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Comparison of Conirol Policy Algorithms for a
Optimal System Operations*

Chang Eun Kim*

Abstract

The control policy algorithm is examined and compared in this study. This research investigates a two
state partially observable Markov chain in which only deterioration can occur and for which the only

actions possible are to replace or to live alone. The goal of this research is to compare the computational

efficiencies of control policy algorithm. One is Sondik’s algorithms and the other one is jump algorithm,

1. Introduction

The past few years have witnessed and
increasing interest in the development and
implementation of optimal system operations for
stochastically failing system. The practical need
for optimal system operations has stimutated
theoretical interest and has led to the develop-
ment of policies that possess theogretical nevelty
and practical importance. Optimal system ope-
rations have been actively studied at least as
long as operation research has been a viable
displine. Initial studies obtained optimum poli-
cies based only on lifetime information assum-
ing no knowledge regarding the state of the
system itself (Sasieni. [8]).
con-trolling stochastic processes with incomplete
state information was initially studied by

The problem of

Dynkin[ 3].

The earliest use of the Partially Observable
Markov Decision Process(POMDP) model app-
ears to be in machine inspection and replace-
ment problem. A Markov model of optimal ma-
chine replacement and inspection due to Der-
man [1] is defined in the following way; the
deterioration of a machine can be described by
8 Markov chain where the state represents the
level of deterioration. However, the state of the
chain at each step is unknown unless a decision
is made to inspect, in which case an inspection
cost is incurred. The machine may fail and a
failure cost is incurred for each time step that a
failure remains undetected. The decision-maker
must decide when to inspect and when to
replace. Derman showed that the optimal
replacement rule is a control limit rule; that is,
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there is a state {€E={1, 2, ---, L} such that if
the observed state % satisfies k=, then replace
the machine; and if £<#, do not replace, where
E is the state space with State 1 denoting a new
machine and State L denoting an inoperative
machine.

Drakef 27 developed the first explicit POMDP
model. An information source is modeled as a
two state sysmmertric Markov chain. The sou-
ree is observed through a noisy communication
medium modeled as a binary symmetric commu-
nications channel. The problem is to decode the
source; that is, to decide which of two symbols
are transmitied by the information source at
eacil point In time. The information source tra-
nsmitted, of course, may or may not be ref-
lected in the actual symbol. A cost is incured if
the symbol chosen as the one transmitted is not
the actual symbol that was transmitted, and no
cost is incurred if the proper symbol is chosen.
Drake proposed a scheme that minimizes the
expected cost of making decisions and noted
that for cerain parameter relationships the
transmitted symbol can be determined with
minimum error on the basis of only the last
output symbol.

Kalymon[5] generalizes Derman’s model by
considering a stochastic replacement cost deter-
mined by a Markov chain. His cost function is a
random variable which takes on a finite set of
values. When the cost function is increasing
according to the level of the state, the Markov
chain has an increasing failure rate(IFR) which
means that the probability of deterioration
increases as the initial state increases if no
replacement is made. His machine replacement

model has a control limit policy for the finite

horizon discounted cost function. He also gener-
alized the infinite horizon ergodic chains for
both the long run discounted and the long run
averaged cost cases using linear programming,.
Satia and Lave[9] studied a finite discrete
time discounted Markovian decision process
when the states are probabilistically observed.
They assumed that the deterioration process is
observed through a finite state probabilistic
observer. They presented an implicit enumer-
ation algorithm which optimizes the total
expected discounted cost given the initial state.
Their algorithm will converge to within any
predetermined interval in a finite number of
iterations. They also discussed applications of
their model in such areas as replacement,
guality control, and brand switching problems,
Rosenfield[7] considered the POMDP mach-
ine relacement problem. His model stipulates
that the operator must pay an insection cost to
determine the state of system with three choices
at every time period; repair, inspection, and do
nothing. He defined a process that has a state
space consisting of pairs of nonnegative inte-
gers denoted by (f, j)where { is the condition
of the machine and j is the number of pericds
which have elapsed since the machine was in 7
state. He proved that an optimal maintenance
policy is monotonic in the following sense! the
optimal policy is defined by control-limit num-
ber F*(i), =1, 2, :--, n, which are nonde-
creasing in 7, where, for each state (i, 7), a
repair is done only if j=F*(i) and either
inspection or leave alone is optimal otherwise..
Rosenfield’s goal was o establish the structure
of the optimal policy and he was not concerned

with developing an efficient algorithm for deter-
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mining the optimal policy.

The most significant work in POMDP has
been dene by Sondik[10, 11] who structured
the problem as a traditional Markov decision
problem and then developed a special algorithm
for obtaining the optimum. He defined a core
process and an observation process. The core
process was a Markov chain that could not be
directly observed. The observation process was
the sequence of state that were actually
observed, and that were determined l‘:»y the core
process. Specifically, a matrix of probabilities R
={7r,] was define such that #»,, denote the pro-
bability of observing state s , given that the core
process was in state 7. Although the state of the
core process cannot be known with certainty,
the decision maker can obtain the probabilities
of the state of the core process based on the
observation process. It is these probabilities that
are used to form Sondik’s decision process for a
POMDP. He developed a procedure, called the
one pass algorithm, that was based on dynamic
programming and linear programming. He used
the one pass algorithm to compute the optimal
policy for finite horizon POMDP’s He also
developed a Howard-like policy iteration
algorithm to compute the optimal policy for
infinite horizon POMDP’s

White[ 12, 13] generalized the POMDP to
allow for a semi~Markov core process. He
extened Sondik’s computational procedures to
compute policies for finite horizon POMDP
model with a semi-Markov core process. He
also gave conditions which yield montone
optimal policies where there is either perfect
observability or no observability.

Kim[6] Jump algorithm is based on an

invariant distribution for a continuous state
Markov chain. The Markov chain is the process
used by Sondik in his decision approach;
however, it is shown here that the chain’s
invariant distribution has some special structure
which allows for the development of a new
algorithm. Sondik algoithms and jump algorithm
will be compared to show the computational

efficiency.

2. Sondik's One Pass Algorithm

Using same notation mm Kim[6], Sondik
formulates a dynamic programming approach
to find the optimal control policy for a partially
observable Markov process. He defines V(w)
as the minimum expected cost that the system
can incur during the lifetime of the process if
the current core probability is w, and there are
n control intervals remaining before the process
terminates. Then, expanding over all possible
next transitions and observations yields the
recursive equation:

V“(W)=main[wC‘+§ P | w, a]V*!

[T{w |8, a)]] (2.1)
Equation(2.1) is composed of a finite number of
piecewise linear segments which allows Vi(w)
to be computed in a very simple fashion:

V(w) =mjin [w;b"] 1<j (2.2)

Performing the substitution, he obtained the
computational expression from Equation(2.1)
V*(w) =min[wC*+ 3l min wP’Ry b}
(2.3)
Heshowed that A®, which is the set of value



180 3e

EXTRELE

of b}, contains a finite number of elements. He
also defined that R? be the region in W where b"
(w) has the vector value br=[bp, b]T; that is,

R:=[W : V¥ (w)=wb]]. (2.4)
V*(w) is now completely determined by the set
A", and associated with each element by in A" is
a region of W. From Equation (2.3} for we&R),
he obtained the important recursive expression
such that:

V*(w)=whb]

=m§n[wC‘+§: rnin wP® R4 bi™']

(2.5)
=w[Ci+ZPRyL " ).
¢ ")

where d::j is the subscript variable £ minimiz-

ing Equation(2.5). The optimal control for time
n, d"(w), is a piecewise constant with values
defined by the minimizing of Equation(2.5);
that is
8. {w)=az=4d] for weR;
The partition R" describes a refinement of R",
For a point w, the following sets;
wP'R, (b —b,")<0, V4, VB Va

18

w(bl—bM) <0, V., #5" (2.6)
2 w(i)=1
w(i)z0

defines a region with R The linear programm-
ing routine is used to find this region which is
the important region for the computation of by.
The one pass algorithm is a systematic way
of determining A" from A"\ It is based on the
fact that the complete knowledge of A" allows
the computation of V'(w) at some point w.
With this background, the algorithm is pres-

ented as follows:

Algorithm(2.7). The optimal control for each
period is found using a single computational
pass over the state space W for each time
period the process is to operate, The complete
one pass algorithm is as following:

(1) Select an initial point wEW.

(2) Find Vi(w)=wb™ using Euation(2.5). In-
sert b™ as the first entry in A~

(3) Check for table empty. If yes, STOP.
Otherwise, go to next step.

(4) Select b from the search table. Using
Equations{2.6), find all vectors bf with regions
Rp that border R,

(5) Add those vectord! that have nol been
previously selected to the search table:delete b!.
from the table, Go to step 3.

3. Sondik’s Policy lteration
Algorithm

When Howard[4] studied the completely
observable problem, he used the expected cost
per unit time as the minimiation criterion for
the infinite horizon problem. Sondik[10, 11]
similarly used Howard's approach for the
optimal control of partially observable Markov
processes over the infinite horizon. In the
completely observable problem, there are only a
finite number of aliernatives, and thus the
policy iteration method of Markev decision
theory must converge in a finite number of
iterations. This is not the case with the partially
observable problem because of its continuous
state space which admits an uncontable number
of controls. Thus, it is necessary to have a

measure of closeness to the optimal control at
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each iteration. Therefore, Sondik developed
additionally a measure of closeness to the
optimal control to the policy iteration method of
Markov decision theory. Some definitions from
his paper are needed to illustrate his algorithm.

Definition{3.1)}. A real valued function f( - )
over W is termed “piecewise linear” if it can be
written {{(w)=whb; all weueW, where 1, -,
is a finite connected partition of W, and b, is a
constant vector weu,.

Definition(3.2). A partition u={u, u,, *--} of
W that possesses the following properties with
respect to a stationary policy is said to be a
Markov partition.

Property(1) All points in the sets u; are
assigned the same control alternative by §.[i.e.
if w!, w*Eu, then & (w') =8 (w*) ]}

Property(2) We define Dé=[w:4(w) is
discontinuous at w]. D" is defined as follows ; D
°=D¢ - D'={w:T(w i@, s)esD ']

Property(3) Under the mapping T( - | @, §)
all points in u; map into the same set. The
relationship between the sets u, and the
mappings T( «+ | 8, &) is given by the Markov
mapping ¥ (j, # ) such that if weu, then T{w |
8,3)Ew g, ¢

In order to construct u, the sequence of sets
D% 1Y, .-, D* must be determined and then
arranged to form the boundaries of the sets in u
. The set D' is defined by Property(2) :

Di=[w:T(w |8, d)eD]. {3.3)
D! is found by reflecting a point in D" back
through the curves T(w|#, &). This is
equivalent to writmg D' as

D'=[w=T w1 8,8)cW:w'eD'] (34)
where T~! is the inverse mapping of T and is

easily calculated from

w[P R -
w[P R ] 1
Thus D" is determined from D" using the same
step as above for D'. With set D* completed, v
is constructed by combining the sets D" into UX.,

T (w'[8,8) (3.5)

D" and then ordering these points, thus forming
a set of intervals,
Using u*, Sondik constructs a mapping v that is
used to approximate V2(w).
Since 1 will be constructed from u®, the interger
k will be called the degree of the approximation.
The mapping v is defined as follows:

if T(wicut | &, 8)eu, theny (§,8)=I (3.6)
Since u* does not satisfy Porperty (2) there is
some set uf outputd, and weu f such that T(w*

18,8)9¢u),,, , The mapping v is used to

construct piecewise linear approximation to V
(w|d). The approximation to V{(w|d)}
denoted V(w | §), is defined by

V(iw | 3)=wh, weuk (3.7
where the vectors b; are chosen to satisfy the

set of linear equations.

where & ,=8(w)

L3 &, 4.
b=C ’+§! P R,' b &
for weuk, (3.8)
With this background, the algorithm is pre-
sented as follows:

Algorithm {3.9). The algorithm is to iteraie
through a succession of approximations to
stationary policies, using the expected cost of
each approximation policy as a basis for policy
improvement.

(1) Pick an arbitrary policy, say &{(w)=a,
Yw.

(2} For k chosen to satisfy error require-

ments, find the partition u*
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(3) Construct the mapping v from u* from
Definition (3.2).

(4) Calculate bs and P8 from ¥51+bs =P8
bd +C3..

(5} Find the policy §,(w) which minimizes

wC+3P{d | w, a}V[T(w |#.,8) | 5]

over a, and where V(w | § )=wbyy)
(6) Evauate I3 —¥¢ from S(w) where.
S(w) =[5 +whyen]—[wC" ™+ 3P | w,

8. )VIT(w | 6,8) 18]
and min S(w) <P —¥é*<max S(w)
(7) If | 85 —¥3* | <ethen Stop; the opti-
mal policy is &, otherwise, return to Step 2 with
& replaced by 8.

4. Comparison between
Algorithms

The optimal policy on the basis of the average
jong-run cost can be found at least concep-
tually by using the Sondik’s one pass algorithm.
But this approach definitely requires a lot of
computation time. Therefore, we make a
comparison between the new algorithm and
Sondik’s policy iteration algorithm.

Sondik's policy iteration algorithm needs a
matrix inversion code which requires that a
significant amount of computation time depend
ona size of P§. The new algorithm is a very
simple structure and need a search method.

In order to compare the computational
efficiency of the two algorithms, sample
problems on the following data sets will be used.
Sampie data sets include iwo sets of cost data,
three transition matrices, and two observation

matrices. These sample data sets provide 12
sample problems. All programs with FORTRAN
code were run on Amdahl 5850. Execution time
of the two algorithms will be compared as a

measure of computational efficiency.

Sample data sets
Cost data set
setl:C'=:z] C*=[1?]

setl:C2=:;:| czz[:]

Transition matrix data set

—‘9 .1-
setl :P'=
Lo o0
8 .21
setZ:P’=[
0 1
-7 3
set 3. P'=
Lo 14
Observation matrix data set
.8 .1
set 1 Ri=
L2 .8
-'8 '2-
set 2 : Rl=
L .3 .7

The following Table 1 shows how 12 sample
problems are combined from the sample sata
sels: '
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{Table 1). Combinations of Sample Data Sets

Run No. Cost  [Observation! Transition
1 1 1 1
2 1 1 2
3 1 1 3
4 1 2 1
5 1 2 2
6 1 2 3
7 2 1 1
8 2 1 2
9 2 1 3

10 2 2 1
11 2 2 2
12 2 2 3

The run results of 12 sample problems in

Table 1 are summarized as follows:

(Table 2. Summary of Sample Runs

Run | &' Pt 1* | &% WP 2*
1 (.03, 47(395( .09 ( .14 (393 .03
2 (.07, 6714551 .07 | .08 [ 455 .02
3 (.00, .09 490 .04 | .02 [ 490| .02
4 107, 28| 407 .13 | .12 | 407 | 42
5 |.00, .09| 460 .07 | .08 | 4.60( .09
6 |.00, .14 490 .07 : .02 | 490 .02
7 |.b4, 90| 1.64 | .14 ; .57 | 1.65 | 85
8 |.07, 67| 2.03| .07 | .62 | 201 .02
g |12, 77| 229 ; .08 | 66 }2.29 .02
10 |.40, 65(1.74 | .17 | B0 | 1.74 | 42
11 |.56, .58} 2,11 | .12 | .58 } 211 | .07
12 |.60, .70} 2.38 | .12 | .64 ;| 2.38 | .03

Note ! 1* represents the computation time of
the jump algorithm as defined in Algorithm[6]
and 2* represents the computation time of the
Sondik’s policy iteration algorithm as defined in
Algorithm(3.9). ' is an optimal control inter-
val for the jump Algorithm and 82 is an optimal

control limit for Sondik’s policy iteration algo-
rithm(3.9)

From the resulis of these 12 sample runs in
Table 1, we have made the following obser-
vations:

(1) The jump algorithm is faster than Sondik’s
policy iteration algorithm in sample runs 4,7,
and 10.

(2) The variation of computation time for the
jump algorithm is much smaller than Sondik’s
policy iteration algorithm.
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