideal P of R.

(b)=(c). It is trivial.

(c)=(a). If Nil(R) is a maximal ideal of R, then Ry;;(g) =R, and My (p) =
Ryir) Qr M = RQQpr M = M. Suppose that Nil(R) is not a maximal ideal
of R. If I is a nonnil ideal of R, then I,,, is a nonnil ideal of R,,, for any maximal
ideal m. The exact sequence 0 — I, ®Rm M, — R, ®Rm M, implies that
0=>1Q@rM — RQp M is exact, thus M is a ¢-flat R-module. O

Theorem 3.6. Let f : R — T be an epimorphism from rings R to T. If M is
a ¢-flat R-module, then M @ T is a ¢-flat T-module.

Proof. Let 0 - A - B — C — 0 be an exact T-sequence, where C is a
¢-torsion module. By Theorem 2.9, 0 -+ A — B — C' — 0 is also an exact
R-sequence, and C' is a ¢-torsion module. Consider the following commutative
diagram:

0— = AR, M BRpM CRrM—=0

lg lg J/g

0—ARTRQrM —-BRXqr TRz M —-CQRQrTQRQrM —0

The above row exact implies the below row exact, thus M @7 is a ¢-flat
T-module. (I

Corollary 3.7. Let M be a ¢-flat R-module and I be an ideal of R. Then
M/IM is a ¢-flat R/I-module.

Theorem 3.8. Let R be a ¢-ring, M be a R-module and I be an ideal of R.
If I € Nil(R) and I @z M = IM. Then M is a ¢-flat R-module if and only
if M/IM is a ¢-flat R/I-module.

Proof. We suppose M/IM is a ¢-flat R/I-module. For any nonnil ideal J of
R, consider the following commutative diagram:

0—=J/IQp; RITQpM —=R/IQp, R/IQ M

A R

0 ———=J/IQryM R/TQ, M
The above row exact implies the below row exact, thus consider the following
commutative diagram with rows exact:

0—J/IQyM—R/IQyM —R/JQrzM—0

| )

0—>JM/IM—>M/IM4>M/JM—>O
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Thus, J/IQpM = Jm/IM. Consider the following commutative diagram
with rows exact:

0—IQRQyM—=JQyM—=J/IQrM—0

S

0 IM JM JM/IM —=0

We obtain J @ M = JM, thus M is a ¢-flat R-module. O

4. On ¢-von Neumann regular rings

Recall that a ring R is said to be von Neumann regular if every R-module is
flat. A ring R is von Neumann regular, if and only if there is an element x € R
such that a = za? for each a € R, if and only if every principal ideal I of R is
generated by an idempotent, if and only if every finitely generated ideal I of R
is generated by an idempotent. A ring R is w-regular if for each r € R there is
a positive integer n and an element x € R such that r®*z = r™.

We define a ¢-ring R to be a ¢-von Neumann reqular ring if every R-module
is ¢-flat.

Theorem 4.1. Let R be a ¢-ring. The following conditions are equivalent:

(a) R is a ¢-von Neumann regular ring.

(b) R is zero-dimensional.

(c) There is a nonnil element x € R such that a = xa® for any nonnilpotent
element a € R.

(d) Every nonnil principal ideal I of R is generated by an idempotent element
ec R.

(e) Every finite generated nonnil ideal I of R is generated by an idempotent
element e € R.

(f) R/Nil(R) is a von Neumann regular ring.

(g) R is m-regular.

Proof. (a)=(b). It is trivial.

(a)=(c). For each nonnilpotent @ € R, 0 = Ra — R — R/Ra — 0 is exact.
Since R/Ra is ¢-flat, Ra = Ra() Ra = Ra® by Theorem 3.2. Then there is a
nonnilpotent element = € R such that a = xa?.

(c)=(d). Let I = Ra, aENil(R). Then a = xa? for some xENil(R). Thus
e = za € R is idempotent. By e = za € Ra and a = ea € Re, we have
I = Ra = Re.

(d)=(e). Let I = Ray + - - - + Ra, be a nonnil ideal of R. By the condition
that R is a ¢-ring, we may assume that each a; is idempotent. For any = € I,
T =r1a1+ + rpan = 1103 + - +rpal € 12, Thus 12 = I. therefore, I is
generated by an idempotent element.

(e)=(a). Let B be an R-module and let 0 - A — F' — B — 0 be exact,
where I is free. Let I be a finitely generated nonnil ideal of R. Then I = Re
for some idempotent e by hypothesis. For @ € A(IF, we have z = ey =
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e?y = ex € IA (where y € F). Hence A(IF = I A. Therefore, B is ¢-flat by
Theorem 3.2

(d)=(f). Let I=Ra/Nil(R)=(a)R/Nil(R) be a principal ideal of R/Nil(R).
We have Ra is a principal ideal of R, thus Ra = Re for some idempotent element
e € R. Therefore, I is generated by an idempotent element € € R/Nil(R).

(f)=(e). Let I be a finitely generated nonnil ideal of R, then I/Nil(R) is
also a finitely generated nonzero ideal of R/Nil(R). Therefore, I/Nil(R) = (€)
for some idempotent e € R, and I is generated by e.

(f)<(g). See Theorem 3.1 in [17]. O

Example 4.2. Let k be a field, and B be a k-linear space. R = k(+)B is
the idealization of k in B. Set N = 0(+)B, then R/N = k is a field, and
Nil(R) = N # 0. Therefore, R is a ¢-von Neumann regular ring, but not a
von Neumann regular ring.
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