Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.5.252

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane  

Lee, Eunjung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University)
Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University)
Lee, Juho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University)
Shin, Areum (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University)
Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University)
Lee, Juneyoung (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
Kim, Yangmee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Institute of SMART Biotechnology, Konkuk University)
Publication Information
BMB Reports / v.46, no.5, 2013 , pp. 282-287 More about this Journal
Abstract
Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.
Keywords
Antimicrobial peptide; Cecropin A; NMR spectroscopy; Papiliocin; Structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, J. K., Lee, E., Shin, S., Jeong, K. W., Lee, J. Y., Bae, S. Y., Kim, S. H., Lee, J., Kim, S. R., Lee, D. G., Hwang, J. S. and Kim, Y. (2011) Structure and function of papiliocin with antimicrobial and anti-inflammatory activities isolated from the Swallowtail Butterfly, Papilio xuthus. J. Biol. Chem. 285, 3883-3895.
2 Boman, H. G., Faye, I., Hofsten, P., Kockum, K., Lee, J. Y., Xanthopoulos, K. G., Bennich, H., Engstrom, A., Merrifield, R. B. and Andreu, D. (1985) On the primary structures of lysozyme, cecropins and attacins from Hyalophora cecropia. Dev. Comp. Immunol. 9, 551-558.   DOI   ScienceOn
3 Pliska, V., Schmidt, M. and Fauchere, J. L. (1981) Partition coefficients of amino acids and hydrophobic parameters $\pi$ of their side-chains as measured by thin-layer chromatography. J. Chromatography A216, 79-92.
4 Holak, T. A., Engstrom, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., Gronenborn, A. M. and Clore, G. M. (1998) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27, 7620-7629.
5 Kauffman, C. A. (2006) Fungal infections. Proc. Am. Thorac. Soc. 3, 35-40.   DOI   ScienceOn
6 Ashbee, R. H. and Scheynius, A. (2010) Malassezia. In Pathogenic Yeasts, Ashbee, R. H. and Bignell, E. (eds.), pp. 209-230, Springer Verlag Heidelberg, Germany.
7 Cole, A. M., Darouiche, R. O., Legarda, D., Connell, N. and Diamond, G. (2000) Characterization of a fish antimicrobial peptide: Gene expression, subcellular localization and spectrum of activity. Antimicrob. Agents Chemother. 44, 2039-2045.   DOI   ScienceOn
8 Gennis, R. B. (1989) In Biomembranes: Molecular Structure and Function, pp. 155-156, Springer-Verlag New York Inc, New York, USA.
9 Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R. (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833.
10 Hancock, R. E. and Lehrer, R. (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol. 16, 82-88.   DOI   ScienceOn
11 Otvos, L. Jr. (2000) Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 497-511.   DOI   ScienceOn
12 Dimarcq, J. L., Bulet, P., Hetru, C. and Hoffmann, J. (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47, 465-477.   DOI   ScienceOn
13 Yeaman, M. R. and Yount, N. Y. (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27-55.   DOI   ScienceOn
14 Morishima, I., Suginaka, S., Ueno, T. and Hirano, H. (1990) Isolation and structure of cecropins, inducible antibacterial peptides, from the silkworm, Bombyx mori. Comp. Biochem. Physiol. 95, 551-554.
15 Broqden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250.   DOI   ScienceOn
16 Bulet, P., Hetru, C., Dimarcq, J. L. and Hoffmann, D. (1999) Antimicrobial peptides in insects: structure and function. Dev. Comp. Immunol. 23, 329-344.   DOI   ScienceOn
17 Boman, H. G. and Hultmark, D. (1987) Cell-free immunity in insects. Cell-free immunity in insects. Annu. Rev. Microbiol. 41, 103-126.   DOI   ScienceOn
18 Kylsten, P., Samakovlis, C. and Hultmark, D. (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J. 9, 217-224.
19 Saito, A., Ueda, K., Imamura, M., Atsumi, S., Tabunoki, H., Miura, N., Watanabe, A., Kitami, M. and Sato, R. (2005) Purification and cDNA cloning of a cecropin from the longicorn beetle, Acalolepta luxuriosa. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 142, 317-323.   DOI   ScienceOn
20 Liang, Y., Wang, J. X., Zhao, X. F., Du, X. J. and Xue, J. F. (2006) Molecular cloning and characterization of cecropin from the housefly (Musca domestica) and its expression in Escherichia coli. Dev. Comp. Immunol. 30, 249-257.   DOI   ScienceOn
21 Li, W., Li, Z., Du, C., Chen, W. and Pang, Y. (2007) Characterization and expression of a cecropin-like gene from Helicoverpa armigera. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 148, 417-425.   DOI   ScienceOn
22 Kim, S. R., Hong, M. Y., Park, S. W., Choi, K. H., Yun, E. Y., Goo, T. W., Kang, S. W., Suh, H. J., Kim, I. and Hwang, J. S. (2010) Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Mol. Cells 29, 419-423.   DOI   ScienceOn