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Abstract

3

This work is to study the behavior of certain storage systems in which items with different turnover

rates are stored. In particular, we assume that items can be divided into two types: high and low

turnover.

We try to find simple policies that induce favorable zoning, which will reduce the storage and

retrieval distance of items.

We define a desirable property of a good policy which we call asymptotically efficient, and show
that the Zone-z policy is asymptotically efficient if the zone size is proportional to the expected number

of high turnover items in the system in equilibrium.

1. Introduction

Suppose that we have two types of items to
be stored in a stroage system—type & for high
turnover and type / for low turnover items. The
turnover of an item is defined as the reciprocal
of the item’s mean storage time[7]. The
following assumptions are made throughout the
study unless otherwise mentioned.

» The storage rack consists of a sufficiently

large number of locations, ie., every
arriving item must be stored somewhere.

« A unique input/output(l/0) point is
located at the left corner of the storage
rack. '

« All storage loations are identical and the »'
* location is d, units from the I/0 point,
where d,<d;<--:. Usually, we will be
looking at linear storage with d.=#.

+ At any given time, at most one item is
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stored in a location.

It is assumed that type hl!l] items arrive at
the storage rack according to a Poission process
with rate A,[A] and each arrived type A[/]
item is stored for an exponentially distributed

with  parameter [ 4],

length of time
respectively.

Our goal is to spend less time storing and
retrieving items in the storage systems by
minimizing  expected storage/retrieval time
(distance). With regards to this objective, we
propose to analyze a class of simple storage
policies called Zone-z Storage, which we
basic COL(Closest

Location) storage policy. In all policies, high

compare to the Open
turnover times are stored in the closest open
location. In the COL policy, the low turnover
items are also stored in the colsest open
location. In the Zone-z policy, low turnover
items are stored in the closest open location
after location z. (The storage locations are
numbered 1, 2, --- in order of their distance
from the input/output (I/0) point.)

We attempt to find value of z in terms of the
basic system parameters which reduce the
overall storage and retrieval distance.

There have been many studies for operating
storage systems, especially for the operating of
Automated Storage/Retrieval (AS/R) systems,
in order to minimize expected storage/retrieval
distance.

Some fundamental approaches for
determining the expected s/r machine travel
time in an AS/R system have been developed
and examined by Graves, Hausman and
Schwartz [5, 7, 12].

Bozer and White [3] extended the results of

Graves, Hausman and Schwartz [5, 7, 12] for
Randomized Storage. They derived analytical
expressions for the expected travel times of
single and dual commands with alternative 1/0
locations and storage rack conf lgurations.
Newell[11] studied an M/M/w

system with ranked servers where the service

service

facility consists of a large(infinite) number of
servers in parallel. He is concerned with the
stochastic properties of the random process N
(m, t) which describe the number of busy
servers among first m ranked servers at time £.
Newell’s model can be specially applied in
telephone traffic which has primary channels
and a large number(infinite) of secondary
channels.

Coffman et al [4] studied an M/M /o queue
with ordered servers as a model of dynamic
storage alloction in computer memory. He
obtained an explicit formula for the stationary
distribution of the total occupancy max(N),
defined as the highest numbered occupied
location.

Aldous [1] studied the process of parking
cars which can be interpreted as an M/M/c
queue with ordered servers(parking spaces).
His main concern is to examine the disposition
process of parked cars(the distribution of where

cars are parked) at steady state.

2. The Obijective Function
2.1 Obijective Function and Asymptoti—
cally Efficient

We wish to minimize the average storage
distance and retrieval distance in equilibrium.
show that wunder certain

Later, we will

assumptions the average storage and retrieval
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distance are identical. Thus, we can analyze
whichever is more convenient, and we will
simply use the term travel distance which will
refer to either storage or retrieval distance. We
define the average storage distance under
policy r as
where T:(z) denotes the storage distance of the
i* item stored under policy 7 and X, is the initi-
al state of the storage system, provided the limit
exists. In some cases, the limit in (1) may not
exist, so we also define Dx,(x) and Dx, () by
replacing lim with liminf and [limsup,
respectively.

Dix,(* )=ir7:f Diy(n) (2)

where the infimum is taken over all policies 7.
Our basic idea is to find »(1) and ¢, 0<c <o,
such that

fim 22Xl %)
A—oo cr(A)

1
where A=A.,+A. Then, we call a policy 7
asymptotically efficient if

Dio(m) —Dxo(*) _

P«IE cr(A) 0
or equivalently
Dx(n)—Dx,(*) -0 (3)

}1'153 r(A)
for all initial states X,.

Since the optimal policy is unknown, the
optimal average travel distance Dx,( *) is un-
known. A critical step in our approach is to
determine a sufficiently accurate lower bound
D. for the optimal average travel distance.
Given a lower bound D., if

-

7(A)
with 0<¢;< oo and

D:\’o(”) —Dt
r(A)

then x is asymptotically efficient.

—0,

2.2 Lower Bound on Travel Time

For c€{h, I}, let A%(¢) denote the number of
type ¢ items that arrive druing [0, ¢], Y'f denote
the storage time of the ;" type ¢ arrival, and
T:(x) denote the storage distance of the i** type
¢ item stored under policy 7. Assume that Y{is
independent of A - ), A(-), T (x), and X
where A(t)=A*3¢)+ A'(t). Let (N*¢#), N
(#)) denote the number of type 4 and / items in
the system at time ¢, respectively.

Lemma 1 For everyt,

AS(t)

iy 720(”) 1
= |X°:|2E[Yic]

3 do §§ Lo[Xn)Mds—R. 1
E| e %] @

where R. denotes the total remaining
storage time of tybe c items which arrived
before time O and still are in the system at
time O weighted by the storage distance.

Proof For every ¢,

AS(t)

S, TSy, T dil La[X(n)lds—R.

A() AQ)

(5)
where X(n) denotes state of the »* location
at time ¢ as

0, if empty
X,(n)={ h, if occupied by a type & item
{, if occupied by a type / item

and

1 if X{(n)=c
0 otherwise.

Io[X(n )]={
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This follows since the numerator on the left A ake)

hand side of (5) gives the total st time E[2‘=‘ Titx) | X, [=E Ly THD) X,
and side o gives otal storage tim YO 0]— [T | ":l

weighted by the storage distance of all arrivals ko)

up to time f. The numerator on the right hand 2 Tl

side of (5) gives the weighted total storage time
incurred during (0, ¢). The inequality follows
since some items may have arrived by time ¢
but not incurred the total weighted s{orage time
since they are still in the system at time £. Now,
since Y'; is independent of A«¢), A(¢), T«r)
and X,, we have

+E[1;1T | A_X}o].

Corollary 1 Under linear storage, that is d,
=n, a lower bound on the expected travel

distance Dx{n) is:
D=1+p- +(1 =) - (oa+2L ) (7)

where p;.=/1h/ﬂh, pl:AI/ﬂl and j)=/15/(/1h+/11)

A4
2i=1 Ti(x) Y¢
E [ A(t) 'X"] Proof The right hand side of (6)
o Nk Nh+Nl
EA ? ( )Yc - TiTE[#h Zdn+uz Z dn
=E[E[T(t)—| AW, A, Ti |1 X)) AFATLTA e
1
ao 1 = Bl (NN + n (2NN
—E| 2 @B AW, A0, TI]1 %] 2R
=1 +(NY*+NY]=D.
Zl-q_‘(:)Ti"(ﬂ) . If we extend The above arguments for a lower
=E[Y"]E[ Al 0] bound to the case in which we have #(>2)

Hence, (4) is obtained.
Theorem 1 Assume that A - ) is inde-
pendent of X, and
Alt)
t

—A a.s.

f ‘ w —EUIN, N} as.

and Pr{R.<oo}=1. Then, for every initial
state Xy and policy n, a lower bound on the
expected travel distance Dx{x) is:

NNt

b3 dn]

n=Nk+1

1
Dxy(m) 2 E[E[Y"] Ed T EIYT]

(6)

Proof The proof follows from Lemma 1 and
the fact that

types of items to store, a lower bound on the

expected travel distance will be obtained as
n c-1 0
c=1 i=1

where p.=A./p. and p.=A /(A +-+4,), and

(]

2i=1 p:=0.

2. 3 Poisson Arrivals and Stationary
Policies

We are trying to locate simple policies that
are asymptotically efficient. In particular we
will be looking only at stationary policies,_ Le.,
storage policies that depend only on the state of
the rack and the type of the item to be stored at

time f. For these stationary policies with
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Poisson arrivals(even compound Poisson ar-
rivals) and exponential storage times, we will
be able to show that Dx,(x) exists and does not
depend on X.. Furthermore, the expected retrie-
val distance is also given by Dx,(x).

Consider the state of the storage rack. Define
the process X as

X=(X (1), XA2), -+ XAM)

where X {n) denotes state of the #* location
and M, denotes the farthest occupied location
at time t. The state space S of X, can be repre-

sented as
s=u{ 0.0, h 1 (h, m}

where 0 represents an empty system.

Note that S is countable. Under a stationary
policy, the stochastic process {X.’tZO} can be
represented as a time-homogeneous Markov
process with a countable state space, in which
transitions occur whenever a type % or type /
item is stored or retrieved. Given a policy 7, let
So(mr)CS denote the set of states which
communicate with the empty state 0 under
policy 7. Then the Markov chain on the state
space S,(r) is irreducible. Furthermore, since
the probability of having an empty system is
positive, X, is positive recurrent, and there
exists a unique stationary distribution for {A_X" ot
>0} on S.(x). For stationary policies x, we

have the following result.

Proposition 1 For stationary policies , the
stationary distributions of storage distance
and retrieval distance exist and are
identical. In particular, the expected storage
and retrieval distance are equal. Further-
more, the expected storage distance does not

depend on the initial state X..

Proof By PASTA(Poisson Arrival Sees
Time Average), the distribution imbedded just
prior to arrivals is the same as the stationary
distribution of {X’,ItZO}. Using this distribution
and the storage policy, we can compute the
stationary distribution for the storage distance.
Now the stationary distribution for the retrieval
distance is identical to that of the storage
distance since in every busy cycle, exactly the
same storages and retrievals are performed.

Since Dx,(x) doesn’t depend on X, for statio-
nary policies xr, we simply let D(x) denote the
average travel distance under the stationary
policy 7. Note that if x is a stationary policy
and D./r(A)—c, with 0<¢, <o, then we need
only show that

D(x)—D-. _ ()

,11152 r(4)

to show that 7 is asymptotically efficient.

3. Closest Open Location(COL)
Storage Policy

Assume that items arrive according to a
Poisson process with rate A and each arriving
item is stored in the first available(empty)
location, and each stored item stays in a
location exponentially distributed length of time
with parameter g Then, from[10], the expected

travel distance under COL storage
D(COL)= 3 B(m, o).
m=0

where p = A/

Now consider the following point process on
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[0, 1). New points appear according to a
Poisson process with rate 1 and are randomly
placed on [0, 1). The left most point is removed
according to another independent Poisson
process with rate 1. Let M(x, ¢) denote number
of points in [0, z) at time £. Aldous [1] calls
this process the geometric Drocess. Note that
for fixed x, M(z, ¢) acts like an M/M/1 queue
with arrival rate x and service rate 1. Hence,
the stationary distribution will satisf y

PriM(x)=i}=(1—-x)z", i=0, 1, ---
where 0<x<1.

Let X be the position of the g point from
the left in the geometric process. Then

Pr{X.<x}=Pr{M(z)>k)=zx*

Theorem 2(Aldous) If L, is the position of
the n" open location,

L1 L.
e’ o
as A goes to <o,

L )D(X X ) (10)

As a consequence, we have

D
L 5y
P
as A— oo

where X, is uniformly distributed over [0, 1).
Thus, the first open location L, is approxi-

mately uniform on [0, o ] for large A.
Since the random variables —f)’—' are uniformly in-
tegrable, we know
iLl_] — E[ Xl] = l (11)
0 2
as A—co, and hence

[ B ,
limle: (12)
A-oo 14 2

4. Zone-z Storage Policy

Assume that type A[/] items arrive according
to a Poisson process with rate A alA], res
pectively. Each arriving type % item needs to be
stored for a random time which is exponentially
distributed with mean 1/ps. Similarly, type /
items need to be stored for an exponentially
distributed length of time with mean 1/u,. We
assume that the arrival processes and storage
times are mutually independent. The policy can
be described as follows. Type 4 items are stored
in the closest open location, but type / items are
stored in the closest open location beyond
location z. Thus, the first z locations are always
reserved for high turnover items. This policy is
sometimes used in practice to decrease travel
distance.

We show that a Zone-z policy with zone size
Lo »l is asymptotically efficient for Poisson

arrivals and linear storage.

Theorem 3 Assume that we have Poisson
arrivals, exponential storage times, and
linear storage. Then the Zone-z policy with
zone size AA)=|p 4| is asymptotically effici-

ent, and n(A)=A. That is, %—»cl, 0<ec <o

and
D(2(1))=|p 4+]—D- -0 (13)
A

as A—, where | x| is the greatest integer

less than or equal to x.

Proof Recall that all the travel time of all
policies for this system is bounded below by D.

given in (1). Now, D./A converges to ¢, where
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Note that 0<¢, < 0. To complete the proof, we
need only show that D(|p,])/A also converges
to ¢.. First consider type £ items. Let T*([0,])
be the travel distance of the i* type % item
under the Zone-| o, policy. Then
D*Le:D)=Pr{TXLo,))

<le+[YE[TKLesD) | Ti<(Low))

<low1+Pr{THle, ) >Lo 4}

E[TXLo:D | THo: N >exl]
We will show tat the second term converges to
zero as A gets large. The conditional expectation
in the second term is certainly smaller than 2p,
+p,=0(A). The probability of overflowing the
high turnover zone Pr{7T*([ p.]) >L0,]} conver-
ges to zero. In particular from [10], the
overflow probability is O(1/4/A). After dividing
the product by A, the last term is O(1// 1) whi-
ch becomes negligible as A increases. Hence, we
need only consider the first term. The first term
is the same as the expected storage distance in
an M/M/|lp.)/Lle,] storage system for an
arrival that finds a space. Hence, using the

results in Section 3,

D'(lo.) _, p_
A 2[1;,
as A goes to oo,
For the type / items, if we follow similar

procedure, we obtain

D’(I_Ph_]) b + 1-p
A Ha 2,

as A goes to oo.
Since D(x)=pD"(x) + (1 —p)D'(x),
lim D(z(/l)—l_ﬂ »d)

A—oo

b 1ob)
=+ (-p il

Hence, z(A)=|p.] is asymptotically efficient.
Extending these results to the case of more than

two types of items should not be hard.

Theorem 4 If uy>pi,the COL Storage policy
s not asymptotically efficient.
Proof Letr(A)=A.

lim D(COL)A—QXO( *)

A—oo

=lim

A—eo

D(lo +1)—Dxy( *)
A

D(CoOLY—D(le.]) ,
A L

lim

A=

The second term converges to zero by Theorem
3. Now from Aldous [1], with the fact that M/
M/s/s is insensitive for generally distributed

service time,

EED(C/?L) =%(%+%:_p)
and from the proof of Theorem 3
ilj{},D(LphJ) +(1 p)(p 1- p)=cl_
Hence
limD(COL) —D(le.D
Ao

_p(A=p) (s — m)>0
2y

Remark 1 The
stored or item retrieved, using the Zone-|p
«] policy instead of the COL policy with
linear storage is on the order of

A —=p) (e — ) p(1=p) (n— 1)
2 r(A)= 20 14 A

for A large. Hence, the savings per unit

improvement per item

time is on the order of

Ha fh M
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Remark 2 The COL Storage policy is
asymptotically efficient when pr=p. for A
large. This makes sense since when p,=p,
COL is clearly optimal.

Numerical examples are shown in Table 1.

5. Suggestions for Further
Research

First, starting from liner storage rack, two
types of items and Poisson arrivals, we should

be able to extend the results to square storage

racks with the Tchebychev travel metric, more
than two types of items and batch arrivals.
(Note that even if square storage rack and
Tchebychev travel are assumed, the number of
items in the system is the same as the case of
linear storage(d .=n), only travel distances are
different. And »(A) seems to be /'A.) Second,

we have assumed that the arrival rate of items
did not depend on the current inventory, and
that demand rate was proportional to inventory.
It would be interesting to generalize these to
situations in which the arrival rate depended on

the inventory and the demand might not be

(Table 1> Expected Travel Distances for Zone-z;x,=1.0

Parameters COL Simulation Aympt. Efficient Bound
ED(0) z* ED(z*) z=|p.] ED(z) D.
A=40, p=04, 1,=0.4 39.97 16 35.82 16 35.82 31.80
A=80 77.60 33 67.95 32 68.01 62.60
A=120 115.07 49 99.67 48 99.70 93.40
A=160 152.63 66 131.37 64 131.40 124.20
A=200 189.47 81 162.10 80 162.12 155.00
A=40, p=0.8, ;x=0.4 28.12 34 24.84 32 24.86 22.20
A=80 53.97 67 46.71 64 46.78 43.40
A=120 79.32 100 68.26 96 68.36 64.60
A=160 104.71 133 89.83 128 89.94 85.80
A=200 130.34 166 111.38 160 111.49 107.00
A=40, p=0.4, 14=0.2 69.66 20 55.01 16 56.01 49.80
A=80 136.68 38 105.31 32 107.07 98.60
A=120 202.66 55 154.72 48 156.51 147.40
A=160 268.89 72 204.08 64 206.12 196.20
A=200 333.75 89 252.54 80 255.25 245.00
A=40, p=0.8, 1=0.2 38.05 38 27.43 32 28.15 24.20
A=80 73.49 74 51.44 64 52.61 47.40
A=120 107.91 108 74.96 96 76.46 70.60
A=160 142.95 140 98.79 128 100.55 93.80
A=200 177.77 173 122.37 160 124.29 117.00
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simply proportional to inventory, e.g., inde-

pendent of the inventory.
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