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A positional scanning synthetic peptide combinatorial 
library (PS-SCL) was screened in order to identify 
antimicrobial peptides against the cariogenic oral bacteria, 
Streptococcus mutans. Activity against Streptococcus 
gordonii and Aggregatibacter actinomycetemcomitans was 
also examined. The library was comprised of six sub-libraries 
with the format O(1-6)XXXXX-NH2, where O represents one 
of 19 amino acids (excluding cysteine) and X represents 
equimolar mixture of these. Each sub-library was tested for 
antimicrobial activity against S. mutans and evaluated for 
antimicrobial activity against S. gordonii and A. 
actinomycetemcomitans. The effect of peptides was observed 
using transmission electron microscopy (TEM). Two 
semi-mixture peptides, RXXXXN-NH2 (pep-1) and 
WXXXXN-NH2 (pep-2), and one positioned peptide, 
RRRWRN-NH2 (pep-3), were identified. Pep-1 and pep-2 
showed significant antimicrobial activity against Gram 
positive bacteria (S. mutans and S. gordonii), but not against 
Gram negative bacteria (A. actinomycetemcomitans). 
However, pep-3 showed very low antimicrobial activity 

against all three bacteria. Pep-3 did not form an amphiphilic α
-helix, which is a required structure for most antimicrobial 
peptides. Pep-1 and pep-2 were able to disrupt the membrane 
of S. mutans. Small libraries of biochemically-constrained 
peptides can be used to generate antimicrobial peptides 
against S. mutans and other oral microbes. Peptides derived 
from such libraries may be candidate antimicrobial agents for 
the treatment of oral microorganisms.
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Introduction 

Dental caries and periodontal disease are common 
infectious oral diseases and are associated with dental plaque, 
which can contain cariogenic bacteria such as Streptococcus 
mutans [1-3] and/or periodontopathogenic bacteria such as 
Porphyromonas gingivalis [4-5]. Because controlling these 
dental plaque bacteria is important for the prevention and 
treatment of oral diseases, they are often treated with 
broad-spectrum antiplaque chemical agents such as 
chlorhexidine [6] or antibiotics such as vancomycin [7-8]. 
However, the frequent clinical application of these drugs is 
limited, particularly because chlorhexidine has a bitter taste 
and can cause staining of the teeth [9-10]. Also, the number 
of antibiotic-resistant organisms has increased, thereby 
reducing the efficacy of these antibiotics [11]. Thus, it is 
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necessary to develop alternative and clinically useful 
antiplaque agents that have negligible or no side-effects.

Recently, natural antimicrobial peptides and their synthetic 
derivatives have attracted attention as potential antibiotic 
surrogates; these peptides show killing activity against a 
wide spectrum of bacterial species, including drug-resistant 
strains, and bacterial resistance is less common [12-15]. The 
positively charged residues within these peptides, coupled 
with their secondary structure helix, loop and other 
conformations, seem to disrupt the negatively charged lipid 
membrane, leading to the formation of pores, which 
compromise membrane integrity [15-17]. In addition, they 
appear to play a role in innate immune and inflammatory 
responses, such as immune response induction, cytokine 
release, and chemotaxis [15,19-20]. However, their clinical 
application is limited because their biological activity is 
altered within the human body: the peptides are susceptible 
to proteolytic degradation in vivo and fail to achieve high 
levels of bactericidal activity at physiologic pH values 
[14,21]. Nevertheless, such antimicrobial peptides may be 
efficient and safe for the treatment of oral infections because 
they could be applied directly to pathogenic bacteria within 
the oral cavity. They would then be degraded by digestive 
enzymes and absorbed through the intestines along with 
other nutrients. 

In addition to natural antimicrobial peptides and their 
synthetic derivatives, many investigators have used synthetic 
combinatorial technology to develop peptide libraries in an 
attempt to understand their mechanism(s) of action and to 
improve their antimicrobial activity [22-23]. However, until 
now, few studies have used synthetic libraries to generate 
antimicrobial peptides and then examined their effects against 
oral pathogenic bacteria [24-25].

Combinatorial libraries are an efficient method of generating 
and identifying peptides with potent biological activity [26-31]. 
A positional scanning synthetic combinatorial library (PS-SCL) 
comprises sub-libraries of peptides, in which one position is 
occupied by a defined amino acid residue and the others by 
different amino acids. Here, we identified a new synthetic 
antimicrobial peptide against oral pathogens by screening a 
PS-SCL comprising hexapeptides, and then examining their 
antimicrobial activity against S. mutans, S. gordonii, and A. 
actinomycetemcomitans. We also attempted to elucidate the 
underlying mechanism of action and assessed their potential 
use for the prevention/treatment of oral diseases. 

Materials and Methods

Bacterial strains and growth media
The bacterial strains used in this study were Streptococcus 

mutans (ATCC 25175), Streptococcus gordonii (KCTC 3286), 
and A. actinomycetemcomitans Y4 (KCTC 3698). All 
microbes were grown in tryptic soy agar (TSA, Difco 
Laboratories, USA) containing brain heart infusion (BHI) at 
37°C in a standing culture. S. mutans and S. gordonii were 
grown under aerobic conditions (5% CO2), whereas A. 
actinomycetemcomitans was grown under anaerobic conditions 
(100% N2). 

Peptide library and individual peptides
The hexapeptides (hexamers) used in the current study 

were provided by the Peptide Library Support Facility (PLSF) 
at POSTECH (Pohang, Korea). The library used here was 
PS-SPCL [22]. The peptide library was a “one-bead 
one-peptide” library and was synthesized using a resin that 
utilizes a polystyrene matrix as a base and polyethyleneglycol 
as a linker (Novabiochem TG-resin, 01-64-3) [32]. Mixed (X) 
positions comprised one of 19 different amino acids 
(excluding cysteine), with the relative ratios adjusted to yield 
a near-equimolar ratio. Each amino acid was synthesized by 
C-terminal amidation. A single library comprised 114 tubes (6 
positions × 19 amino acids); the total peptide concentration 
was 30 mM and the concentration of each individual peptide 
was 12 nM. There were 19 sub-libraries, each containing 
2,476,099 peptides.

Individually synthesized peptides were purchased from 
Peptron (Daejeon, Korea). Each peptide was purified by 
high-pressure liquid chromatography on a C18 column 
(Waters 290 separation module, USA) and confirmed by mass 
spectrometric analysis with an HP1100 series LC/MSD 
(Hewlett-Packard, Palo Alto, CA, USA). 

Both peptide library and individual peptides were used as 
suggested by the suppliers.

Antimicrobial activity assay
Each test strain of bacteria was seed cultured in 5 ml of 

rich broth and incubated overnight to an optical density 1.0 
at 570 nm, which corresponds to 1 × 108 colony forming 
units (CFU)/ml. Each bacterial strain was then inoculated into 
tryptic soy broth (TSB) in sterile 96 well plates to yield a 
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final volume of 100 μl (a dilution of 1:100). An appropriate 
volume of peptide stock solution was then added to the first 
column of the plate (final concentration: 1.5 mM) and then 
serially diluted across the plate (from 1.5 mM to 0.15 mM). 
For control, only vehicle was added. The plates were 
incubated at 37°C under aerobic or anaerobic conditions 
(depending on the bacterium) for over 18 hours without 
shaking. The absorbance was measured at 570 nm to quantify 
bacterial growth. All experiments were performed in triplicate. 
Inhibitory concentration 50 (IC50) values for the peptides were 
calculated from the graph derived from the antimicrobial 
activity assay. IC50 values were determined in triplicate.

Transmission electron microscopy 
For TEM analysis, overnight cultures of S. mutans were 

inoculated into fresh medium (1:100 dilution) and grown 
overnight in the presence of the peptide of interest. To 
prepare sample specimens for TEM, the bacterial suspension 
was fixed with 2% glutaraldehyde and 4% paraformaldehyde. 
After dehydration with ethanol, samples were post-fixated in 
osmium tetroxide to augment the electronic density. The 
prepared specimens were then washed thoroughly with 
phosphate or cacodylate buffer to eliminate free fixative and 
then dehydrated. The infiltration step was performed at room 
temperature: the specimen was embbed sufficiently in Epon 
812 to increase the viscosity of the sample resin. Ultra-thin 
sections were cut with an ultramicrotome (Sorvall instrument 
MT6000, Tucson, AZ, USA), and specimens were 
electronically stained with uranyl acetate and lead citrate. 
Bacterial morphology was observed by TEM (Hitachi H-600, 
Hitachi Co., Tokyo, Japan). 

Results

Selection of antimicrobial hexapeptides by screening 
of a peptide library

The PC-SPCL library comprised hexamers with an 
amidated C-terminus. Specific positions within each peptide 
were defined, whereas other positions were occupied by 
one of 19 amino acids from an equimolar mixture 
(excluding cysteine). The peptide library comprised six 
sub-libraries and the hexapeptides were represented as 
O(1-6)XXXXX-NH2, where O was a specific amino acid and 
X was one of 19 amino acids from the equimolar mixture. 

The resulting library was screened for antimicrobial activity 
against S. mutans at two different concentrations, and the 
most active amino acid at each defined position was 
identified. 

Selection was performed by measuring the antimicrobial 
activity of each sub-library. The cariogenic bacterium, S. 
mutans, was used as the test model. The sub-library that 
reduced the growth of S. mutants to less than 30% of that 
of the untreated control (at both concentrations tested) was 
used for further selection.

We selected peptide libraries in which arginine (R) and 
trypsin (W) occupied the first position, i.e., RXXXX-NH2 and 
WXXXXX-NH2, respectively. Both of these peptides showed 
strong growth inhibition at 0.6 mM and 1.5 mM (Fig. 1A). 
When examining position 2 (XOXXXX-NH2), we found that 
R and W were again the most effective, showing high 

Fig. 1. Inhibition of bacterial growth by the synthetic peptide 
combinatorial library. S. mutans was grown overnight in the 
presence of peptides at 0.6 (black bars) or 1.5 mM (white 
bars). The absorbance was then measured at 570 nm. O 
represents a defined position. The amino acid occupying this 
position in a specific peptide mixture is shown on the x-axis. 
The remaining five positions (X) comprise one of 19 amino 
acids (excluding cysteine). Cnt: control.
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antimicrobial activity at 1.5 mM; however, the antimicrobial 
activity at 0.6 mM was lower (73.7% of the control value for 
R, and 94.7% of the control value for W). Gln and Lys at 
position 2 also showed good growth inhibitory effects (Fig. 
1B). R and W were again most effective at position 3 
(XXOXXX-NH2). Lysine (K) also showed high growth 
inhibitory activity at 1.5 mM, but showed little activity at 0.6 
mM. Peptides containing R and W at positions 4 and 5 
(XXXOXX-NH2 and XXXXOX-NH2) were also very 
effective, whereas asparagine (N) was most effective at 
position 6 (Ac-XXXXXO-NH2), followed by R. 

These position scanning results suggested that a peptide 
with R/W at position 1, R/W/K at position 2, R/W/K at 
position 3, R/W at position 4, R/W at position 5, and R/N at 
position 6 would be most effective. It is noteworthy that a 
positively charged amino acid (R) or an uncharged polar 
amino acid (W) appears in most positions. This suggests that 
either R or W are essential for antimicrobial activity against 
S. mutans. A peptide selected on the basis of this result would 
be very hydrophilic and soluble rather than amphiphilic (the 
latter is thought to be an essential property for antimicrobial 
activity). Thus, we decided to select three peptides: two 
containing a mixture of amino acids positions 1 to 6 and one 
with specific amino acids in all six positions. The results 
showed that a peptide containing R or W at position 1 and 
N at position 6 showed high antimicrobial activity at all 
concentrations tested. Thus, we synthesized three hexapeptides, 
RXXXXN-NH2 (pep-1), WXXXXN-NH2 (pep-2), and 
RRRWRN-NH2 (pep-3), for further study.

Activity of the selected hexapeptides against oral 
microbes

We next tested the activity of the three peptides against S. 
mutans, S. gordonii, and A. actinomycetemcomitans. The results 
are presented in Figure 2. Both pep-1 and pep-2 showed 
significant antimicrobial activity against S. mutans at 0.6 mM 
and 1.5 mM, and the response was dose-dependent (Fig. 2A). 
However, pep-3 showed no activity against S. mutans at the 
concentrations tested. Antimicrobial activity against S. gordonii 
is shown in Figure 2B. Pep-1 showed antimicrobial against S. 
gordonii, and the response was dose-dependent. Pep-2 also 
showed some antimicrobial activity. However, pep-3 showed no 
activity. When we tested the antimicrobial activity of the 
peptides against A. actinomycetemcomitans, none showed 
significant antimicrobial activity.

Fig. 2. Antimicrobial activity of pep-1, pep-2, and pep-3 
against S. mutans, S. gordonii, and A. actinomycetemcomitans. 
All experiments were repeated at least three times, and data are 
expressed as the mean ± standard deviation (SD). 

These data were unexpected because the amino acids at 
these positions within the peptides showed significant 
antibacterial activity in the previous experiments. We next 
modelled the α-helical wheels of pep-1, pep-2, and pep-3 
(Fig. 3). The overall charge of these peptides was +1/0 for 
pep-1 and pep-2, and +4 for pep-3. As expected, pep-1 and 
pep-2 harbored fixed positive or polar amino acids in 
positions 1 and 6, suggesting that the helical wheel may be 
amphiphilic if a positively charged or polar amino acid 
occupied position X1 and/or position X4, and a nonpolar 
amino acid occupied positions X2 and X3 (Fig. 3). The overall 
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Fig. 3. α-helical wheel projection for representative peptides. 
Residues are either designated by single letter codes or 
numbered consecutively from the C- to the N-terminus. 
Positively charged amino acids are shaded dark grey and polar 
amino acids are shaded light grey. 

charge of pep-3 was +4, as it contained four positively charged 
amino acids (R). The arginine residues within pep-3 were well 
dispersed and therefore not localized to one side of the peptide 
helix. In addition, the other amino acids in pep-3 (W and N) 
were polar amino acids. Thus, pep-3 was a hydrophilic peptide 
and not able to form the amphiphilic α-helical structure frequently 
found in antibacterial peptides [14-17,33]. This absence of 
amphiphilicity may explain the low antimicrobial activity of 
pep-3. 

Since pep-3 did not show significant antimicrobial activity 
against the three bacteria tested in this study, we synthesized 
another peptide, RQWWRN-NH2 (pep-4), which contained 
amino acids that showed antimicrobial activity in the 
PS-SPCL screening experiments (Fig. 1). When we mapped 
the helical wheel for pep-4, we again found that the positively 
charged and polar amino acids were well dispersed. Thus, 
pep-4 did not show activity against the three test strains (data 
not shown). This supports the idea that pep-3 did not show 
antimicrobial activity because it lacked an amphiphilic helical 
structure. We also synthesized hexapeptides, RXXXRN-NH2 
(pep-5) and RXXXWN-NH2 (pep-6), which contained either 
R or W at position X4 of pep-1 (Fig. 3). The extra R or W 
increased the amphiphilic characteristics of the peptide helix. 
However, the antimicrobial activity of pep-5 and pep-6 was 
not as great as that of pep-1 or pep-2 (data not shown). In 
addition, we screened libraries comprising tri- and 
quadrapeptides; however, they did not show antimicrobial 
activity under the experimental conditions used in this study.

Possible mechanism underlying antimicrobial activity
Based on the results obtained above, pep-1 and pep-2 

showed the greatest potential for use as antimicrobial agents. 

Fig. 4. TEM images of S. mutants after incubation with the 
antimicrobial peptides. Bacteria were incubated overnight with 
vehicle only (A), 0.6 mM of pep-1 (B) or 0.4 mM of pep-2 (C), 
and bacterial membranes were observed (mag, ×30,000). 

Hence, we used these peptides for further experiments. To 
investigate possible mechanism of action of these 
antimicrobial peptides, we examined their effects on the 
integrity of the bacterial cell membrane. First, we determined 
the IC50 values of pep-1 and pep-2 against S. mutans, which 
was the most susceptible bacterium tested in this study. The 
IC50 values of pep-1 and pep-2 were approximately 0.6 and 
0.4 mM, respectively. Figure 4 shows TEM images of S. 
mutans treated with pep-1 and pep-2 at the IC50. Peptide 
treatment disrupted the bacterial cell membrane (Fig. 4B and 
C) when compared with the non-treated control (Fig. 4A). 
Bacteria treated with either pep-1 or pep-2 seemed to stall at 
a particular divisional stage or became fused with other 
bacteria. This indicates a malfunction of the membrane. Both 
peptides showed a similar pattern of bacterial membrane 
destabilization, suggesting that both may share a similar 
bactericidal mechanism. 

Discussion 

The outer-most leaflet of the bacterial membrane contains 
negatively charged phospholipids; therefore, they present a 
“negative” surface [34]. These negatively charged molecules 
create a polyanionic microbial cell surface, which attracts 
cationic peptides. Generally, antimicrobial peptides are 
relatively short, positively charged, and amphiphilic [13-16]. 
The first step of the interaction between amphiphilic 
antimicrobial peptides and the bacterial membrane is the 
initial attraction between the cationic peptide and negatively 
charged components on the outer bacterial envelope, such as 
the phosphate groups within the lipopolysaccharides of Gram 
negative bacteria or the lipoteichoic acids on the surface of 
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Gram positive bacteria. The next steps include displacement 
of lipids, alteration of membrane structure, and peptide entry 
into the target bacteria [13-16]. Various mechanisms have 
been suggested to explain bacterial killing by peptides, 
including the creation of holes in the membrane that result in 
the loss of intracellular contents, disrupting the distribution of 
lipids between the leaflets of the lipid bilayer, which causes 
loss of membrane function or allows substances to be 
translocated across the membrane and acting on an internal 
target [13,16,34-35].

Here, we screened a PC-SPCL library to identify peptides 
with antimicrobial activity against oral pathogens. The 
PS-SPCL library has previously been used to identify 
clinically useful peptides [22,26-28]. We found that hexamers 
with positively charged or polar amino acids in most positions 
showed antimicrobial activity against S. mutans. We believe 
that this is due to the positive charge or polar characteristics 
of the peptide rather than to the position of the positively 
charged or polar amino acids at a specific location within the 
peptide. We identified a hexamer, pep-3, which contained four 
R residues and two polar residues. However, pep-3 did not 
show the expected level of antimicrobial activity, suggesting 
that amphiphilicity is required for antimicrobial activity. 
Pep-1 and -2, which have N and R or N and W at the N- 
and C-termini, respectively, did show antimicrobial activity 
(Figs. 2 and 3). This is because the two amino acids (R and 
N, or W and N) were located on almost opposite sides of the 
helix; therefore, the helix was amphiphilic. It appears that 
these semi-amphiphilic peptides were attracted to (and 
attached to) the bacterial membrane and were able to either 
disturb its normal function or enter the bacteria.

The results of the present study showed that pep-1 and 
pep-2 had activity against Gram positive bacteria (S. mutans 
and S. gordonii) but not against Gram negative bacteria (A. 
actinomycetemcomitans). This may be due to differences in 
cell membrane structure. Gram negative bacteria have an 
inner plasma membrane and an outer membrane, whereas 
Gram positive bacteria have only plasma membrane. Thus, 
peptide-mediated pore formation would have a greater effect 
on Gram positive bacteria, which do not have a periplasmic 
space to act as a buffer. In addition, it seems that the cationic 
nature of antimicrobial peptides ensures accumulation at 
polyanionic microbial cell surfaces that contain acidic 
polymers such as lipoteichoic acid, which are abundant on the 

surface of Gram positive cells [13-16]. Further studies are 
needed to fully elucidate the mechanism(s) underlying the 
antimicrobial activity of these peptides. 

Cytotoxicity is also an issue for drugs used either 
systemically or locally. In general, the cytotoxicity of 
antimicrobial peptides is measured in hemolytic assays using 
mammalian red blood cells. Actually, these peptides do show 
a degree of cytotoxicity against mammalian cells because, 
similar to Gram positive bacteria, they also have a single 
membrane; however, small antimicrobial peptides show lower 
cytotoxicity than longer peptides [26,36]. Therefore, pep-1 
and pep-2 should be evaluated for cytotoxicity against 
mammalian cells prior to application for clinical use. 

We tested the peptides against the oral cariogenic 
bacterium, S. mutans, and the pathogenic bacteria, S. gordonii 
and A. actinomycetemcomitans. S. gordonii is a component of 
the normal microbial flora within the human oral cavity and 
the primary etiological agent of infective endocarditis [37-38]. 
A. actinomycetemcomitans is a Gram negative bacterium that 
causes localized aggressive periodontitis [39]. It will be useful 
to examine the three dimentional structure of the petides and 
the effects of the hexamers identified in the present study 
against normal bacteria or on oral microbial ecology; 
however, they could be used to eradicate the oral pathogens 
described above. In addition, it would be useful to know the 
nature of antibacterial effect acquired in this study, e.g. 
bacteriostatic or bactericidal by subsequent investigation. 

In conclusion, the present study screened a positioning 
peptide library to identify potentially useful antimicrobial 
peptides that are clinically effective against oral pathogens. 
Two hexamers (pep-1 and pep-2) containing amino acids N 
and R at the N- and C-termini, respectively, showed 
significant antimicrobial activity. TEM studies showed that 
these peptides appear to act by disrupting the bacterial 
membrane. We believe that pep-1 and -2 show potential as 
clinically useful antimicrobial agents. Further studies should 
examine their toxicity to mammalian cells both in vitro and 
in vivo. 
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