An expert system was developed as a framework of integrating diverse and multifactored ergonomic knowledge to investigate its effectiveness in ergonomic workplace design and evolution. Although numerous computer-assisted approaches have been made to overcome the lack of integrated design principles, those models being used require very specific information of various design activities that may not be available in the design stage. On the other hand, an expert system would be an effective design aid that is capable of guiding the designer to solve a problem. However, most expert systems lack detailed evaluation capabilities due to a qualitative nature of inference mechanisms. Furthermore, those approaches were independently developed, focusing mostly on a single aspect such as biomechanics, physiology, etc. In this paper, a design framework was developed which takes advantage of expert system metholologies, a relational data base and existing ergonomic models. The pattern-directed, rule-based expert system allows the designer to gradually formulate and subsequently evaluate workplace design. A comprehensive and modularized knowledge base was built incorporating biomechanics, physiology and psychophysics, which is, in turn, capable of accessing not only qualitative knowledge but complex analytic evaluation models and massive information in the data base through an interface. A conflict resolution strategy using multiple criteria decision-making schemes was also employed to reconcile multiple design alternatives.