• Title/Summary/Keyword: ${\alpha}$-helical peptide

Search Result 53, Processing Time 0.032 seconds

Antimicrobial Activity of the Synthetic Peptide Scolopendrasin II from the Centipede Scolopendra subspinipes mutilans

  • Kwon, Young-Nam;Lee, Joon Ha;Kim, In-Woo;Kim, Sang-Hee;Yun, Eun-Young;Nam, Sung-Hee;Ahn, Mi-Young;Jeong, MiHye;Kang, Dong-Chul;Lee, In Hee;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1381-1385
    • /
    • 2013
  • The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) based on a SVM algorithm, and biochemically evaluated the in vitro antimicrobial activity of scolopendrasin II against various microbes. Scolopendrasin II showed antibacterial activities against gram-positive and -negative bacterial strains, including the yeast Candida albicans and antibiotic-resistant gram-negative bacteria, as determined by a radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin II bound to the surface of bacteria through a specific interaction with lipoteichoic acid and a lipopolysaccharide, which was one of the bacterial cell-wall components. In conclusion, our results suggest that scolopendrasin II may be useful for developing peptide antibiotics.

Identification of Antimicrobial Peptide Hexamers against Oral Pathogens through Rapid Screening of a Synthetic Combinatorial Peptide Library

  • Song, Je-Seon;Cho, Kyung Joo;Kim, Joungmok;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.169-176
    • /
    • 2014
  • A positional scanning synthetic peptide combinatorial library (PS-SCL) was screened in order to identify antimicrobial peptides against the cariogenic oral bacteria, Streptococcus mutans. Activity against Streptococcus gordonii and Aggregatibacter actinomycetemcomitans was also examined. The library was comprised of six sub-libraries with the format $O_{(1-6)}XXXXX-NH_2$, where O represents one of 19 amino acids (excluding cysteine) and X represents equimolar mixture of these. Each sub-library was tested for antimicrobial activity against S. mutans and evaluated for antimicrobial activity against S. gordonii and A. actinomycetemcomitans. The effect of peptides was observed using transmission electron microscopy (TEM). Two semi-mixture peptides, RXXXXN-$NH_2$ (pep-1) and WXXXXN-$NH_2$ (pep-2), and one positioned peptide, RRRWRN-$NH_2$ (pep-3), were identified. Pep-1 and pep-2 showed significant antimicrobial activity against Gram positive bacteria (S. mutans and S. gordonii), but not against Gram negative bacteria (A. actinomycetemcomitans). However, pep-3 showed very low antimicrobial activity against all three bacteria. Pep-3 did not form an amphiphilic ${\alpha}$-helix, which is a required structure for most antimicrobial peptides. Pep-1 and pep-2 were able to disrupt the membrane of S. mutans. Small libraries of biochemically-constrained peptides can be used to generate antimicrobial peptides against S. mutans and other oral microbes. Peptides derived from such libraries may be candidate antimicrobial agents for the treatment of oral microorganisms.

Structural Analysis of the Ectodomain of HIV Gp41 and Implication on the Gp41 Assisted Membrane Fusion

  • Ryu, Jae-Ryen;Lee, Jung;Suh, Mu-Jin;Yu, Yeong-Sook;Yu, Yeon-Gyu
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.33-33
    • /
    • 1996
  • An ectodomain of gp41, the transmembrane fusion protein of HIV, without the fusion peptide region was expressed using pET system in E. coli. The expressed protein gp41core, was isolated as inclusion body and was purified by ion-exchange chromatography after solubilized in 6M urea. The purified denatured protein was renaturated and the folded domain of gp41core was identified by the presence of the proteolysis resistence domain and a high content of ${\alpha}$-helical secondary structure. (omitted)

  • PDF

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2577-2583
    • /
    • 2011
  • We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.

Recombinant Production and Antimicrobial Activity of an Antimicrobial Model Peptide (Uu-ilys-CF) Derived from Spoon Worm Lysozyme, Uu-ilys (개불 라이소자임 유래 항균성 모델 펩타이드(Uu-ilys-CF)의 재조합 단백질 생산 및 항균 활성)

  • Oh, Hye Young;Go, Hye-Jin;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Uu-ilys, an i-type lysozyme from spoon worm (Urechis unicinctus), is an innate immune factor that plays an important role in the defense against pathogens. It also possesses non-enzymatic antibacterial activity. Thus, there is a possibility to develop an antimicrobial model peptide from Uu-ilys. In this study, we report the design, production, and antibacterial activity of an Uu-ilys analog that exhibits antibacterial activity. The Uu-ilys structure was fragmented according to its secondary structures to predict the regions with antimicrobial activity using antimicrobial peptide (AMP) prediction tools from different AMP databases. A peptide containing the C-terminal fragment was predicted to exert antimicrobial activity. The chosen fragment was designated as an Uu-ilys analog containing the C-terminal fragment, Uu-ilys-CF. To examine the possibility of developing an AMP using the sequence of Uu-ilys-CF, recombinant fusion protein (TrxA-Uu-ilys-CF) was produced in an expression system that was heterologous. The produced fusion protein was cleaved after methionine leaving Uu-ilys-CF free from the fusion protein. This was then isolated through high performance liquid chromatography and reverse phase column, CapCell-Pak C18. The antibacterial activity of Uu-ilys-CF against different microbial strains (four gram-positive, six gram-negative, and one fungal strain) were assessed through the ultrasensitive radial diffusion assay (URDA). Among the bacterial strains tested, Salmonella enterica was the most susceptible. While the fungal strain tested was not susceptible to Uu-ilys-CF, broad spectrum antibacterial activity was observed.

A Helix-induced Oligomeric Transition of Gaegurin 4, an Antimicrobial Peptide Isolated from a Korean Frog

  • Eun, Su-Yong;Jang, Hae-Kyung;Han, Seong-Kyu;Ryu, Pan-Dong;Lee, Byeong-Jae;Han, Kyou-Hoon;Kim, Soon-Jong
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.229-236
    • /
    • 2006
  • Gaegurin 4 (GGN4), a novel peptide isolated from the skin of a Korean frog, Rana rugosa, has broad spectrum antimicrobial activity. A number of amphipathic peptides closely related to GGN4 undergo a coil to helix transition with concomitant oligomerization in lipid membranes or membrane-mimicking environments. Despite intensive study of their secondary structures, the oligomeric states of the peptides before and after the transition are not well understood. To clarify the structural basis of its antibiotic action, we used analytical ultracentrifugation to define the aggregation state of GGN4 in water, ethyl alcohol, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The maximum size of GGN4 in 15% HFIP corresponded to a decamer, whereas it was monomeric in buffer. The oligomeric transition is accompanied by a cooperative 9 nm blue-shift of maximum fluorescence emission and a large secondary structure change from an almost random coil to an ${\alpha}$-helical structure. GGN4 induces pores in lipid membranes and, using electrophysiological methods, we estimated the diameter of the pores to be exceed $7.3{\AA}$, which suggests that the minimal oligomer structure responsible is a pentamer.

Antifreeze Activity of Dimerized Type I Antifreeze Protein Fragments (Type I 결빙방지 단백질 조각 이량체의 결빙방지 활성)

  • Kim, Hak Jun
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.584-590
    • /
    • 2017
  • Antifreeze proteins (AFPs) bind to ice crystals and inhibit their growth. AFPs are essential for the survival of organisms living in subzero environments. Type I AFP (AFP37) isolated from winter flounder is an ${\alpha}$-helical peptide of 37 residues long. In this study, we attempted to develop short AFP fragments with higher activity and solubility. We designed and synthesized N-terminal 15 and 21 residue-long AFPs, designated AFP15 and 21. Also dimerized AFP15 and 21, designated dAFP15N and dAFP21N, respectively, were generated through disulfide bonds between peptides containing CGG residues added to the N-terminus of AFP15 and AFP21 (designated AFP15N and 21N). Their helical contents and antifreeze activities were assessed using circular dichroism (CD) spectroscopy and a nanoliter osmometer, respectively. The helical content of AFP15 AFP21, AFP15N, AFP21N, dAFP15N and dAFP21N was 47, 48, 23.8, 28, 49.1, and 52%, respectively compared to that of wild type AFP37; the antifreeze activity was 8.4, 9.3, 0.05, 5.6, 12.1, 11.2% respectively, compared to that of wild type AFP37. Contrary to our anticipation, the dimerized peptides showed almost the same antifreeze activity as their monomeric counterparts. These results indicate that the dimerized peptides behave as monomeric peptides due to the high rotational freedom of disulfide bonds connecting two monomeric peptides. The star-shaped ice crystals generated by the peptides also demonstrated weak interaction between ice and peptides.

Structural characterization of calmodulin like domain of ryanodine receptor type 1

  • Song, Yonghyun;Kang, Sunmi;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Ryanodine receptor (RyR) is one of the two major $Ca^{2+}$ channels in membranes of intracellular $Ca^{2+}$ stores and is found in sarcoplasmic reticulum (SR), endoplasmic reticulum (ER). RyR1 is also the major calmodulin-binding protein of sarcoplasmic reticulum membranes. Residues 4064-4210 in the RyR1 polypeptide chain has similar primary sequence with calmodulin (CaM) and was designated as CaM-like domain (CaMLD). When expressed as a recombinant peptide, CaMLD showed several CaM-like properties in previous studies. Still, previous studies of CaMLD were focused on protein-protein interactions rather than its own properties. Here, we studied the expression of CaMLD and its sub-domains corresponding to each lobe of CaM in Escherichia coli. CaMLD could be obtained only as inclusion body, and it was refolded using urea solubilization followed by dialysis. Using spectroscopic approaches, such as NMR, circular dichroism, and gel filtration experiment, we found that the refolded CaMLD exists as nonspecific aggregate, even though it has alpha helical secondary structure. In comparison, the first half of CaMLD (R4061-4141) could be obtained as natively soluble protein with thioredoxin fusion. After the removal of the fusion tag, it exhibited folded and helical properties as shown by NMR and circular dichroism experiments. Its oligomeric status was different from CaMLD, existing as dimeric form in solution. However, the second half of the protein could not be obtained as soluble protein regardless of fusion tag. Based on these results, we believe that CaMLD, although similar to CaM in sequence, has quite different physicochemical properties and that the second half of the protein renders it the aggregative properties.

Screening and Molecular Cloning of a Protective Antigen from the Midgut of Haemaphysalis longicornis

  • Hu, Yonghong;Zhang, Jincheng;Yang, Shujie;Wang, Hui;Zeng, Hua;Zhang, Tiantian;Liu, Jingze
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.3
    • /
    • pp.327-334
    • /
    • 2013
  • Vaccination is considered a promising alternative for controlling tick infestations. Haemaphysalis longicornis midgut proteins separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane were screened for protective value against bites. The western blot demonstrated the immunogenicity of 92 kDa protein (P92). The analysis of the P92 amino acid sequence by LC-MS/MS indicated that it was a H. longicornis paramyosin (Hl-Pmy). The full lenghth cDNA of Hl-Pmy was obtained by rapid amplification of cDNA ends (RACE) which consisted of 2,783 bp with a 161 bp 3' untranslated region. Sequence alignment of tick paramyosin (Pmy) showed that Hl-Pmy shared a high level of conservation among ticks. Comparison with the protective epitope sequence of other invertebrate Pmy, it was calculated that the protective epitope of Hl-Pmy was a peptide (LEEAEGSSETVVEMNKKRDTE) named LEE, which was close to the N-terminal of Hl-Pmy protein. The secondary structure analysis suggested that LEE had non-helical segments within an ${\alpha}$-helical structure. These results provide the basis for developing a vaccine against biting H. longicornis ticks.

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane

  • Lee, Eunjung;Jeong, Ki-Woong;Lee, Juho;Shin, Areum;Kim, Jin-Kyoung;Lee, Juneyoung;Lee, Dong Gun;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.282-287
    • /
    • 2013
  • Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.