ON ϕ -VON NEUMANN REGULAR RINGS

WEI ZHAO, FANGGUI WANG, AND GAOHUA TANG

ABSTRACT. Let R be a commutative ring with $1 \neq 0$ and let $\mathcal{H} = \{R \mid R \text{ is a commutative ring and } Nil(R) \text{ is a divided prime ideal}\}$. If $R \in \mathcal{H}$, then R is called a ϕ -ring. In this paper, we introduce the concepts of ϕ -torsion modules, ϕ -flat modules, and ϕ -von Neumann regular rings.

1. Introduction

Let R be a commutative ring with $1 \neq 0$ and Nil(R) be its set of nilpotent elements. Recall from [15] and [3] that a prime ideal of R is called a *divided prime* if $P \subset (x)$ for every $x \in R \backslash P$. Set $\mathcal{H} = \{R \mid R \text{ is a commutative ring and } Nil(R)$ is a divided prime ideal of $R\}$. If $R \in \mathcal{H}$, then R is called a ϕ -ring.

Throughout this paper, it is assumed that all rings are commutative and associative with identity $1 \neq 0$ and all modules are unitary. Recently, the authors in [1], [2], [14], and [18] generalized the concept of Prüfer, Bezout domains, Dedekind domains, Krull domains, Mori domains, and Strongly Mori domains to the context of rings that are in the class \mathcal{H} . Also, the authors in [4], [3], [5], [6], [7], and [9], investigated the following classes of rings: ϕ -CR, ϕ -PVR, and ϕ -ZPUI. Furthermore, in [11], the authors investigated going-down ϕ -rings. The authors in [8], [13] and [16], introduced the notion of nonnil-Noetherian rings (later called ϕ -Noetherian rings). This notion was extended to noncommutative rings in [19]. The authors in [10], stated many of the main results on ϕ -rings.

The classic homological algebra enlighten us that the categories of modules and homological dimensions are beneficial to characterize a ring from its external structure. For example, w.gl.dim(R) = 0, equivalently, every R-module is flat, if and only if R is a von Neumann regular ring. This naturally leads to the question: How to characterize a ring $R \in \mathcal{H}$ in terms of modules theoretic methods? To this end, we introduce a class of modules. Set $NN(R) = \{J \mid J \text{ is a nonnil ideal of ring } R\}$. Let M be an R-module. We

Received April 7, 2012; Revised June 28, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 13C05,\ 13C11,\ 13C12.$

Key words and phrases. ϕ -torsion modules, ϕ -flat modules, ϕ -von Neumann regular rings. This work was financially supported by the National Natural Science Foundation of China 11171240 and 11161006.

define ϕ -tor $(M) = \{x \in M \mid Ix = 0 \text{ for some } I \in NN(R)\}$. If ϕ -tor(M) = M, then M is called a ϕ -torsion module, and if ϕ -tor(M) = 0, then M is called a ϕ -torsion free module. In Section 2, we investigate some basic properties of ϕ -torsion modules and ϕ -torsion free modules.

In Section 3, we define a ϕ -flat module with the help of ϕ -torsion modules. An R-module M is called ϕ -flat, if $-\bigotimes_R M$ is exact for every exact R-sequence $0 \to A \to B \to C \to 0$, where C is a ϕ -torsion R-module. We show that an R-module M is ϕ -flat if and only if $0 \to I \bigotimes_R M \to R \bigotimes_R M$ is an exact sequence for all nonnil ideals I of R. This helps us generalize the theory of flat modules to the ϕ -flat modules.

Recall that a ring R is said to be von Neumann regular if every R-module is flat. A ring R is von Neumann regular, if and only if there is an element $x \in R$ such that $a = xa^2$ for each $a \in R$, if and only if every principal ideal I of R is generated by an idempotent, if and only if every finitely generated ideal I of R is generated by an idempotent. We define a ϕ -ring R to be a ϕ -von Neumann regular ring if every R-module is ϕ -flat. In the last section of this paper, we characterize ϕ -von Neumann regular rings and we give an example of a ϕ -von Neumann regular ring that is not a von Neumann regular ring.

2. On ϕ -torsion modules and ϕ -torsion free modules

Set $NN(R) = \{I \mid I \text{ is a nonnil ideal of ring } R\}$. Let M be an R-module. We define

$$\phi\text{-tor}(M) = \{x \in M \mid Ix = 0 \text{ for some } I \in NN(R)\}.$$

If ϕ -tor(M) = M, then M is called a ϕ -torsion module, and if ϕ -tor(M) = 0, then M is called a ϕ -torsion free module. Clearly, submodules and quotient modules of ϕ -torsion modules are still ϕ -torsion; submodules of ϕ -torsion free modules are still ϕ -torsion free.

If Nil(R) is a prime ideal, then ϕ -tor(M) is a submodule of M which is called the *total* ϕ -torsion submodule of M. Set $T = \phi$ -tor(M). Then T is always ϕ -torsion and M/T is always ϕ -torsion free.

Example 2.1. Let R be a commutative ring. Then R/I is a ϕ -torsion R-module for any nonnil ideal I of R.

Every regular ideal is a nonnil ideal, thus every torsion R-module is ϕ -torsion R-module, and every ϕ -torsion free R-module is torsion free R-module. If R is a strong ϕ -ring, in the sense that each zero divisor is nilpotent, or a domain, then every ϕ -torsion R-module is torsion R-module, and every torsion free R-module is ϕ -torsion free R-modules.

The following results give us a criterion to ϕ -torsion module, and ϕ -torsion free module.

Theorem 2.2. An R-module M is ϕ -torsion if and only if $ann_R(x)$ is a nonnil ideal for all x in M.

Theorem 2.3. The following statements are equivalent for a module M:

- (1) M is ϕ -torsion free.
- (2) $\operatorname{Hom}_R(R/J, M) = 0$ for all $J \in NN(R)$.
- (3) $\operatorname{Hom}_R(B, M) = 0$ for all $J \in NN(R)$ and all R/J-modules B.

Proof. (1) \Rightarrow (2). Let $f \in \text{Hom}_R(R/J, M)$ and write $x = f(\overline{1})$. Thus Jx = 0, whence x = 0. Consequently, f = 0.

- $(2)\Rightarrow(1)$. Let $x\in M$ and $J\in NN(R)$ with Jx=0. Define $f:R/J\to M$ by $f(\overline{r})=rx$. Then f is a well-defined homomorphism. As $\operatorname{Hom}_R(R/J,M)=0$ we have $x=f(\overline{1})=0$.
- $(2)\Rightarrow(3)$. Let $F=\bigoplus(R/J)$ be a free R/J-module and let $f:F\to B$ be epimorphic. Then $0\to \operatorname{Hom}_R(B,M)\to \operatorname{Hom}_R(F,M)$ is an exact sequence. Since $\operatorname{Hom}_R(F,M)=\prod \operatorname{Hom}_R(R/J,M)=0$, we have $\operatorname{Hom}_R(B,M)=0$.

 $(3)\Rightarrow(2)$. Trivially.

Theorem 2.4. Let R be a commutative ring with prime nil ideal Nil(R).

- (1) A module M is ϕ -torsion if and only if $\operatorname{Hom}_R(M,N)=0$ for any ϕ -torsion free module N.
- (2) A module N is ϕ -torsion free if and only if $\operatorname{Hom}_R(M,N)=0$ for any ϕ -torsion module M.

Proof. (1) Let M be ϕ -torsion and let $f \in \operatorname{Hom}_R(M,N)$. Then $\operatorname{Im}(f)$ is a ϕ -torsion submodule of N. Since N is ϕ -torsion free, we have f(M) = 0, and hence f = 0.

Conversely, set $T = \phi$ -tor(M) and N = M/T. Then N is ϕ -torsion free. Thus the natural homomorphism $\pi: M \to N$ is the zero homomorphism since $\operatorname{Hom}_R(M,N) = 0$. Therefore N = 0, that is, M = T.

(2) Let N be ϕ -torsion free. By (1) we have $\operatorname{Hom}_R(M,N)=0$ for any ϕ -torsion module M.

Conversely, let $M = \phi$ -tor(N). Then $\operatorname{Hom}_R(M,N) = 0$. Thus the inclusion homomorphism $M \to N$ is the zero homomorphism. Therefore M = 0, and hence N is ϕ -torsion free.

Theorem 2.5. Let R be a commutative ring with prime nil ideal Nil(R) and $\{M_i \mid i \in \Gamma\}$ be a family of ϕ -torsion modules. Then $\bigoplus_{i \in \Gamma} M_i$ is ϕ -torsion.

Proof. We have that $\operatorname{Hom}_R(\bigoplus_{i\in\Gamma} M_i, N) \cong \prod_{i\in\Gamma} \operatorname{Hom}_R(M_i, N)$.

Theorem 2.6. Let $f: R \to T$ be an monomorphism from rings R to T. If M is a ϕ -torsion R-module, then $M \bigotimes_R T$ is a ϕ -torsion T-module.

Proof. If I is a nonnil ideal of R, then f(I) is a nonnil ideal of T.

Corollary 2.7. If M is a ϕ -torsion R-module, then $M[x] = M \bigotimes_R R[x]$, as an R[x]-module, is also a ϕ -torsion module.

Corollary 2.8. Let M be a ϕ -torsion R-module, and S be a regular multiplicative set in the ring R. Then $S^{-1}M$ is a ϕ -torsion $S^{-1}R$ -module.

Proof. If I is a nonnil ideal of R, then $S^{-1}I$ is a nonnil ideal of $S^{-1}R$.

Theorem 2.9. Let $f: R \to T$ be an epimorphism from rings R to T. If M is a ϕ -torsion T-module, then M, as a R-module, is also a ϕ -torsion module.

Proof. If J is a nonnil ideal of T, then $f^{-1}(J)$ is a nonnil ideal of R.

Corollary 2.10. Let M be an R-module. If M/IM is a ϕ -torsion R/I-module, then M is a ϕ -torsion R-module.

3. On ϕ -flat modules

An R-module M is said to be flat if for every monomorphism $f:A\to B$, $f\otimes \mathbf{1}:A\bigotimes_R M\to B\bigotimes_R M$ is also monomorphic; equivalently, if $0\to A\to B\to C\to 0$ is exact, then $0\to A\bigotimes_R M\to B\bigotimes_R M\to C\bigotimes_R M\to 0$ is exact. We give the definition of ϕ -flat modules as follows.

Definition 3.1. An R-module M is said to be ϕ -flat, if for every monomorphism $f:A\to B$ with ϕ -torsion $\operatorname{coker}(f), f\otimes \mathbf{1}:A\bigotimes_R M\to B\bigotimes_R M$ is also monomorphic; equivalently, if $0\to A\to B\to C\to 0$ is an exact R-sequence where C is ϕ -torsion, then $0\to A\bigotimes_R M\to B\bigotimes_R M\to C\bigotimes_R M\to 0$ is exact.

Recall from [20] that M is flat if and only if $0 \to I \bigotimes_R M \to R \bigotimes_R M$ is exact for any ideal I (or any finitely generated ideal I), if and only if the natural homomorphism $\sigma: I \bigotimes_R M \to IM$ given by $\sigma(a \otimes x) = ax, \ a \in I, \ x \in M$, is isomorphic for any ideal I (or any finitely generated ideal I), if and only if $\operatorname{Tor}_1^R(R/I,M) = 0$ for any ideal I (or any finitely generated ideal I), if and only if for any submodule N of a free R-module $F, 0 \to N \bigotimes_R M \to F \bigotimes_R M$ is exact, if and only if the character module $M^+ = \operatorname{Hom}_Z(M,Q/Z)$ is injective. We have the following results for ϕ -flat modules.

Theorem 3.2. The following conditions are equivalent for a R-module M.

- (a) M is ϕ -flat.
- (b) $\operatorname{Tor}_{1}^{R}(P, M) = 0$ for all ϕ -torsion R-modules P.
- (c) $\operatorname{Tor}_1^R(R/I, M) = 0$ for all nonnil ideals I of R.
- (d) $0 \to I \bigotimes_R M \to R \bigotimes_R M$ is an exact sequence for all nonnil ideals I of R.
 - (e) $I \bigotimes_{R} M \cong IM$ for all nonnil ideals I of R.
- (f) $-\bigotimes_{R} M$ is exact for every exact R-sequence $0 \to N \to F \to C \to 0$, where N, F, C are finitely generated, C is a ϕ -torsion R-module, and F is free.
- (g) $-\bigotimes_R M$ is exact for every exact R-sequence $0 \to N \to F \to C \to 0$, where C is a ϕ -torsion R-module, and F is free.
 - (h) $\operatorname{Tor}_{1}^{R}(R/I, M) = 0$ for all finitely generated nonnil ideals I of R.

- (i) $0 \to I \bigotimes_R M \to R \bigotimes_R M$ is an exact sequence for all finitely generated nonnil ideals I of R.
 - (j) $I \bigotimes_R M \cong IM$ for all finitely generated nonnil ideals I of R.
- (k) $\operatorname{Ext}_R^1(I, M^+) = 0$ for any nonnil ideal I of R, where M^+ denote by the character module $\operatorname{Hom}_Z(M, Q/Z)$.
- (1) Let $0 \to K \to F \xrightarrow{g} M \to 0$ be an exact sequence of R-modules, where F is free. Then $K \cap FI = IK$ for all nonnil ideals I of R.
- (m) Let $0 \to K \to F \xrightarrow{g} M \to 0$ be an exact sequence of R-modules, where F is free. Then $K \cap FI = IK$ for all finite generated nonnil ideal I of R.

Proof. (a) \Leftrightarrow (b). We only need the long exact sequence

$$0 = \operatorname{Tor}_1^R(C,M) \to A \bigotimes_R M \to B \bigotimes_R M \to C \bigotimes_R M \to 0.$$

- (b) \Rightarrow (c). If I is a nonnil ideal of R, then R/I is ϕ -torsion R-module.
- $(c)\Leftrightarrow(d)\Leftrightarrow(e), (d)\Leftrightarrow(k), (d)\Leftrightarrow(l)\Leftrightarrow(m)$. It is similar to the flat modules.
- $(d)\Leftrightarrow (h)\Leftrightarrow (j)$. Every nonnil ideal I of R is the direct limit of all finitely generated nonnil subideals I_i of I, i.e., $I = \lim I_i$.
- (d) \Rightarrow (f). Let $X = \{e_i\}_{i=1}^n$ be a basis of F. The case for n=1 is true by hypothesis and the following result. If $0 \to I \to R \to R/I \to 0$ is exact, and R/I is a ϕ -torsion R-module, then $I = Ann_R(\overline{1}) \nsubseteq Nil(R)$. Therefore, I is a nonnil ideal of R.

Suppose n > 1. Set $F_1 = Re_2 \bigoplus \cdots \bigoplus Re_n$ and $A = N \bigcap Re_1$. Let $I = \{r \in R \mid re_1 \subseteq A\}$. Then $A = Ie_1 \cong I$. Consider the following commutative diagram with exact rows:

$$0 \longrightarrow A \longrightarrow N \stackrel{\pi}{\longrightarrow} N/A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow f$$

$$0 \longrightarrow Re_1 \longrightarrow F \stackrel{p}{\longrightarrow} F_1 \longrightarrow 0$$

where π is the natural homomorphism, p is the projection, and f is the homomorphism induced by the left square. If $u \in N$ with $f(\overline{u}) = p(u) = 0$, then $u \in Re_1$. Thus $u \in A$, whence f is monomorphic.

Consider the following commutative diagram:

in which all columns and rows are exact. C is a ϕ -torsion R-module imply that C', C'' are ϕ -torsion R-modules.

Set $N' = \ker(A \bigotimes_R M \to N \bigotimes_R M)$. Tensoring by M we have the following commutative diagram with the top row exact:

$$N' \longrightarrow A \bigotimes_{R} M \longrightarrow N \bigotimes_{R} M \longrightarrow N/A \bigotimes_{R} M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow Re_{1} \bigotimes_{R} M \longrightarrow F \bigotimes_{R} M \longrightarrow F_{1} \bigotimes_{R} M \longrightarrow 0$$

The bottom row is also exact because that $F \bigotimes_R M \cong (Re_1 \bigoplus F_1) \bigotimes M \cong (Re_1 \bigotimes M) \bigoplus (F_1 \bigotimes M)$. Notice that $A \bigotimes_R M = Ie_1 \bigotimes_R M \to Re_1 \bigotimes_R M$ is monomorphic by hypothesis and $N/A \bigotimes_R M \to F_1 \bigotimes_R M$ is monomorphic by induction. Hence we obtain that $N \bigotimes_R M \to F \bigotimes_R M$ is monomorphic by Five Lemma.

(f) \Rightarrow (g). Let $u_i \in N$ and $x_i \in M$ such that $\sum_{i=1}^m u_i \otimes x_i = 0$ in $F \bigotimes_R M$. We show $\sum_{i=1}^m u_i \otimes x_i = 0$ in $N \bigotimes_R M$. Set $N_0 = Ru_1 + \cdots + Ru_m$. Then there are a finitely generated free submodule F_0 and a free submodule F_1 of F such that $F = F_0 \bigoplus F_1$ and $N_0 \subseteq F_0$. In the following commutative diagram

$$0 \longrightarrow N_0 \longrightarrow F_0 \stackrel{\pi}{\longrightarrow} F_0/N_0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^f$$

$$0 \longrightarrow N \longrightarrow F \stackrel{p}{\longrightarrow} C \longrightarrow 0$$

f is monomorphic by Five Lemma, C is a ϕ -torsion R-module imply that F_0/N_0 is a ϕ -torsion R-module. Thus $N_0 \bigotimes_R M \to F_0 \bigotimes_R M$ is monomorphic by hypothesis. Consider the following commutative diagram:

$$\begin{array}{ccc}
N_0 \bigotimes_R M \longrightarrow N \bigotimes_R M \\
\downarrow & & \downarrow \\
F_0 \bigotimes_R M \longrightarrow F \bigotimes_R M
\end{array}$$

Since $F_0 \bigotimes_R M \to F \bigotimes_R M$ is monomorphic, and $\sum_{i=1}^m u_i \otimes x_i = 0$ in $F_0 \bigotimes_R M$. Hence $\sum_{i=1}^m u_i \otimes x_i = 0$ in $N_0 \bigotimes_R M$ by hypothesis. Thus we see $\sum_{i=1}^m u_i \otimes x_i = 0$ in $N \bigotimes_R M$ from this diagram.

 $(g)\Rightarrow (a)$. Let A be a submodule of a module B. Pick a free module F and an epimorphism $g: F \to B$. Set $N = g^{-1}(A)$ and $K = \ker(g)$. Then we have the following commutative diagram (a pullback diagram) with exact rows and

columns:

Tensoring by M we get the following commutative diagram with exact rows:

$$K \bigotimes_{R} M \longrightarrow N \bigotimes_{R} M \xrightarrow{g} A \bigotimes_{R} M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow f$$

$$K \bigotimes_{R} M \longrightarrow F \bigotimes_{R} M \xrightarrow{g} B \bigotimes_{R} M \longrightarrow 0$$

Since

$$N \bigotimes_R M \to F \bigotimes_R M$$

is monomorphic by hypothesis, $A \bigotimes_R M \to B \bigotimes_R M$ is monomorphic by Five Lemma. \Box

Example 3.3. Every flat R-module is ϕ -flat. If R is a domain, then every ϕ -flat R-module is flat.

We know that flatness of R-modules is a local property. The following two results imply ϕ -flatness is also a local property.

Theorem 3.4. Let M be a ϕ -flat R-module, and S be a multiplicative set in the ring R. Then M_S is a ϕ -flat R-module.

Proof. If M is a ϕ -flat R-module, then $0 \to IM \to M \to M/IM \to 0$ is an exact sequence for any nonnil ideal I. Consider the following commutative diagram with exact rows:

Thus M_S is a ϕ -flat R-module.

Theorem 3.5. Let M be a R-module. The following conditions are equivalent:

- (a) M is a ϕ -flat R-module.
- (b) M_P is a ϕ -flat R_P -module for each prime ideal P of R.
- (c) M_m is a ϕ -flat R_m -module for each prime ideal m of R.

Proof. (a) \Rightarrow (b). Let J be an ideal of R_P with $J \nsubseteq Nil(R_P) = (Nil(R))_P$. Set $I = \{r \in R \mid \frac{r}{1} \in R_P\}$, we have $I_P = J \nsubseteq (Nil(R))_P$, thus I ia a nonnil ideal of R. The exact sequence $0 \to I \bigotimes_R M \to R \bigotimes_R M$ implies that $0 \to I_P \bigotimes_{R_P} M_P \to R_P \bigotimes_{R_P} M_P$ is exact. Therefore, M_P is a ϕ -flat R_P -module for each prime ideal P of R.

(b) \Rightarrow (c). It is trivial.

(c) \Rightarrow (a). If Nil(R) is a maximal ideal of R, then $R_{Nil(R)} = R$, and $M_{Nil(R)} \cong R_{Nil(R)} \bigotimes_R M \cong R \bigotimes_R M \cong M$. Suppose that Nil(R) is not a maximal ideal of R. If I is a nonnil ideal of R, then I_m is a nonnil ideal of R_m for any maximal ideal m. The exact sequence $0 \to I_m \bigotimes_{R_m} M_m \to R_m \bigotimes_{R_m} M_m$ implies that $0 \to I \bigotimes_R M \to R \bigotimes_R M$ is exact, thus M is a ϕ -flat R-module. \square

Theorem 3.6. Let $f: R \to T$ be an epimorphism from rings R to T. If M is a ϕ -flat R-module, then $M \bigotimes_{R} T$ is a ϕ -flat T-module.

Proof. Let $0 \to A \to B \to C \to 0$ be an exact T-sequence, where C is a ϕ -torsion module. By Theorem 2.9, $0 \to A \to B \to C \to 0$ is also an exact R-sequence, and C is a ϕ -torsion module. Consider the following commutative diagram:

$$0 \longrightarrow A \bigotimes_{R} M \longrightarrow B \bigotimes_{R} M \longrightarrow C \bigotimes_{R} M \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow A \bigotimes_{T} T \bigotimes_{R} M \longrightarrow B \bigotimes_{T} T \bigotimes_{R} M \longrightarrow C \bigotimes_{T} T \bigotimes_{R} M \longrightarrow 0$$

The above row exact implies the below row exact, thus $M \bigotimes_R T$ is a ϕ -flat T-module. \square

Corollary 3.7. Let M be a ϕ -flat R-module and I be an ideal of R. Then M/IM is a ϕ -flat R/I-module.

Theorem 3.8. Let R be a ϕ -ring, M be a R-module and I be an ideal of R. If $I \subseteq Nil(R)$ and $I \bigotimes_R M \cong IM$. Then M is a ϕ -flat R-module if and only if M/IM is a ϕ -flat R/I-module.

Proof. We suppose M/IM is a ϕ -flat R/I-module. For any nonnil ideal J of R, consider the following commutative diagram:

$$0 \longrightarrow J/I \bigotimes_{R/I} R/I \bigotimes_R M \longrightarrow R/I \bigotimes_{R/I} R/I \bigotimes_R M$$

$$\downarrow^{\cong} \qquad \qquad \downarrow^{\cong}$$

$$0 \longrightarrow J/I \bigotimes_R M \longrightarrow R/I \bigotimes_R M$$

The above row exact implies the below row exact, thus consider the following commutative diagram with rows exact:

Thus, $J/I \bigotimes_R M \cong Jm/IM$. Consider the following commutative diagram with rows exact:

We obtain $J \bigotimes_R M \cong JM$, thus M is a ϕ -flat R-module.

4. On ϕ -von Neumann regular rings

Recall that a ring R is said to be von Neumann regular if every R-module is flat. A ring R is von Neumann regular, if and only if there is an element $x \in R$ such that $a = xa^2$ for each $a \in R$, if and only if every principal ideal I of R is generated by an idempotent, if and only if every finitely generated ideal I of R is generated by an idempotent. A ring R is π -regular if for each $r \in R$ there is a positive integer n and an element $x \in R$ such that $r^{2n}x = r^n$.

We define a ϕ -ring R to be a ϕ -von Neumann regular ring if every R-module is ϕ -flat.

Theorem 4.1. Let R be a ϕ -ring. The following conditions are equivalent:

- (a) R is a ϕ -von Neumann regular ring.
- (b) R is zero-dimensional.
- (c) There is a nonnil element $x \in R$ such that $a = xa^2$ for any nonnilpotent element $a \in R$.
- (d) Every nonnil principal ideal I of R is generated by an idempotent element $e \in R$.
- (e) Every finite generated nonnil ideal I of R is generated by an idempotent element $e \in R$.
 - (f) R/Nil(R) is a von Neumann regular ring.
 - (g) R is π -regular.

Proof. (a) \Rightarrow (b). It is trivial.

- (a) \Rightarrow (c). For each nonnilpotent $a \in R$, $0 \to Ra \to R \to R/Ra \to 0$ is exact. Since R/Ra is ϕ -flat, $Ra = Ra \cap Ra = Ra^2$ by Theorem 3.2. Then there is a nonnilpotent element $x \in R$ such that $a = xa^2$.
- (c) \Rightarrow (d). Let $I=Ra, \ a \in Nil(R)$. Then $a=xa^2$ for some $x \in Nil(R)$. Thus $e=xa \in R$ is idempotent. By $e=xa \in Ra$ and $a=ea \in Re$, we have I=Ra=Re.
- (d) \Rightarrow (e). Let $I=Ra_1+\cdots+Ra_n$ be a nonnil ideal of R. By the condition that R is a ϕ -ring, we may assume that each a_i is idempotent. For any $x\in I$, $x=r_1a_1+\cdots+r_na_n=r_1a_1^2+\cdots+r_na_n^2\in I^2$. Thus $I^2=I$. therefore, I is generated by an idempotent element.
- (e) \Rightarrow (a). Let B be an R-module and let $0 \to A \to F \to B \to 0$ be exact, where F is free. Let I be a finitely generated nonnil ideal of R. Then I = Re for some idempotent e by hypothesis. For $x \in A \cap IF$, we have x = ey = Re

- $e^2y = ex \in IA$ (where $y \in F$). Hence $A \cap IF = IA$. Therefore, B is ϕ -flat by Theorem 3.2
- (d) \Rightarrow (f). Let $I = Ra/Nil(R) = (\overline{a})R/Nil(R)$ be a principal ideal of R/Nil(R). We have Ra is a principal ideal of R, thus Ra = Re for some idempotent element $e \in R$. Therefore, I is generated by an idempotent element $\overline{e} \in R/Nil(R)$.
- (f) \Rightarrow (e). Let I be a finitely generated nonnil ideal of R, then I/Nil(R) is also a finitely generated nonzero ideal of R/Nil(R). Therefore, $I/Nil(R) = (\overline{e})$ for some idempotent $e \in R$, and I is generated by e.
 - $(f)\Leftrightarrow (g)$. See Theorem 3.1 in [17].

Example 4.2. Let k be a field, and B be a k-linear space. R = k(+)B is the idealization of k in B. Set N = 0(+)B, then $R/N \cong k$ is a field, and $Nil(R) = N \neq 0$. Therefore, R is a ϕ -von Neumann regular ring, but not a von Neumann regular ring.

References

- D. F. Anderson and A. Badawi, On φ-Prüfer rings and φ-Bezout rings, Houston J. Math. 30 (2004), no. 2, 331–343.
- [2] _____, on φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31 (2005), no. 4, 1007–1022.
- [3] A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465–1474.
- [4] _____, On \(\phi\)-pseudo-valuation rings, Advances in commutative ring theory (Fez, 1997), 101–110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999.
- [5] ______, On φ-pseudo-valuation rings. II, Houston J. Math. **26** (2000), no. 3, 473–480.
- [6] _____, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725–736.
- [7] _____, On divided rings and φ-pseudo-valuation rings, Commutative rings, 5–14, Nova Sci. Publ., Hauppauge, NY, 2002.
- [8] ______, On Nonnil-Noetherian rings, Comm. Algebra **31** (2003), no. 4, 1669–1677.
- [9] ______, Factoring nonnil ideals as a product of prime and invertible ideals, Bulletin of the London Matth. Society 37 (2005), 665–672.
- [10] ______, On rings with divided nil ideal: a survey, Commutative algebra and its applications, 21–40, Walter de Gruyter, Berlin, 2009.
- [11] A. Badawi and D. E. Dobbs, Strong ring extensions and φ-pseudo-valuation rings, Houston J. Math. 32 (2006), no. 2, 379–398.
- [12] A. Badawi and A. Jaballah, Some finiteness conditions on the set of overrings of a ϕ -ring, Houston J. Math. **34** (2008), no. 2, 397–408.
- [13] A. Badawi and T. G. Lucas, Rings with prime nilradical, in Arithmetical Properties of Commutative Rings and Monoids, vol. 241 of Lect. Notes Pure Appl. Math., pp. 198–212, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2005.
- [14] ______, on ϕ -Mori rings, Houston J. Math. **32** (2006), no. 1, 1–32.
- [15] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363.
- [16] S. Hizem and A. Benhissi, Nonnil-Noetherian rings and the SFT property, Rocky Mountain J. Math. 41 (2011), no. 5, 1483–1500.
- [17] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York/Basel, 1988
- [18] H. Kim and F. G. Wang, On $\phi\text{-strong Mori rings},$ Houston J. Math. 38 (2012), no. 2, 359–371.

- [19] C. Lomp and A. Sant'ana, Comparability, distributivity and non-commutative ϕ -rings, Groups, rings and group rings, 205–217, Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009.
- [20] F. G. Wang, $Commutative\ Rings\ and\ Star-Operation\ Theory,$ Sicence Press, Beijing, 2006.

WEI ZHAO COLLEGE OF MATHEMATICS SICHUAN NORMAL UNIVERSITY CHENGDU 610068, P. R. CHINA E-mail address: zw9c248@163.com

FANGGUI WANG
COLLEGE OF MATHEMATICS
SICHUAN NORMAL UNIVERSITY
CHENGDU 610068, P. R. CHINA
E-mail address: wangfg2004@163.com

GAOHUA TANG
SCHOOL OF MATHEMATICAL SCIENCES
GUANGXI TEACHERS EDUCATION UNIVERSITY
NANNING 530001, P. R. CHINA
E-mail address: tanggaohua@163.com