Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.5.584

Antifreeze Activity of Dimerized Type I Antifreeze Protein Fragments  

Kim, Hak Jun (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Life Science / v.27, no.5, 2017 , pp. 584-590 More about this Journal
Abstract
Antifreeze proteins (AFPs) bind to ice crystals and inhibit their growth. AFPs are essential for the survival of organisms living in subzero environments. Type I AFP (AFP37) isolated from winter flounder is an ${\alpha}$-helical peptide of 37 residues long. In this study, we attempted to develop short AFP fragments with higher activity and solubility. We designed and synthesized N-terminal 15 and 21 residue-long AFPs, designated AFP15 and 21. Also dimerized AFP15 and 21, designated dAFP15N and dAFP21N, respectively, were generated through disulfide bonds between peptides containing CGG residues added to the N-terminus of AFP15 and AFP21 (designated AFP15N and 21N). Their helical contents and antifreeze activities were assessed using circular dichroism (CD) spectroscopy and a nanoliter osmometer, respectively. The helical content of AFP15 AFP21, AFP15N, AFP21N, dAFP15N and dAFP21N was 47, 48, 23.8, 28, 49.1, and 52%, respectively compared to that of wild type AFP37; the antifreeze activity was 8.4, 9.3, 0.05, 5.6, 12.1, 11.2% respectively, compared to that of wild type AFP37. Contrary to our anticipation, the dimerized peptides showed almost the same antifreeze activity as their monomeric counterparts. These results indicate that the dimerized peptides behave as monomeric peptides due to the high rotational freedom of disulfide bonds connecting two monomeric peptides. The star-shaped ice crystals generated by the peptides also demonstrated weak interaction between ice and peptides.
Keywords
Antifreeze protein; circular dichroism; dimerization; thermal hysteresis; winter flounder;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sicheri, F. and Yang, D. S. 1995. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427-431.   DOI
2 Sönnichsen, F. D., Davies, P. L. and Sykes, B. D. 1998. NMR structural studies on antifreeze proteins. Biochem. Cell Biol. 76, 284-293.   DOI
3 Sun, T., Lin, F. H., Campbell, R. L., Allingham, J. S. and Davies, P. L. 2014. An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343, 795-798.   DOI
4 Yang, D. S., Sax, M., Chakrabartty, A. and Hew, C. L. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333, 232-237.   DOI
5 Zhang, W. and Laursen, R. A. 1998. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J. Biol. Chem. 273, 34806-34812.   DOI
6 Ahn, M., Murugan, N. R., Kim, E., Lee, J. H., Cheong, C., Kang, S. W., Park, H. J., Shin, S. Y., Kim, H. J. and Bang, J. K. 2012. Studies on the effect of number of sugar moiety in the antifreeze activity of homodimeric AFGPs. Bull. Kor. Chem. Soc. 33, 2411-2414.   DOI
7 Ahn, M., Murugan, R. N., Shin, S. Y., Kim, H. J. and Bang, J. K. 2012. Peptoid-based Positional Scanning Derivatives: Revealing the Optimum Residue Required for Ice Recrystallization Inhibition Activity for Every Position in the AFGPs. Bull. Kor. Chem. Soc. 33, 3931-3932.   DOI
8 Bang, J. K., Lee, J. H., Murugan, R. N., Lee, S. G., Do, H., Koh, H.Y., Shim, H. E., Kim, H. C. and Kim, H. J. 2013. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar. Drugs 11, 2013-2041.   DOI
9 Chakrabartty, A., Ananthanarayanan, V. S. and Hew, C. L. 1989. Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions. J. Biol. Chem. 264, 11307-11312.
10 Davies, P. L. and Hew, C. L. 1990. Biochemistry of fish antifreeze proteins. Faseb J. 4, 2460-2468.   DOI
11 DeVries, A. L. 1969. Freezing resistance in fishes of the Antarctic penninsula. Antarct. J. US. 4, 104-105.
12 DeVries, A. L., Komatsu, S. K. and Feeney, R. E. 1970. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J. Biol. Chem. 245, 2901-2908.
13 Janech, M., Krell, A., Mock, T., Kang, J. S. and Raymond, J. 2006. Ice-binding proteins from sea ice diatoms (bacillariophyceae). J. Phycol. 42, 410-416.   DOI
14 DeVries, A. L. and Wohlschlag, D. E. 1969. Freezing resistance in some Antarctic fishes. Science 163, 1073-1075.   DOI
15 Do, H., Kim, S. J., Kim, H. J. and Lee, J. H. 2014. Structurebased characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Acta Crystallogr. D Biol. Crystallogr. 70, 1061-1073.   DOI
16 Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R. and Barnes, B. M. 2004. Antifreeze proteins in Alaskan insects and spiders. J. Insect Physiol. 50, 259-266.   DOI
17 Fletcher, G. L., Hew, C. L. and Davies, P. L. 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359-390.   DOI
18 Hon, W. C., Griffith, M., Chong, P. and Yang, D. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 104, 971-980.   DOI
19 Kim, H. J., Lee, H. J., Hur, B. Y., Lee, W. C., Park, S. H. and Koo, B. W. 2017. Marine Antifreeze Proteins, Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar. Drugs 15, 27.   DOI
20 Knight, C. A., DeVries, A. L. and Oolman, L. D. 1984. Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308, 295-296.   DOI
21 Kristiansen, E. and Zachariassen, K. E. 2005. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51, 262-280.   DOI
22 Marshall, C. B., Fletcher, G. L. and Davies, P. L. 2004. Hyperactive antifreeze protein in a fish. Nature 429, 153.   DOI
23 Kun, H. and Mastai, Y. 2007. Activity of short segments of Type I antifreeze protein. Biopolymers 88, 807-814.   DOI
24 Lee, J. K., Park, K. S., Park, S., Park, H., Song, Y. H., Kang S. H. and Kim, H. J. 2010. An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60, 222-228.   DOI
25 Lee, S. G., Koh, H. Y., Lee, J. H., Kang, S. H. and Kim, H. J. 2012. Cryopreservative effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells. Appl. Biochem. Biotechnol. 167, 824-834.   DOI
26 Lee, S. G., Lee, J. H., Kang, S. and Kim, H. J. 2013. Marine Antifreeze Proteins, Types, Functions and Applications, pp. 667-694. In: Kim, S. K. (ed), Marine Proteins and Peptides: Biological Activities and Applicantion.. John Wiley & Sons, Ltd: Chichester, UK.
27 Marshall, C. B., Chakrabartty, A. and Davies, P. L. 2005. Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of alpha-helices. J. Biol. Chem. 280, 17920-17929.   DOI
28 Miura, K., Ohgiya, S., Hoshino, T., Nemoto, N., Suetake, T., Miura A., Spyracopoulos, L. and Tsuda, S. 2001. NMR analysis of type III antifreeze protein intramolecular dimer. Structural basis for enhanced activity. J. Biol. Chem. 276, 1304-1310.   DOI
29 Park, K. S., Jung, W. S., Kim, H. J. and Shin, S. Y. 2010. Determination of the minimal sequence required for antifreeze activity of type I antifreeze protein (AFP37). Bull. Kor. Chem. Soc. 31, 3791-3793.   DOI
30 Nishimiya, Y., Ohgiya, S. and Tsuda, S. 2003. Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology. J. Biol. Chem. 278, 32307-32312.   DOI
31 Patel, S. N. and Graether, S. P. 2010. Increased flexibility decreases antifreeze protein activity. Protein Sci. 19, 2356-2365.   DOI
32 Raymond, J. A. and DeVries, A. L. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA 74, 2589-2593.   DOI
33 Raymond, J. A., Fritsen, C. and Shen, K. 2007. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol. 61, 214-221.   DOI