Browse > Article
http://dx.doi.org/10.4014/jmb.1306.06013

Antimicrobial Activity of the Synthetic Peptide Scolopendrasin II from the Centipede Scolopendra subspinipes mutilans  

Kwon, Young-Nam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Lee, Joon Ha (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Kim, In-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Kim, Sang-Hee (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Nam, Sung-Hee (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Ahn, Mi-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Jeong, MiHye (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Kang, Dong-Chul (Ilsong Institute of Life Science, Hallym University)
Lee, In Hee (Department of Biotechnology, Hoseo University)
Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.10, 2013 , pp. 1381-1385 More about this Journal
Abstract
The centipede Scolopendra subpinipes mutilans is a medicinally important arthropod species. However, its transcriptome is not currently available and transcriptome analysis would be useful in providing insight into a molecular level approach. Hence, we performed de novo RNA sequencing of S. subpinipes mutilans using next-generation sequencing. We generated a novel peptide (scolopendrasin II) based on a SVM algorithm, and biochemically evaluated the in vitro antimicrobial activity of scolopendrasin II against various microbes. Scolopendrasin II showed antibacterial activities against gram-positive and -negative bacterial strains, including the yeast Candida albicans and antibiotic-resistant gram-negative bacteria, as determined by a radial diffusion assay and colony count assay without hemolytic activity. In addition, we confirmed that scolopendrasin II bound to the surface of bacteria through a specific interaction with lipoteichoic acid and a lipopolysaccharide, which was one of the bacterial cell-wall components. In conclusion, our results suggest that scolopendrasin II may be useful for developing peptide antibiotics.
Keywords
Antimicrobial peptide; SVM algorithm; ${\alpha}$-helical; Scolopendra subpinipes mutilans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brahmachary M, Krishnan SP, Koh JL, Khan AM, Seah SH, Tan TW, et al. 2004. ANTIMIC: a database of antimicrobial sequences. Nucleic Acids Res. 32: D586-D589.   DOI   ScienceOn
2 Conlon JM. 2011. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res. 343: 201-212.   DOI
3 Devine DA, Hancock RE. 2002. Cationic peptides: distribution and mechanisms of resistance. Curr. Pharm. Des. 8: 703-714.   DOI   ScienceOn
4 Hwang PM, Vogel HJ. 1998. Structure-function relationships of antimicrobial peptides. Biochem. Cell Biol. 76: 235-246.   DOI   ScienceOn
5 Garnier J, Gibrat JF, Robson B. 1996. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 266: 540-553.   DOI   ScienceOn
6 Hancock RE, Chapple DS. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317-1323.
7 Hwang JS, Lee J, Kim YJ, Bang HS, Yun EY, Kim SR, et al. 2009. Isolation and characterization of a defensin-like peptide (Coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. doi: 10.1155/2009/136284.
8 Jenssen H, Hamill P, Hancock RE. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19: 491-511.   DOI   ScienceOn
9 Mendes MA, de Souza BM, Palma MS. 2005. Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon 45: 101-106.   DOI   ScienceOn
10 Pasupuleti M, Schmidtchen A, Malmsten M. 2012. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol. 32: 143-171.   DOI   ScienceOn
11 Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol. 65: 207-216.   DOI   ScienceOn
12 Peng K, Kong Y, Zhai L, Wu X, Jia P, Liu J, et al. 2010. Two novel antimicrobial peptides from centipede venoms. Toxicon 55: 274-279.   DOI   ScienceOn
13 Scott MG, Hancock RE. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407-431.
14 Wenhua R, Shuangquan Z, Daxiang S, Kaiya Z, Guang Y. 2006. Induction, purification and characterization of an antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes mutilans. Indian J. Biochem. Biophys. 43: 88-93.
15 Seshadri Sundararajan V, Gabere MN, Pretorius A, Adam S, Christoffels A, Lehvaslaiho M, et al. 2012. DAMPD: a manually curated antimicrobial peptide database. Nucleic Acids Res. 40: D1108-D1112.   DOI
16 Smolowitz R. 2013. A review of current state of knowledge concerning Perkinsus marinus effects on Crassostrea virginica (Gmelin) (the eastern oyster). Vet. Pathol. 50: 404-411.   DOI   ScienceOn
17 Steinberg DA, Lehrer RI. 1997. Designer assays for antimicrobial peptides. Methods Mol. Biol. 78: 169-186.
18 Baldridge GD, Kurtti TJ, Munderloh UG. 2005. Susceptibility of Rickettsia monacensis and Rickettsia peacockii to Cecropin A, Ceratotoxin A, and lysozyme. Curr. Microbiol. 51: 233-238.   DOI   ScienceOn
19 Bulet P, Stocklin R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11.   DOI   ScienceOn
20 Adis J, Harvey MS. 2000. How many Arachnida and Myriapoda are there world-wide and in Amazonia? Stud. Neotrop. Fauna Environ. 35: 139-141.