Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.1.83

Recombinant Production and Antimicrobial Activity of an Antimicrobial Model Peptide (Uu-ilys-CF) Derived from Spoon Worm Lysozyme, Uu-ilys  

Oh, Hye Young (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
Go, Hye-Jin (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
Park, Nam Gyu (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
Publication Information
Journal of Life Science / v.31, no.1, 2021 , pp. 83-89 More about this Journal
Abstract
Uu-ilys, an i-type lysozyme from spoon worm (Urechis unicinctus), is an innate immune factor that plays an important role in the defense against pathogens. It also possesses non-enzymatic antibacterial activity. Thus, there is a possibility to develop an antimicrobial model peptide from Uu-ilys. In this study, we report the design, production, and antibacterial activity of an Uu-ilys analog that exhibits antibacterial activity. The Uu-ilys structure was fragmented according to its secondary structures to predict the regions with antimicrobial activity using antimicrobial peptide (AMP) prediction tools from different AMP databases. A peptide containing the C-terminal fragment was predicted to exert antimicrobial activity. The chosen fragment was designated as an Uu-ilys analog containing the C-terminal fragment, Uu-ilys-CF. To examine the possibility of developing an AMP using the sequence of Uu-ilys-CF, recombinant fusion protein (TrxA-Uu-ilys-CF) was produced in an expression system that was heterologous. The produced fusion protein was cleaved after methionine leaving Uu-ilys-CF free from the fusion protein. This was then isolated through high performance liquid chromatography and reverse phase column, CapCell-Pak C18. The antibacterial activity of Uu-ilys-CF against different microbial strains (four gram-positive, six gram-negative, and one fungal strain) were assessed through the ultrasensitive radial diffusion assay (URDA). Among the bacterial strains tested, Salmonella enterica was the most susceptible. While the fungal strain tested was not susceptible to Uu-ilys-CF, broad spectrum antibacterial activity was observed.
Keywords
Antibacterial activity; antimicrobial peptide; ${\alpha}$-helical peptide; C-terminal fragment of lysozyme; recombinant peptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lopez-Exposito, I., Minervini, F., Amigo, L. and Recio, I. 2006. Identification of antibacterial peptides from bovine kappa-casein. J. Food Prot. 69, 2992-2997.   DOI
2 Mak, P., Wojcik, K., Silberring, J. and Dubin, A. 2000. Antimicrobial peptides derived from heme-containing proteins: hemocidins. Antonie Van Leeuwenhoek 77, 197-207.   DOI
3 Andreu, D. and Rivas, L. 1998. Animal antimicrobial peptides: an overview. Biopolymers 47, 415-433.   DOI
4 Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K. and Tomita, M. 1992. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J. Appl. Bacteriol. 73, 472-479.   DOI
5 Carrillo, W. and Ramos, M. 2018. Identification of antimicrobial peptides of native and heated hydrolysates from hen egg white lysozyme. J. Med. Food 21, 915-926.   DOI
6 Oh, H. Y., Kim, C. H., Go, H. J. and Park, N. G. 2018. Isolation of an invertebrate-type lysozyme from the nephridia of the echiura, Urechis unicinctus, and its recombinant production and activities. Fish Shellfish Immunol. 79, 351-362.   DOI
7 Malmsten, M., Davoudi, M., Walse, B., Rydengard, V., Pasupuleti, M., Morgelin, M. and Schmidtchen, A. 2007. Antimicrobial peptides derived from growth factors. Growth Factors 25, 60-70.   DOI
8 Mine, Y., Ma, F. and Lauriau, S. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 52, 1088-1094.   DOI
9 Nguyen, L. T., Haney, E. F. and Vogel, H. J. 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29, 464-472.   DOI
10 Zavalova, L. L., Yudina, T. G., Artamonova, I. I. and Baskova, I. P. 2006. Antibacterial non-glycosidase activity of invertebrate destabilase-lysozyme and of its helical amphipathic peptides. Chemotherapy 52, 158-160.   DOI
11 Zhang, L. J. and Gallo, R. L. 2016. Antimicrobial peptides. Curr. Biol. 26, R14-19.   DOI
12 Powers, J. P. and Hancock, R. E. 2003. The relationship between peptide structure and antibacterial activity. Peptides 24, 1681-1691.   DOI
13 Epand, R. M. and Vogel, H. J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta Biomembr. 1462, 11-28.   DOI
14 Papareddy, P., Rydengard, V., Pasupuleti, M., Walse, B., Morgelin, M., Chalupka, A., Malmsten, M. and Schmidtchen, A. 2010. Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog. 6, e1000857.   DOI
15 Park, I. Y., Park, C. B., Kim, M. S. and Kim, S. C. 1998. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 437, 258-262.   DOI
16 Pellegrini, A., Thomas, U., Bramaz, N., Klauser, S., Hunziker, P. and von Fellenberg, R. 1997. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J. Appl. Microbiol. 82, 372-378.   DOI
17 Pellegrini, A., Thomas, U., Wild, P., Schraner, E. and von Fellenberg, R. 2000. Effect of lysozyme or modified lysozyme fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. Microbiol. Res. 155, 69-77.   DOI
18 Hancock, R. E. W. and Diamond, G. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402-410.   DOI
19 Gifford, J. L., Hunter, H. N. and Vogel, H. J. 2005. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci. 62, 2588-2598.   DOI
20 Go, H. J., Kim, C. H., Park, J. B., Kim, T. Y., Lee, T. K., Oh, H. Y. and Park, N. G. 2019. Biochemical and molecular identification of a novel hepcidin type 2-like antimicrobial peptide in the skin mucus of the pufferfish Takifugu pardalis. Fish Shellfish Immunol. 93, 683-693.   DOI
21 Ibrahim, H. R., Imazato, K. and Ono, H. 2011. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration. J. Agric. Food Chem. 59, 10336-10345.   DOI
22 Ibrahim, H. R., Thomas, U. and Pellegrini, A. 2001. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J. Biol. Chem. 276, 43767-43774.   DOI
23 Izadpanah, A. and Gallo, R. L. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52, 381-390.   DOI
24 Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H. and He, Q. 2019. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 11, 3919-3931.
25 van der Kraan, M. I., Groenink, J., Nazmi, K., Veerman, E. C., Bolscher, J. G. and Nieuw Amerongen, A. V. 2004. Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin. Peptides 25, 177-183.   DOI
26 Seo, J. K., Crawford, J. M., Stone, K. L. and Noga, E. J. 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem. Biophys. Res. Commun. 338, 1998-2004.   DOI
27 Stark, M., Liu, L. P. and Deber, C. M. 2002. Cationic hydrophobic peptides with antimicrobial activity. Antimicrob. Agents Chemother. 46, 3585-3590.   DOI
28 Thammasirirak, S., Pukcothanung, Y., Preecharram, S., Daduang, S., Patramanon, R., Fukamizo, T. and Araki, T. 2010. Antimicrobial peptides derived from goose egg white lysozyme. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151, 84-91.   DOI
29 Valero, Y., Saraiva-Fraga, M., Costas, B. and Guardiola, F. A. 2020. Antimicrobial peptides from fish: beyond the fight against pathogens. Rev. Aquac. 12, 224-253.   DOI
30 van't Hof, W., Veerman, E. C., Helmerhorst, E. J. and Amerongen, A. V. 2001. Antimicrobial peptides: properties and applicability. Biol. Chem. 382, 597-619.   DOI
31 Viejo-Diaz, M., Andres, M. T., Perez-Gil, J., Sanchez, M. and Fierro, J. F. 2003. Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochem. Mosc. 68, 217-227.   DOI
32 Wang, G. 2015. Improved methods for classification, prediction and design of antimicrobial peptides. Methods Mol. Biol. 1268, 43-66.   DOI
33 Yeaman, M. R. and Yount, N. Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27-55.   DOI
34 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.   DOI