Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.8.2577

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities  

Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Shin, So-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Abstract
We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.
Keywords
CAMA analogues; Antimicrobial activity; Structure-activity relationship; Flavonoid; Synergistic effect;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Bevins, C. L.; Zasloff, M. Annu. Rev. Biochem. 1990, 59, 395.   DOI   ScienceOn
2 Tossi, A.; Sandri, L.; Giangaspero, A. Peptides; Ettore, B., Carlo, P., Eds.; Edizioni Ziino: Napoli, Italy. 2002; pp 416-417.
3 Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Cancer Res. 1988, 48, 482733.
4 Klastersky, J.; Cappel, R.; Daneau, D. Antimicrob. Agents Chemother. 1972, 2, 470.   DOI   ScienceOn
5 Eliopoulos, G. M.; Moellering, R. C. Antimicrobial Combinations; Williams and Wilkins: Baltimore, MD, 1996; pp 432-492.
6 White, R. L.; Burgess, D. S.; Manduru, M. Bosso, J. A. Antimicrob. Agents Chemother. 1996, 40, 1914.
7 Lee, S. A.; Kim, Y. K.; Lim, S. S.; Zhu, L. W.; Ko, H.; Shin, S. Y.; Hahm, K. S.; Kim, Y. Biochemistry 2007, 46, 3653.   DOI   ScienceOn
8 Jeong, K. W.; Lee, J. Y.; Kang, D. I.; Lee, J. U.; Shim, S. Y.; Kim, Y. J. Nat. Prod. 2009, 72, 719.   DOI   ScienceOn
9 Lee, J. Y.; Jeong, K. W.; Lee, J. U.; Kang, D. I.; Kim, Y. Bioorg. Med. Chem. 2009, 17, 1506.   DOI   ScienceOn
10 Jeong, K. W.; Shin, S.; Kim, J. K.; Kim, Y. Bull. Korean Chem. Soc. 2009, 30, 1839.   DOI   ScienceOn
11 Odds, F. C. J. Antimicrob. Chemother. 2003, 52, 1.   DOI   ScienceOn
12 Pag, U.; Oedenkoven, M.; Papo, N.; Oren, Z.; Shai, Y.; Sahl, H. G. J. Antimicrob. Chemother. 2004, 53, 230.   DOI   ScienceOn
13 Jesen, B. F.; Refsgaardb, H. H. F.; Broc, R.; Brockhoff, P. B. QSAR Comb. Sci. 2005, 24, 449.   DOI   ScienceOn
14 Veber D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615.   DOI   ScienceOn
15 Ertl, P.; Rohde, B.; Selzer, P. J. Med. Chem. 2000, 43, 3714.   DOI   ScienceOn
16 Shin, S. Y.; Kang, J. H.; Hahm, K. S. J. Peptide Res. 1999, 53, 82.   DOI   ScienceOn
17 Wiemer, A. J.; Yu, J. S.; Shull, L. W.; Barney, R. J.; Wasko, B. M.; Lamb, K. M.; Hohl, R. J.; Wiemer, D. F. Bioorg. Med. Chem. 2008, 16, 3652.   DOI   ScienceOn
18 Irwin, J. J.; Shoichet, B. K. J. Chem. Inf. Model. 2005, 45, 177.   DOI   ScienceOn
19 Shin, S. Y.; Kang, J. H.; Lee, M. K.; Kim, S. Y.; Kim, Y.; Hahm, K. S. Biochem. Mol. Biol. Int. 1998, 44, 1119.
20 Oh, D.; Shin, S. Y.; Kang, J. H.; Hahm, K. S.; Kim, Y. J. Pept. Res. 1999, 53, 578.   DOI   ScienceOn
21 Oh, D.; Shin, S. Y.; Lee, S.; Kang, J. H.; Kim, S. D.; Ryu, P. D.; Hahm, K. S.; Kim, Y. Biochemistry 2000, 39, 11855.   DOI   ScienceOn
22 Shin, S. Y.; Yang, S. T.; Park, E. J.; Eom, S. H.; Song, W. K.; Kim, Y.; Hahm, K. S.; Kim, J. I. Biochem. Biophys. Res. Commun. 2002, 290, 558.   DOI   ScienceOn
23 Park. Y.; Park, S. N.; Park, S. C.; Shin, S. O.; Kim, J. Y.; Kang, S. J.; Kim, M. H.; Jeong, C. Y.; Hahm, K. S. Biochim. Biophys. Acta 2006, 1764, 24.   DOI   ScienceOn
24 Giacometti, A.; Cirioni, O.; Barchiesi, F.; Fortuna, M.; Scalise, G. J. Antimicrob. Chemother. 1999, 44, 642.
25 Giacometti, A.; Cirioni, O.; Del Prete, M. S.; Paggi, A. M.; D'Errico, M. M.; Scalise, G. Peptides 2000, 21, 1155.   DOI   ScienceOn
26 Graham, S.; Coote, P. J. J. Antimicrob. Chemother. 2007, 59, 759.   DOI   ScienceOn
27 Glacometti, A.; Cirioni, O.; Scalise, G. Antimicrob. Agents Chemother. 2000, 44, 1716.   DOI   ScienceOn
28 Shin, S. Y.; Yang, S. T. Park, E. J.; Kim, J. I. Biochem. Biophys. Res. Commun. 2002, 290, 558.   DOI   ScienceOn
29 Bang, J. K.; Nan, Y. H.; Lee, E. K.; Shin, S. Y. Bull. Korean Chem. Soc. 2010, 31, 2509.   DOI   ScienceOn
30 Yeo, I. Y.; Koo, B. K.; Oh, E. S.; Han, I. O.; Lee, W. Bull. Korean Chem. Soc. 2008, 29, 1013.   DOI   ScienceOn
31 Lee, Y. M.; Dang, H. T.; Hong, J.; Lee, C. O.; Bae, K. S.; Kim, D. K.; Jung, J. H. Bull. Korean Chem. Soc. 2010, 31, 205.   DOI   ScienceOn
32 Hancock, R. E.; Rozek, A. FEMS Microbiol. Lett. 2002, 206, 143.   DOI
33 Boman, H. G. Annu. Rev. Immunol. 1995, 13, 61.   DOI   ScienceOn
34 Maloy, W. L.; Kari, U. P. Biopolymers (Pept. Sci.) 1995, 37, 105.   DOI   ScienceOn
35 Hancock, R. E. Lancet. 1997, 349, 418.   DOI   ScienceOn
36 Brogden, K. A. Nature Rev. Microbiol. 2005, 3, 235.
37 Andreu, D.; Rivas, L. Biopolymers (Pept. Sci.) 1998, 47, 415.   DOI   ScienceOn
38 Oren, Z.; Shai, Y. Biopolymers (Pept. Sci.) 1998, 47, 451.   DOI   ScienceOn
39 Miyasaki, K.; Lehrer, R. I. Int. J. Antimicrob. Agents 1998, 9, 269.   DOI   ScienceOn
40 Lehrer, R. I.; Ganz, T. Curr. Opin. in Immunol. 1999, 11, 23.   DOI   ScienceOn
41 Oren, Z.; Shai, Y. Biopolymers 1998, 47, 451.   DOI   ScienceOn
42 Hancock, R. E.; Chapple, D. Antimicrob. Agents Chemother. 1999, 43, 1317.
43 Steiner, H.; Hultmark, D.; Engstrom, A.; Bennich, H.; Boman, H. G. Nature 1981, 292, 246.   DOI   ScienceOn
44 Miyasaki, K.; Lehrer, R. I. Int. J. Antimicrob. Agents 1998, 9, 269.   DOI   ScienceOn
45 Lehrer, R. I.; Ganz, T. Curr. Opin. in Immunol. 1999, 11, 23.   DOI   ScienceOn
46 Zasloff, M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 5449.   DOI
47 Lee, J. Y.; Boman, A.; Sun, C.; Andersson, M.; Jornvall, H.; Mutt, V.; Boman, H. G. Proc. Natl. Acad. Sci. USA 1989, 86, 9195.
48 Shin, S. Y.; Lee, M. K.; Kim, K. L.; Hahm, K. S. J. Peptide Res. 1997, 50, 279.