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Abstract

After much research on qualitative reasoning, the problem of ambiguities still hampers the

practicality of this important Al tool. In this paper, the sources of ambiguities are examined in depth
with a systems engineering point of view and possible directions to disambiguation are suggested. This
includes some modeling strategies and an architecture of temporal inference for building unambigucus
qualitative models of practical complexity. It is argued that knowledge of multiple levels in absiraction
hierarchy must be reflected in the modeling to resolve ambiguities by introducing the designer’s

decisions. The inference engine must be able to integrate two different types of temporal knowledge
representation to determine the partial ordering of future events. As an independeni quantity
management sysiem that supports the suggested modeling approach, LIQUIDS(Linear Quantity-
Information Deriving System) is described. The inference scheme can be conjoined with ordinary rule-
based reasoning systems and hence generalized into many different domains.

1. Introduction

Qualitative modeling research is expected to
provide the basic technology for model-based
deep reasoning of sysiem dynamics, which is
required for intelligent monitoring, diagnosis,
and compensation of complex systems. Qualita-
tive models are robust, can be decomposed and
aggregated, and use as little knowledge as

necessary to predict behavior of target systems.
In comparison with conventional numeric mo-
dels, the inference and knowledge structure of
qualitative models are closer to those of human
experts and hence more explicatory.

Perhaps the most conspicuous weakness of
qualitative reasoning is the problem of see-
mingly unavoidable ambiguities. As the target
system gets larger and more complicated, am-
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biguity tends to grow uwp and finally degrades
the predictive power of the model to make its
use for serious applications impractical,

A source of ambiguities In gualitative rea-
soning is its parsimonious use of information on
the behavior of the target systems, which is one
of its strong points. That is, the only infor-
mation qualitative reasoning uses and produces
is what is related to meaningful changes of the
system state. Other arbitrary questions are left
unquestioned and unanswered.

Besides the above reason that appears to be
inherent to qualitative reasoning, deKleer[2]
pointed out that ambiguities can also originate
from insufficient information for temporal
ordering. The third source of ambiguities is the
limitation of qualitative models’ knowledge
representation.

In the following sections, these sources of
ambiguities will be examined in more depth with
a systems engineering point of view and
possible directions to disambiguation will be
suggested.

2. Ambiguities and Functional
Abstraction

As mentioned above, a type of ambiguity is
closely related with the parsimonious use of
information by qualitative models, which is why
they are preferred to numeric models. When the
system state is qualitatively represented, fine-
grained distinctions will not be available
between the atiribute values or system slates.
The presense of such ambiguities is indeed a
nature of qualitative models, but they are not

uncontrollable by the modeler. This is best
illustrated by an example.

Figure 1 shows the structure of a simple
doorbell. The causalities for its operation are
diagrammed in Figure 2. When the clapper is at
its rest position, the circuit is closed and the
cuwrrent will flow. Then a magnetic field
developed by the coil will pull the clapper to let
it hit the bell. Meanwhile, since the clapper’s
movement opened the circuit, the current and
magnetic field have been disappeared. The
clapper, having some restoring force in itself,
then comes back to its original position only to
start an identical next cycle. An ambiguity is
exposed when a question is asked whether the
magnetic force is stong encugh to overcome the
restoring force of clapper. If it is not, the
clapper will never be lified and the subsequent
events will be aborted. Another question is if
the aceelaration of the clapper by the magnetic
force is strong enough to make it to reach at

" the bell rather than returning back in the

middle.

The original sequence of events was a simple
but legitimate explanation of the working of a
doorbell. People rarely ask the above questions
since the ‘right’ answers are obvious if the
doorbell is to achieve its purpose. A finer-
grained set of causalities would be concerned
with the possible digression from the originai
intention of doorbell and would require some
information on the relative strengths of forces.
In a model described at a rather abstract level,
it may be enough to have a statement that the
clapper’s hitting of the bell comes earhier than
its turning back to the rest position. As

thedescription becomes more physical, however,
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[Figure 1] A Simple Doorbell

the model must reason in terms of such para-
meters as the force of field, the restoring force,
and even the time length during which
accelaration by the field continues.

As the above example illustrated, a qualita-
tive model can be described ati different levels
of abstraction. Rasmussen[7] described the
abstraction hierarchy as shown in Figure 3. The
intention of a system has stronger implication
at a higher abstraction level while the descrip-
ticn gets more analytical at a lower absiraction
level. The highest abstraction is the purpose of
a system. Then follow the level of abstract
function, generalized functions, physical fun-
ctions, and finally, physical form. The engineer
would normally design a system starting from
the functional purpose, the highest level, and
continue with successively lower abstaction

levels. When a description of system behavior is

translated to a description of the next lower
abstraction level, things need to be quantified.
In the above example, where the designer must
design the bell to ring, he/she will iry to ensure
that the clapper hils the bell before it turns
back. This specification then will be realized
adjusting the magnetic force and the restoring
force.

In general, ambiguities occur when a question
is asked at a lower level of abstraction than the
level at which the model is stated. The higher
level model involves more assumptions based on
the intention, and the lower level model that has
more degree of freedom must be constrained to
achieve the higher level prescription. This
constraining is primarily _done by appropriate
arrangement of quantitative parameters.

For proper disambiguation, the model should

be built at an abstraction level that is low
enough to have the required freedom of
deviating behavior. On the other hand, taking
unnecessarily low abstraction level may lead to
a model that is too large, laborious to build,
fragile, and inefficient. What is then the right
level of abstraction for a model? To answer
this, the model builder should take the purpose
and context of the use of the model into
account and underiake systems analysis which
is not much different from anaysis stage for

software development.

3. Temporal Ambiguities

In qualitative models, time is represented as a
sequence of time segments. Nothing but the
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Production flow models, system

cbjectives

ABSTRACT FUNCTION

Causal structure, mass, energy and

information flow topology, ete.

GENERALIZED FUNCTIONS
“Standard” functions and processes,

eontrol loop, heat transfer, etc.
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Electrical, mechanical, chemical
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causes of malfunctioni
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Reasons for proper function requirements

PURPOSE BASIS

[Figure 3] Abstraction Hierarchy {Rasmussen 1985)
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order of events is captured in the reasoning and
the lengths of intervals are either ignored or
implicitly considered only for determining the
order of events. Normally, any significant time
point must be determined on the time axis to
have precedence reiationship to all other
meaningful time points. This seems inevitable as
long as the model attempts to represent the
system’s behavior as a sequence ¥ system
states, a strategy related to situation calculus.

As some researchers argued[4, 9], this idea
of completely ordered sequence of time points
imposes great limitations on the qualitative
reasoning about complex dynamic systems. The
reason is that such models cannot tolerate
temporal ambiguities that are prevalent and
often harmless in human reasoning. More
destrable models would be those that have the
ability to predict future events that are partially
ordered yet unambiguous enough to answer the
meaningful questions. It is crucial, therefore, to
be selective between the significant precedence
relationships and insignificant ones.

The pairs of events that need to be tempo-
rally interrelated depend on what information
the dynamics of the target system requires. The
necessary relationships appear in the form of
triggering and intervening conditions in causa-
tion rules. These conditions must be examinable
with the knowledge that the model is given or
brings forth by iis inference. Thus the first
principle of temporal disambiguation is to have
the model's dynamics stated in a coherent
manner so that the model produces temporal
information in the form it can use later. An
important necessary condition of such coher-

ence is that the system dynamics must be stated

at the right levels of abstraction.

The time point of an event can be appointed
in two different ways. one is crossing of
threshelds by moving variables and the other is
explicit quantification of the time lengths of
states. Temporal knowledge that comes from
quantitative processes can mainly be repre-
sented in the former while temporal knowledge
about purely qualitative processes should be
described in the latter. The model’s knowledge
representation must allow those two fashions of
description and the inference engine must be
able to integrate both to determine future event
ordering. To this end, Yeon[10] claimed that
explicit designating and handling of time in-
terval lengths is mandatory.

Many system dynamics that qualitative mo-
dels iry to describe are cyclic as a whole or in
part. This dictates that accumulation of time
intervals must be operationally possible during
termporal inference, while the line of temporal
reasoning schemes originated from Allen’s work
[1] comes closest to this capability, the
resolution of temporal knowledge is not encugh
for giving unambiguous result after a long
chaining. Also, 1o prevent the model from
cycling and overflowed by the accumulated time
intervals, the renewal of same behavior should
be noticed.

To meet the second and third conditions for
proper disambiguation, it is clear that the time
intervals should be manipulated more explicitly
than most of current models. The description of
time relationships must be as expressive as that

of ordinary quantities.
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4. Limitations of the Model’s
Knowledge Representation

If a model’s insufficient expressive power is
to be blamed for ambiguous reasoning, the kno-
wledge limited by the representation scheme is
most likely that about quantities. As we dis-
cussed above, quantification of physical para-
meters is the designer’s primary means to
resolve ambiguities and meet the intentions of
systems, Therefore, any unambiguous descrip-
tion of system dynamics tends 1o contain a lot
of quantitative information and tests. It follows
that unambigous reasoning is possible only
when a general and flexible handling of quan-
tity information is provided. Ideally, except
being qualitative, no further information loss
should arise due to the model’s particular
scherne of quantitative knowledge representa-
tion.

Suck a powerful processing of quantity
information cannat be expected if the process
ing is embedded in the inference on the system
dynamics. Although the quantitative informa-
tion is encoded and handled in qualitative ways
by a gualitative model, it certainly preserves the
nature of quantities. For example, if a quantity
is changing, it is either increasing or decreasing.
Therefore, exactly as the number system is
independent of any physics laws, a quantity
mnformation management system that is inde
pendent of model’s dynamics is conceivable.
Since the inference on the behavior of quantities
can be much more powerful than general
symbolic inference owing to the inherent chara-
teristics and rules of the quantity system, ha-

ving an independent quantity-reasoning sys-

tem, such as LIQUIDS described in the next

section, 1s certainly desirable,

5. LIQUIDS(Linear Quantity
Information Deriving System)

The concept of quantity space is developed to
manage quantity information in qualitative
ways. The term ‘qualitative’ is used to contrast
this apporach with numeric representation and
processing of quantity information. In a
quantity space, the gquantiities are valued by
ordinal

numbers.

relationships among themselves or

An explicit algorithmic presentation of =a
quantity space management system was given
by Simmons[8]. More well-known approaches
to qualitative simulation including those of

Kuipers{ 6], deKleer[3], and Forbus[57] usually
embedded the quantity information manage-
ment in the inference of- the system dynamics.
Simmons” quantity space ﬁlanagement system,
named Quantity Lattice, combines inequality
reasoning with reasoning about simple arith-
metic expressions such as addition or multip-
lication.. The inference emphasizes computa-
tional efficiency and is not general enough even
for linear relationships among several variables.

LIQUIDS(LInear QUantity Informtion Deri-
ving System) is a quantity space management
system that can handle any complicated linear
expressions. Its inference is centered around
linear programming techniques and fairly
In a qualitative model which is
primarily to simulate the human ability of

efficient.

robust prediction of system behavior, such a
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general algorithm is much more desirable than
an arbitrarily constrained algorithm. Amnother
motivation for LIQUIDS is that, except very
simple multiplication and division, most of our
commonsense quantitative inference appears to
be linear as examplified by frequent accu-
mulation of amounts or time intervals.

Time is a very special type of ql;antity n
LIQUIDS that it is represented in two different
ways. Explicit time lengths are handled as
ordinary quantities in their own guantity
subspace. In the other way, time presents itself
implicitly through integration/differentiation of
guantities. At every time iniervals and time
points, the knowledge in a quantity subspace is
changed according to quantity subspaces of
immediately lower and higher orders. Note that
a differentiation is achieved by qualitative
version of mean theorem and hence calls for
nonmonotonous reasoning along the time axis.

Integration is mare straightforward than differ-
entiation and executed whenever time advances
by searching non-zero derivatives and consecu-
tively recompose the inequalities in the quantity
subspaces of higher orders accordingly. LIQU-
IDS depends on forward chaining in propagsa-
tion of time effects, but on backward inference
elsewhere,

The key for the effeciency of LIQUIDS is its
selective operation of which attention Is
narrowed by a given set of quantity conditions
which trigger meaningful changes in the target
systems. For example, if there is no testing of
ihe lowerbound of a guantity X(e.g., X>Y+7)
for triggering a rule in the rule base, the
changes of inequalities that might be caused by

X’s increasing is excluded from consideration in

finding the next event. Such changes are taken
into account only when a non-iriggering
quantity condition is queried to the quantity
space.

With the support of LIQUIDS, the builder of a
qualitative model is benefitted in two ways.
First, the versatility of quantity information
that is manipulatable in LIQUIDS will expand
the modeler’s freedom of expression in com-
piling the knowledge of dynamics. Second, the
modeler can be more concentrated on the issue
of good modeling practice discussed through
this paper. LIQUIDS was developed in Allegro
CommonLisp on a Macintosh II computer.

6. Concluding Remark

The research presented in this paper was
pursued both conceptually and experimentally.
Qualitative models, despite their prospective
characteristics, have not been used in practical
situations. The dilemma the researchers in this
area faced was the conflict between to build a
good theoretical foundation and to develop a
practically useful technology. What is wanted
now is a set of good disciplines of qualitative
modeling to make it practical and yet to
prevent it from becoming ad-hoc programming
technique. This paper attempted io apply a
systems engineeering point of view to derive
those modeling disciplines.

The temporal inference engine and LIQUIDS
were experimentally consiructed and tested
with examples. The future research effort will
be refining those to build a complete system
that may well be called a dynamic expert
system.
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