Proceedings of the KSRS Conference (대한원격탐사학회:학술대회논문집)
Korean Society of Remote Sensing
- Annual
- /
- 1226-9743(pISSN)
Domain
- Energy/Resources > Resources Exploration/Development/Utilization
Volume 2
-
The remote sensing data can be used to calculate the water depth especially in the clear and shallow water area. In this study, the SPOT data was used for bathymetric mapping in Dong-Sha atoll, located in northern South China Sea. The in situ sea depth was collected by echo sounder as well. A global positioning system was employed to locate the accurate sampling points for sea depth. An empirical model between measurement sea depth and band digital count was determined and based on least squares regression analysis. Both non-classification and unsupervised classification were used in this study. The results show that the standard error is less than 0.9m for non-classification. Besides, the 10% error related to the measurement water depth can be satisfied for more than 85% in situ data points. Otherwise, the 10% relative error can reach more than 97%, 69%, and 51% data points at class 4, 5, and 6 respectively if supervised classification is applied. Meanwhile, we also find that the unsupervised classification can get more accuracy to estimate water depth with standard error less than 0.63, 0.93, and 0.68m at class 4, 5, and 6 respectively.
-
The oceanic currents in the South China Sea (SCS) are strongly influenced by monsoon winds. A review on the SCS currents has indicated that previous studies have pointed out an anticyclonic circulation in the area between the southern Vietnam coast and the Spratly Islands. However, its detail is not understood because of less information of in situ observations. The physical-biological interaction is quite new research area, which has been established and promoted by means of the ocean color remote sensing. Temporal/spatial variability of the phytoplankton activities are well captured by ocean color (OC) -derived Chlorophyll-a images. Combining the OC-Chl-a and the other high-resolution satellite data (e.g., SST images), the biological aspects of oceanographic variation is well described. The blooming phenomena in the area between the southern Vietnam coast and the Spratly islands are further investigated. Change in the wind-system related to the El Nino generates upwelling/SST-cooling in the sea south of the Spratly Islands through the air-sea-land interaction was studied. The seasonal upwelling is also associated with the harmful algal bloom (HAB) off two side of Indochina Peninsula have investigated. The seasonal variation of SCS phytoplankton blooming and related oceanic conditions in Vietnam coast was observed. Ocean color satellite data has effective contribute to study the oceanic condition and phytoplankton blooming in South China Sea.
-
-
-
The coastline of the Choa Phraya Rivermouth in the Upper Gulf of Thailand has been changed drastically. The western side especially at Ban Laem Sing was eroded for 400 meter in 26 years or with the rate of 15 meter per year on the average. The Metropolitan Electricity Authority has granted five years research project to us to study the efficiency of the electric pole fence as a mean to reduce the wave force and increase sedimentation rate inside for mangrove replantation. If the method works efficiently, it will be used to reclaim the coastal land loss in other areas in Thailand. The project was done since 2005 after the fence was constructed completely in October 2005. The oceanographic surveys were conducted before and after the construction in northeast monsoon season to study the impact of physical oceanographic forces on the coastline change. The sedimentation rates were measured each month. It is rather low about 2 cm/month. The subsiding rate from the load of deltaic sediment and groundwater withdraw using boring data is about 30 mm/year. The cumulative sinking rate is 55.8 cm from 1978 to 1995. We have tried to design the method of mangrove plantation in this area. The remote sensing data such as LANDSAT and aerial photos from 1987 to 2002 for 15 years were used to compute the rate of coastline change at each 50 m section along the western side of the rivermouth.
-
To investigate the streamflow impact of land cover changes by a typhoon, WMS HEC-1 storm runoff model was applied by using land cover information before and after the typhoon. The model was calibrated with three storm events of 1985 to 1988 based on 1985 land cover condition for a 192.7
$km^2$ watershed in northeast coast of South Korea. After the model was tested, it was run to estimate impacts of land cover change by the typhoon RUSA occurred in 2002 (31 August - 1 September) with 897.5 mm rainfall. The land covers before and after the typhoon were prepared using Landsat 7 ETM+ of September 11 of 2000 and Landsat 5 TM of September 29 of 2002 respectively. For the 6.9$km^2$ damaged area (3.6 % of the watershed), the peak runoff and total runoff by the changed land cover condition increased 12.5 % and 12.7 % for 50 years rainfall frequency and 1.4 % and 1.8 % for 500 years rainfall frequency respectively based on AMC (Antecedent Moisture Condition)-I condition. -
NDVI has been very frequently used to estimate several biophysical parameters that are required for ecosystem models. Leaf area index (LAI), canopy closure, and biomass are among those biophysical parameters that are estimated by empirical relationship with NDVI. However, the type of remote sensing signals (raw DN value, at-sensor radiance, atmospherically corrected reflectance) used can vary the calculation of NDVI. In this study, we tried to attempt to compare the influence of NDVI linked with forest LAI for the watershed-scale ecosystem models to estimate evapotranspiration. Landsat ETM+ data were used to obtain various NDVI values over the study area in central Korea. The NDVI-based LAI and the resultant evapotranspiration estimation were greatly varied by the remote sensing signal applied.
-
This study is to suggest a methodology to produce landslide hazard map by combining LRA (Logistic Regression Analysis) and AHP (Analytic Hierarchy Program) Approach. Topographic factors (slope, aspect, elevation), soil drain, soil depth and land use were adopted to classify landslide hazard areas. The method was applied to a 520
$km^2$ region located in the middle of South Korea which have occurred 39 landslides during 1999 and 2003. The suggested method showed 58.9 % matching rate for the real landslide sites comparing with the classified areas of high-risk landslide while LRA and AHP showed 46.1 % and 48.7 % matching rates respectively. -
House management is very important in water resource protection in order to provide sustainable drinking water for about four millions population in northern Taiwan. House management can be a simple job that can be done without any ingredient of remote sensing or geographic information systems. Remote sensing and GIS integration for house management can provide more efficient management prescription when land use enforcement, soil and water conservation, sewage management, garbage collection, and reforestation have to be managed simultaneously. The objective of this paper was to integrate remote sensing and GIS to manage houses in a water resource protection district. More than four thousand houses have been surveyed and created as a house data base. Site map of every single house and very detail information consisting of address, ownership, date of creation, building materials, acreages floor by floor, parcel information, and types of house condition. Some houses have their photos in different directions. One house has its own card consists these information and these attributes were created into a house data base. Site maps of all houses were created with the same coordinates system as parcel maps, topographic maps, sewage maps, and city planning maps. Visual Basic.NET, Visual C#.NET have been implemented to develop computer programs for house information inquiry and maps overlay among house maps and other GIS map layers. Remote sensing techniques have been implemented to generate the background information of a single house in the past 15 years. Digital orthophoto maps at a scale of 1:5000 overlay with house site maps are very useful in determination of a house was there or not for a given year. Satellite images if their resolutions good enough are also very useful in this type of daily government operations. The developed house management systems can work with commercial GIS software such as ArcView and ArcPad. Remote sensing provided image information of a single house whether it was there or not in a given year. GIS provided overlay and inquiry functions to automatically extract attributes of a given house by ownership, address, and so on when certain house management prescriptions have to be made by government agency. File format is the key component that makes remote sensing and GIS integration smoothly. The developed house management systems are user friendly and can be modified to meet needs encountered in a single task of a government technician.
-
In recent years, urban development has expanded rapidly in Nawabshah City of Pakistan. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. The core objective of this study are to provide time-series information to define and measure the urban land cover changes of Nawabshah, Pakistan between the years 1992 and 2002, and to examine related urbanization impacts on air quality of the study area. Two multi-temporal Landsat images acquired in 1992 and 2002 together with standard topographical maps to measure land cover changes were used in this study. The image processing and data manipulation were conducted using algorithms supplied with the ERDAS Imagine software. An unsupervised classification approach, which uses a minimum spectral distance to assign pixels to clusters, was used with the overall accuracy ranging from 84 percent to 92 percent. Land cover statistics demonstrate that during the study period (1992-2002) extensive transformation of barren and vegetated lands into urban land have taken place in Nawabshah City. Results revealed that land cover changes due to urbanization has not only contaminated the air quality of the study area but also raised the health concerns for the local residents.
-
Although flood is a very common natural disaster in Bangladesh, recently Dhaka, the capital city of Bangladesh got flooded even in moderate rainfall. Accordingly, on January 2002 the sale and use of polythene bags were banned, by identifying it as one of the main causes for such flooding. Now the question arises, whether only polythene shopping bags are alone responsible for causing water logging problem. Accordingly, the objective of this study is to detect the reason(s) for the recent prolonged water logging problem in Dhaka City, even by small amount of rainfall. Both contingent valuation method and remote sensing technique were used for comparison of the results. The results of the study indicated that, not only polythene bags, but also unplanned land filling is also liable for creating water logging problem in Dhaka City. Finally, the study suggested that, the value of wetlands lost, which is directly related to the recent water logging problem, is more higher than what actually thought by the citizens of Dhaka City.
-
In order for the evaluation and analysis of the spring drought which has been periodically occurring in Korean peninsula since 2000, the use of satellite image data is increasing to investigate temporal and spatial characteristics of the drought areas. The recent spring droughts in south Korea have some characteristics. It last for short period in spring when the activity of vegetation is not lively and it have large areal deviation in the severity of drought. In this study, considering the characteristics of the spring drought in Korean peninsular, the MODIS satellite image data which has superior spatial and radiometric resolutions was used for the analysis of the spring drought. In two basins having different spatial characteristics, the drought events were selected and their severities were analyzed using the MODIS NDVI, LSWI, and daily rainfall data since 2000, and the spatial characteristics of the drought area were analyzed using the DEM, land cover, and digital forest map of the study areas.
-
Recently, the terrestrial laser scanner is considered as useful measurement equipment for acquiring a three-dimensional data. In this study, a terrestrial laser scanner which has +/- 2.5cm accuracy is examined whether the terrestrial laser scanner is reliable to present the tendency of landslide movement. The test area is covered by protection blocks, and they are being moved by landslide movement. Landslide movement was detected by measuring the movement of protection blocks. Totally three scenes of test area were acquired during 2004 and 2006. The three scenes of the protection blocks were registered in global coordinate system, then the landslide movement was investigated. The landslide movement detected in the three scenes was evaluated by comparing with landslide movement measured by a total station. Although the measurement accuracy of landslide using the terrestrial laser scanner was worse than the total station, the scanning data showed the tendency of landslide movement of the test area.
-
College GIS and remote sensing education usually consists of commercial software packages implementations in the classroom. Computer programming is quite important when college graduates work in private or public sectors relevant with GIS and remote sensing implementations. The objective of this paper was to develop a valley management system which implements GIS and remote sensing as the key components for education. The Valley Authority is entitled with water resource protection for sustainable drinking water supply of the second largest city in Taiwan. The test area consists of three different government agencies, Forest Service, EPA, and Water Resource Agency. Materials were provided by the Valley Authority in ArcGIS file format. MapObjects have made the GIS development process much easier. Remote sensing with image manipulation functions were provided by computer programming with Visual Baisc.NET and Visual C#.NET. Attributes inquiry are performed by these two computer languages as well. ArcGIS and ArcPad are also used for simple GIS manipulations of the test area. Comparison between DIY and commercial GIS can be made by college students. Functions provided by the developed valley management system depending on how many map layers have been used and what types of MapObjects components have been used. Computer programming experience is not essential but can be helpful for a college student. The whole process is a step-by-step sequence which college students can modify to depict their capability in GIS and remote sensing. The development process has gone through one semester, three hours every week in 18 weeks. College students enrolled in this class entitled with GIS showed remarkable progresses both in GIS and remote sensing.
-
In this paper, we developed a forest fire detection algorithm which uses a regression function between NDVI and land surface temperature. Previous detection algorithms use the land surface temperature as a main factor to discriminate fire pixels from non-fire pixels. These algorithms assume that the surface temperatures of non-fire pixels are intrinsically analogous and obey Gaussian normal distribution, regardless of land surface types and conditions. And the temperature thresholds for detecting fire pixels are derived from the statistical distribution of non-fire pixels’ temperature using heuristic methods. This assumption makes the temperature distribution of non-fire pixels very diverse and sometimes slightly overlapped with that of fire pixel. So, sometimes there occur omission errors in the cases of small fires. To ease such problem somewhat, we separated non-fire pixels into each land cover type by clustering algorithm and calculated the residuals between the temperature of a pixel under examination whether fire pixel or not and estimated temperature of the pixel using the linear regression between surface temperature and NDVI. As a result, this algorithm could modify the temperature threshold considering land types and conditions and showed improved detection accuracy.
-
Usually to achieve precise geolocation of satellite images, we need to get GCPs (Ground control points) from individual scenes. This requirement greatly increases the cost and processing time for satellite mapping. In this article, we focus on finding appropriate sensor models for entire image strips composing of several adjacent scenes. We tested the feasibility of modelling whole satellite image strips by establishing sensor models of one scene with GCPs and by applying the models to neighboring scenes without GCPs. For this, we developed two types of sensor models: collinearity-based type and orbit-based type and tested them using different sets of unknowns. Results indicated that although the performance of two types was very similar, for modelling individual scenes, it was not for modelling the whole strips. Moreover, the performance of sensor models was remarkably sensitive to different sets of unknowns. It was found that the orbit-based model using attitude biases as unknowns can be used to model SPOT image strips of 420 Km in length.
-
Augustine volcano is an active stratovolcano located southwest of Anchorage, Alaska. Augustine volcano experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. To measure ground surface deformation of Augustine volcano, we applied satellite radar interferometry with ERS-1/2 and ENVISAT SAR images acquired from three descending and three ascending satellite tracks. Multiple interferograms are stacked to reduce artifacts due to changes in atmospheric condition and retrieve temporal deformation sequence. For this, we used Least Square (LS) method for reducing atmospheric effects and Singular Value Decomposition (SVD) method for the retrieval of a temporal deformation sequence. Interferograms before 2006 eruption show about 3 cm/year subsidence by contraction of pyroclastic flow deposits from the 1986 eruption. Interferograms during 2006 eruption do not show significant deformation around volcano crater. Interferograms after 2006 eruption show again a several cm subsidence by compaction and contraction of pyroclastic flow deposits for a few months. This study demonstrates that satellite radar interferometry can monitor deformation of Augustine volcano to help understand the magma plumbing system driving surface deformation.
-
High resolution satellite imagery is regarded as one of the important data sets to engineering application, as well as conventional scientific application. However, despite this general view, there are a few target applications using this information. In this study, the possibility for the future wide uses in associated with smart graphics of this information is investigated. The concept of smart graphics can be termed intelligent graphics with XML-based structure and knowledge related to semantic web, which is a useful component for the data dissemination framework model in a multi-layered web-based application. In the first step in this study, high resolution imagery is transformed to GML (Geographic Markup Language)-based structure with attribute schema and geo-references. In the second, this information is linked with GIS data sets, and this fused data set is represented in the X3D (eXtensible 3D), ISO-based web 3D graphic standard, with styling attributes, in the next stop. The main advantages of this approach using GML and X3D are the flourished representations of a source data according to user/clients’ needs and structured 3D visualization linked with other XML-based application. As for the demonstration of this scheme, 3D urban modelling case with actual data sets is presented.
-
Timber inventory management includes to measure and update forest attributes, which is crucial information for private companies and public organizations in property assessment and environment monitoring. Field measurement would be accurate, but time-consuming and inefficient. For the reason, remote sensing technology has been an alternative to field measurement from an economic perspective. Among several sensors, LiDAR and Radar interferometry are known for their efficiency for forest monitoring because they are less influenced by weather and light conditions, and provide reasonably accurate vertical/horizontal measurement for a large area in a short period. For example, Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED) in the U.S. can provide tree height information and DSM. On the other hand, LiDAR DSM (the first return) and DEM (the last return) can also present tree height estimation. With respect to project site of loblolly pine plantation in Louisiana in the U.S., the accuracy of SRTM C-Band approach estimating tree height was assessed by the LiDAR approaches. In addition, SRTM X-Band and NED were also compared with the results. Plantation year in inventory GIS, which is directly related to forest age, is high correlated with the difference between SRTM C-Band and NED. As a byproduct, several stands of age mismatch could be recognized using an outlier detection algorithm, and optical satellite image (ETM+) were used to verify the mismatch. The findings of this study were (1) the confirmation of usefulness of the SRTM DSM for forest monitoring and (2) Multi-sensors- Radar, LiDAR, ETM+, MODIS can be used for accuracy improvement of forest inventory GIS altogether.
-
Image co-registration is the process of overlaying two images of the same scene. One of which is a reference image, while the other (sensed image) is geometrically transformed to the one. Numerous methods were developed for the automated image co-registration and it is known as a time-consuming and/or computation-intensive procedure. In order to improve efficiency and effectiveness of the co-registration of satellite imagery, this paper proposes a pre-qualified area matching, which is composed of feature extraction with Laplacian filter and area matching algorithm using correlation coefficient. Moreover, to improve the accuracy of co-registration, the outliers in the initial matching point should be removed. For this, two outlier detection techniques of studentized residual and modified RANSAC algorithm are used in this study. Three pairs of Landsat images were used for performance test, and the results were compared and evaluated in terms of robustness and efficiency.
-
Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.
-
This study is to apply QuickBird satellite image for the simulation of storm runoff in a small rural watershed. For a 1.05
$km^2$ watershed located in Goesan-Gun of Chungbuk Province, the land use from the QuickBird image was produced by on-screening digitising after ortho-rectifying using 2 m DEM. For 3 cases of land use, soil and elevation scale (1:5,000, 1:25,000 and 1:50,000), SCS (Soil Conservation Service)-CN (Curve Number) and the watershed physical parameters were prepared for the storm runoff model, HEC-HMS (Hydrological Modelling System). The model was evaluated for each case and compared the simulated results with couple of selected storm events. -
Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results. ┌阀 䭏佈䉌ᔀ鳪떭臬隑駭验耀
-
In this paper the advanced method of geodesic active contours was developed for the task of building detection from aerial and satellite images. Automatic extraction of man-made structures including buildings, building blocks or roads from remote sensing data is useful for land use mapping, scene understanding, robotic navigation, image retrieval, surveillance, emergency management procedures, cadastral etc. A level set method based on a region-driven segmentation model was implemented with which building boundaries were detected, through this curve propagation technique. The essence of this approach is to optimize the position and the geometric form of the curve by measuring information along that curve, and within the regions that compose the image partition. To this end, one can consider uniform intensities inside objects and the background. Thus, given an initial position of the curve, one can determine global, region-driven functions and provide a statistical description of the inside and outside object area. The calculus of variations and a gradient descent method was used to optimize the variational functional by an iterative steady state process. Experimental results demonstrate the potential of the proposed processing scheme.
-
By introducing Web Services, distributed GIS services from different vendors can be dynamically integrated into a GIS application using the interoperable standard SOAP protocol. However, it is debatable whether SOAP can really meet the performance requirements of GIS. This paper presents an experimental evaluation of the performance of different SOAP variants: standard SOAP, SwA/MIME, and SOAP/MTOM. The objective of this paper is to demonstrate that SOAP performance in communicating large volumes of GIS data could be effectively improved by recent standards. Moreover, SOAP/MTOM is identified to be the fastest and the most efficient messaging protocol.
-
Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral data. In this study, we attempted to generate the water vapor contents image from hyperspectral data itself and developed the atmospheric correction algorithm for EO-1 Hyperion data using pre-calculated atmospheric look-up-table (LUT) for fast processing. To apply the new atmospheric correction algorithm, Hyperion data acquired June 3, 2001 over Seoul area is used. Reflectance spectrums of various targets on atmospheric corrected Hyperion reflectance images showed the general spectral pattern although there must be further development to reduce the spectral noise.
-
Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.
-
Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.
-
Three main important sources for establishing GIS are the orthomap in scale 1:5 000 with Ground Sampling Distance of 0,5m; DEM/DTM data with height error of
${\pm}$ 1,0m and topographic map in scale 1: 10 000. The new era with Very High Resolution Satellite (VHRS) images as IKONOS, QuickBird, EROS, OrbView and other ones having Ground Sampling Distance (GSD) even lower than 1m has been in potential for producing orthomap in large scale 1:5 000, to update existing maps, to compile general-purpose or thematic maps and for GIS. The accuracy of orthomap generated from VHRS image affects strongly on GIS reliability. Nevertheless, orthomap accuracy taken from VHRS image is at first dependent on chosen sensor geometrical models. This paper presents, at fist, theoretical basic of the Rational Polynomial Coefficient (RPC) model installed in the commercial ImageStation Systems, realized for orthorectifying VHRS images. The RPC model of VHRS image is a replacement camera mode that represents the indirect relation between terrain and its image acquired on the flight orbit. At the end of this paper the practical accuracies of IKONOS and QuickBird image orthorectified by RPC model on Canadian PCI Geomatica System have been presented. They are important indication for practical application of producing digital orthomaps. -
Regression of conventional prediction techniques in data mining uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to time series, the rate of prediction accuracy will be decreased. This paper proposes an incremental regression for time series prediction like typhoon track prediction. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of typhoon track prediction experiment are performed by the proposed technique IMLR(Incremental Multiple Linear Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).
-
The intensity-hue-saturation (IHS) technique has become a standard procedure in image analysis. It enhances the colour of highly correlated data. Unfortunately, IHS technique is sensitive to the properties of the analyzed area and usually faces colour distortion problems in the fused process. This paper explores the relationship of colour between before and after the fused process and the change in colour space of images. Subsequently, the fused colours are transformed back into the 'simulative' true colours by the following steps: (1) For each pixel of fused image that match with original pixel (of the coarse spectral resolution image) is transformed back to the true colour of original pixel. (2) The value for interpolating pixels is compensated to preserve the DN ratio between the original pixel and it's vicinity. The 'compensative matrix' is constructed by the DN of fused images and simulation of scaling process. An illustrative example of a Landsat and SPOT fused image also demonstrates the simulative true colour fusion methods.
-
This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.
-
Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).
-
Infrared channels of newly launched Japanese geostationary satellite, MTSAT-1R are compared with well calibrated MODIS/Terra infrared measurements at 3.7, 6.7, 11, 12
${\mu}m$ bands. There are four steps in this intercalibration method: 1) data collection, 2) spectral response function correction, 3) data collocation, and 4) calculation of mean bias and conversion coefficients. In order to minimize the navigation error of MTSAT-1R, comparisons are made over the area in which the viewing angle of MTSAT-1R is less than 50$^{\circ}$ . The calibration method was tested for August 2005 and within the 40$^{\circ}N$ -40$^{\circ}S$ , 100$^{\circ}$ E-180$^{\circ}$ E domain. The differences of spectral response functions were corrected through radiative transfer model simulation. Constructing collocated data differences in viewing geometry, observation time and space were taken into account. In order to avoid the radiance variation induced by cloud presence, clear-sky targets are selected as intercalibration target. The mean biases of 11, 12, 6.7, and 3.7${\mu}m$ bands are about -0.16, 0.36, 1.31, and -6.69 K, suggesting that accuracies of 3.7${\mu}m$ is questionable while other channels are comparable to MODIS -
Surface Solar Insolation is important for vegetation productivity, hydrology, crop growth, etc. In this study, Surface Solar Insolation is estimated using Multi-functional Transport Satellite (MTSAT-1R) in clear and cloudy conditions. For the Cloudy sky cases, the surface solar insolation is estimated by taking into account the cloud transmittance and multiple scattering between cloud and surface. This model integrated Kawamura's model and SMAC code computes surface solar insolation with a 5km
${\times}$ 5km spatial resolution in hourly basis. The daily value is derived from the available hourly Surface Solar Insolation, independently for every pixel. To validation, this study uses ground truth data recorded from the pyranometer installed by the Korea Meteorological Agency (KMA). The validation of estimated value is performed through a match-up with ground truth. Various match-up with ground truth. Various match-up window sizes are tested with 3${\times}$ 3, 5${\times}$ 5, 7${\times}$ 7, 9${\times}$ 9, 10${\times}$ 10, 11${\times}$ 11, 13${\times}$ 13 pixels to define the spatial representativity of pyranometer measurement, and to consider drifting clouds from adjacent pixels across the ground station during the averaging interval of 1 hour are taken into account. -
Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7
${\mu}m$ ) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method). -
Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at 0.65
${\mu}m$ $(R_{0.65})$ and the difference in brightness temperature between 3.7${\mu}m$ and 11${\mu}m$ $(T_{3.7-11})$ . In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at 3.7${\mu}m$ $(T_{3.7})$ , the temperature at 11${\mu}m$ $(T_{11})$ , and$T_{3.7-11}$ for day and night. The$R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the nine airport areas except the Cheongju airport have revealed the accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog. -
Radiative transfer modeling of ice clouds is developed. Ice clouds located near tropopause reflect most of sunlight, thus atmospheric and surface effects can be minimized. Cloud properties such as cloud optical thickness (COT) and effective radius are important parameters to determine the magnitude of reflectance, while atmospheric and surface parameters rarely affect reflectance value. For selected homogeneous cloud pixels of MODerate Resolution Imaging Spectroradiometer (MODIS) observation, reflectances are calculated using MODIS cloud products as inputs of radiative transfer model (RTM). For three types of phase function (Henyey-Greenstein, Garcia-Siewert, Baum) calculated reflectances are compared with observations for validation. All cases show linear relationship between simulated values and measured values, however each represent different bias and slope. The result shows that phase function determine angular distribution of reflectance.
-
The geostrophic current component is estimated from the sea surface velocity observed by the long-range High-Frequency Ocean Radar (HF radar) system in the upstream of the Kuroshio, by comparing with geostrophic velocity determined from along-track T/P and Jason-1 altimetry data. However, the sea surface velocity of the HF radar (HF velocity) contains not only the geostrophic current but also the ageostrophic current such as tidal current and wind-driven Ekman current. Tidal current component is first extracted by the harmonic analysis of the time series of the HF velocity. Then, the Ekman current is further estimated from daily wind data of IFREMER by applying the least-square method to the residual difference between the HF velocity and the altimetry geostrophic velocity. As a result, the Ekman current in the HF velocity is estimated as 1.32 % of the wind speed and as rotated 45
$^{\circ}$ clockwise to the wind direction. These parameters are found almost common in the Kuroshio area and in the Open Ocean. After these corrections, the geostrophic velocity component in the HF velocity agrees well with the altimetry geostrophic velocity. -
Mangrove crowns were delineated using active sensor LIDAR (LIght Detection And Ranging) data by a crown delineating model developed in this study. LIDAR data were acquired from airborne survey by a helicopter for the estuary of Macouria in the northeast coast of French Guiana. The canopy height image was derived from LIDAR vector data by calculating the difference between ground and non-ground data. The mangrove site in the study area was classified to three sectors by the time of mangrove settlement; Mangrove 1986, 2002 and 2003. The estimated crown of Mangrove 1986 was reliable defined for their size, number and volume because of larger crown size and bigger variation of crown height. The tree crown size of Mangrove 2002 and 2003 by the model was overestimated and the number of trees was much underestimated. The estimated crown was not for single crown but a crown group due to homogenous crown height and spatial resolution of LIDAR data. However the canopy height image derived from LIDAR data provided three-dimensional information of mangroves.
-
Sushkevich, Tamara A.;Strelkov, Sergey A.;Volkovich, Alexander N.;Kulikov, Alexey K.;Maksakova, Sveta V. 680
A one-dimensional planar model is considered of the atmosphere with multi-layer clouds illuminated by a mono-directional parallel flux of solar radiation. A new approach is proposed to radiation transfer modeling and daylight background formation for the atmosphere with such clouds that is represented as a heterogeneous multi-layer system each layer of which is described by different optical characteristics. The influence functions of each layer are determined by solutions of the radiation transfer boundary problem with an external monodirectional wide flux while the contribution of multiple scattering and absorption in the layer is taking into account. -
Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.
-
The current system of the East China Sea, a marginal sea in the northwest Pacific, has a seasonal variation. The Changjiang Diluted Water, Chinese coastal water in the East China Sea, has different seasonal paths. It flows southward along the Chinese coast within a narrow band in winter and does northeastward the Korea/Tsushima Strait in summer, which has been a subject to many researchers. In particular, low salinity in the South Sea of Korea in 1996 and 1998 was in discord with the Changjiang River discharge and the Changjiang Diluted Water seems to play an important role in occurrence of red tide in the South Sea of Korea in 1997 and on the contrary, disappearance in the next year. These facts suggested that the Changjiang Diluted Water does not flow along the same path in every summer. According to the analyses for path of the Changjiang Diluted Water using ocean color images by SeaWiFS and salinity observations by shipboard CTD in August for recent years, the Changjiang Diluted Water in summer flowed within the range of direction from southeastward to north-northeastward anticlockwise. However, the Changjiang Diluted Water flowed northeastward toward Jeju Island of Korea for the most part. It is necessary to examine the influence of major factors on path variability of the CDW in summer such as surface wind, the Changjiang River discharge and background current.
-
X-SAR images taken on the coastal waters of Hwanghe province in Korea during SIR-C/X-SAR campaign in April and October 1994 are analysed. The SAR images show the peculiar signatures like nail marks, curved long string, and vortex streets patterns and they all seem to be produced by strong interactions between the topography in the coastal waters and tidal currents. The nail mark signatures are located at the same position of small scaled sand banks and the curved line patterns are almost identical to the outer boundary of large sand banks. Based on the tidal record, all the three images are taken at the almost same phase of tidal cycles, which are close to the low tide. It seems that bottom shapes are more strongly appeared on the SAR images when the tidal currents are slow. The front between two different current velocities caused by the flows along the steep boundaries of sandbanks is also the main factors imprinting the bottom features to the sea surface SAR images
-
Elshayal
$Smart{\copyright}$ software is an almost First Arabian GIS$software{\copyright}$ which completely developed by Arabian developers team and independent of any commercial software package. The software current Features are View and Edit shape files, build new layers, add existing layers, remove layers, swap layers, save layers, set layer data sources, layer properties, zoom in & zoom out, pan, identify, selecting features, invert selection, show data table, data query builder, location query builder, build network, find shortest path, print map, save map image, copy map image to clipboard, save project map, edit move vertex, edit move features, snap vertexes, set vertex XY, move settings, converting coordinate system, applying VB script, copy selected features to another layer, move selected features to another layer, delete selected features, edit data table, modify table structure, edit map features, drawing new features, GPS tracking, 3D view, etc... The software expected Features are: Viewing raster image and image geo-referencing, read other map formats such as DXF Format and Tiger Line Format. -
Remotely sensed data have been utilized efficiently for damage detection immediately after the natural disaster since they provide valuable information on land cover change due to spatial synchronization and multitemporal observation over large areas. Damage information obtained at an early stage is important for rapid emergency response and recovery works. Many useful techniques to analyze the characteristics of the pre- and post-event satellite images in large-scale damage detection have been successfully investigated for emergency management. Since high-resolution satellite images provide a wealth of information on damage occurred in urban areas, they are successfully utilized for damage detection in urban areas. In this research, a method to perform automated damage detection is proposed based on the differences of the textural characteristics in pre- and post- high resolution satellite images.
-
Change detection is a core function of remote sensing. It can be widely used in public services such as land monitoring, damage assessment from disaster, analysis of city growth, etc. However, it seems that the change detection using satellite imagery has not been fully used in public services. For the person who is in charge of public services, it seems not to be ease to implement the change detection because various functions are combined into it. So, to promote the use of the change detection in public services, the standard, the process and the method for the change detection in public services should be established. And the software which supports that will be very useful. This study aims to promote the use of satellite imagery in public services by building up the change detection process which are suitable for general public services and developing the change detection software to support the process. The software has been developed using ETRI Components for Satellite Image Processing to support the interoperability with other GIS software.
-
Cancer is one of the major causes of death; however, the survival rate can be increased if discovered at an early stage for timely treatment. According to the statistics of the World Health Organization of 2002, breast cancer was the most prevalent cancer for all cancers occurring in women worldwide, and it account for 16.8% of entire cancers inflicting Korean women today. In order to classify the type of breast cancer whether it is benign or malignant, this study was conducted with the use of the discriminant analysis and the decision tree of data mining with the breast cancer data disclosed on the web. The discriminant analysis is a statistical method to seek certain discriminant criteria and discriminant function to separate the population groups on the basis of observation values obtained from two or more population groups, and use the values obtained to allow the existing observation value to the population group thereto. The decision tree analyzes the record of data collected in the part to show it with the pattern existing in between them, namely, the combination of attribute for the characteristics of each class and make the classification model tree. Through this type of analysis, it may obtain the systematic information on the factors that cause the breast cancer in advance and prevent the risk of recurrence after the surgery.
-
The aim of this study was to analyze limestone deposits potential using an artificial neural network and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential deposits in the Gangreung area, Korea. A spatial database considering deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The factors relating to 44 limestone deposits were the geological data, geochemical data and geophysical data. These factors were used with an artificial neural network to analyze mineral potential. Each factor’s weight was determined by the back-propagation training method. Training area was applied to analyze and verify the effect of training. Then the mineral deposit potential indices were calculated using the trained back-propagation weights, and potential map was constructed from GIS data. The mineral potential map was then verified by comparison with the known mineral deposit areas. The verification result gave accuracy of 87.31% for training area.
-
The technique of the information communication are advanced recently and a performance enhance of a hand carried computing device was developed rapidly. Mobile Communication Carrier developed currently the phone navigation and are carrying out the service. But such service localizes at the vehicle movement. In This paper, we explain a system structure for the pedestrian navigation of the Wireless Internet Platform for Interoperability(WIPI) mobile phone which contains the MS-Based Global Positioning System(GPS) internally. And we verified the result to be developed by this method that proposes.
-
In this study, we predicted locations vulnerable to ground subsidence hazard using fuzzy logic and geographic information system (GIS). Test was carried out at an abandoned underground coal mine in Samcheok City, Korea. Estimation of relative ratings of eight major factors influencing subsidence and determination of effective fuzzy operators are presented. Eight major factors causing ground subsidence were extracted and constructed as a spatial database using the spatial analysis and the probability analysis functions. The eight factors include geology, slope, landuse, depth of mined tunnel, distance from mined tunnel, RMR, permeability, and depth of ground water. A frequency ratio model was applied to calculate relative rating of each factor, and the ratings were integrated using fuzzy membership function and five different fuzzy operators to produce a ground subsidence susceptibility map. The ground subsidence susceptibility map was verified by comparing it with the existing ground subsidences. The obtained susceptibility map well agreed with the actual ground subsidence areas. Especially,
${\gamma}-operator$ and algebraic product operator were the most effective among the tested fuzzy operators. -
Among many sources of soil and water pollution, former mining regions also play an important role in distribution and scope of pollution. In response, KMRC has made an investigation into the status mine hazard at the abandoned metalliferous mine area in Korea. In this study, we analyzed distribution of mine hazards at abandoned metalliferous mines using GIS. We considered the distribution of mine hazards and its magnitude for each abandoned mine and displayed the mine hazard index (MHI) using GIS. We divided the MHI value for each mine into 5 classes, and displayed the first class as smallest point symbol and the last class as biggest point symbol. The biggest symbol shows the most serious status of mine hazards. This GIS function was included in the AMGIS system KMRS are running, and it would be helpful to make decision of reclamation priority at abandoned metalliferous mine area.
-
The development of GIS and Location-Based Services requires a high-level database that will be able to allow real-time access to moving objects for spatial and temporal operations. MODB.MM is able to meet these requirements quite adequately, providing operations with the abilities of acquiring, storing, and querying large-scale moving objects. It enables a dynamic and diverse query mechanism, including searches by region, trajectory, and temporal location of a large number of moving objects that may change their locations with time variation. Furthermore, MODB.MM is designed to allow for performance upon main memory and the system supports the migration on out-of-date data from main memory to disk. We define the particular query for truncation of moving objects data and design two migration methods so as to operate the main memory moving objects database system and file-based location storage system with.
-
Ground subsidence near abandoned underground coal mines has become a serious social problem in Korea. The purpose of this study is to perform a comparative analysis between the ground subsidence area and the electrical resistivity measured by field survey at Samcheok City. A raster database composed of ground subsidence areas and electrical resistivity data was constructed for GIS. To analyze correlation between the two constructed raster datasets, we used a frequency ratio model. The results show that low and high electrical resistivity anomaly zones coincide with the existing subsidence areas. We infer that the high anomaly zone means saturated and low anomaly zone means vacant. It suggests that electrical resistivity might be a useful factor for analyzing ground subsidence hazard zone.
-
Downtown cities in Japan are facing sharp fall in customers and continued shut down of shops due to decrease of population, increase in family cars and flowing of customers into the suburban large-scale retail stores. Omura City in Nagasaki Prefecture, Japan is no exception to this. For the revitalization of the downtown, many actions have been taken to open the vacant shops. However, transportation problem is the most important one to be solved for the citizens including the elderly people having difficulty in movement. Accordingly, this study was aimed at the revitalization of the downtown by substantiality public transportation. We have attempted to develop routes from the view-point of convenience by using Analytic Hierarchy Process (AHP) and Geographic Information Systems (GIS). As a result of the study, we were able to select three bus transportation areas by incorporating qualitative factors into the analysis. Finally, the study concluded that, revitalization activities of the downtown city itself is required in addition to re-structuring of bus transportation system for the revitalization of the downtown city.
-
While hyperspectral data are very rich in information, their processing poses several challenges such as computational requirements, noise removal and relevant information extraction. In this paper, the application of advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool, consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the effectiveness of the developed scale space filtering for the enhancement and smoothing of hyperspectral remote sensing data and their advantage against watershed over-segmentation problems and edge detection.
-
Chang, Yi;Shimada, Theruhisa;Sakaida, Futoki;Kawamura, Hiroshi;Chan, Jui-Wen;Liu, Dong-Chan;Lee, Ming-An 740
We identify two distinct finer-scale frontal bands: 'Mainland China Coastal Front' (MCCF) and 'Kuroshio Front' (KF). The MCCF is along the 50-m isobath with large temperature gradient. The front is a boundary between the Mainland China Coastal Current and the offshore shelf waters. On the other hand, the KF is extending from the northeastern coast of Taiwan toward the northeast and into the shelf of south ECS. It forms a broad semicircle-shape and curving along 100-m isobath, it also deviates from eastward at around 26.5N-122E and leaves the shelf of ECS. This front should be the boundary between the Kuroshio water and the other shelf waters. -
The sea level of the Java Sea is reproduced using HYbrid Coordinate Ocean Model (HYCOM) setting up in the horizontal grid from
$100^{\circ}E$ to$125^{\circ}E$ and from$10^{\circ}S$ to$8^{\circ}N$ . The model is initialized by ocean temperature and salinity profiles from Levitus 1998 and forced by the atmospheric field derived from NCEP reanalysis. In this research HYCOM is applied to explain the El$Ni{\tilde{n}}o$ Southern Oscillation (ENSO) impacts on the sea level of the Java Sea. The monthly tide gauge sea level data are produced based on hourly sea level data from 1993 to 1997. Altimeter sea level data are based on weekly merged products between TOPEX/Poseidon and ERS absolute dynamic topography (ADT). The simulated sea level both HYCOM and ADT agree well with the tide gauge sea level. The sea level of the Java Sea is high during the La$Ni{\tilde{n}}a$ period and low during the El$Ni{\tilde{n}}o$ period. -
Positioning accuracy by the Global Positioning System (GPS) is of great concern in a variety of research tasks. It is limited due to error sources such as ionospheric effect, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric influence. In this study, the tropospheric influence, primarily due to water vapour inhomogeneity, on GPS positioning height is investigated. The data collected by the GPS receivers along with co-located surface meteorological instruments in 2003 are utilized. The GPS receivers are established as continuously operating reference stations by the Ministry of the Interior (MOI), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) of Taiwan, and International GNSS Service (IGS). The total number of GPS receivers is 21. The surface meteorological measurements include temperature, pressure, and humidity. They are introduced to GPS data processing with 24 troposphere parameters for the station heights, which are compared with those obtained without a priori knowledge of surface meteorological measurements. The results suggest that surface meteorological measurements have an expected impact on the GPS height. The daily correction maximum with the meteorological effect may be as large as 9.3 mm for the cases of concern.
-
Evaportranspiration is an important factor in hydrology cycle. Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportranspiration over a regional area. With the advent of improved remote sensing technology, it becomes a surface parameter of research interest in the field of remote sensing. Airborne and satellite imagery are utilized in this study. The high resolution airborne images include visible, near infrared, and thermal infrared bands and the satellite images are acquired by MODIS. Surface heat fluxes such as latent heat flux and sensible heat flux are estimate by using airborne and satellite images with surface meteorological measurements. We develop a new method to estimate the evaportranspiration over the rice paddy. The surface heat fluxes are initialized with a surface energy balance concept and iterated for convergent solution with atmospheric correct functions associated with aerodynamic resistance of heat transport. Furthermore, we redistribute the total net energy into sensible heat and latent heat fluxes. The result reveals that radiation and evaporation controlled extremes can be properly decided with both airborne and satellite images. The correlation coefficient of latent heat flux and sensible heat flux with corresponding in situ observations are 0.66 and 0.76, respectively. The relative root mean squared errors (RMSEs) for latent heat flux and sensible heat flux are 97.81
$(W/m^2)$ and 124.33$(W/m^2)$ , respectively. It is also shown that the newly developed retrieval scheme performs well when it is tested by using MODIS date. -
The ocean tide loading (OTL) is an important factor for the GPS positioning, especially in the height direction. The shorter of the distance to the ocean, the larger of the error by the OTL. The influence will be changed when we measure in different place and the order of magnitude is from few centimeters to ten centimeters. In this study, more than ten kinds of the OTL models were collected and applied on the GPS static relative positioning in Taiwan. The GPS observations including five stations were obtained from Nov. 9, 2004 to Feb. 23, 2005 and we used the Bernese GPS software to execute the data processing. In this period, the average amplitudes of the 3-D coordinates are as follows: N is 0.4 cm, E is 0.7 cm, h is 1.8 cm at Kinmen station; N is 0.7 cm, E is 1.3 cm, h is 2.3 cm at Lanyu station; N is 0.5 cm, E is 0.7 cm, h is 2.0 cm at Matsu station; N is 0.6 cm, E is 0.6 cm, h is 2.0 cm at Penghu station and N is 0.5 cm, E is 1.2 cm, h is 1.7 cm at Hsinchu station. Moreover, we will analyze the advantage and disadvantage of every kind of the OTL models in different environments to offer some information to the GPS users and enhance the precision of the GPS positioning.
-
In this paper, a small portion of coastline on the EAST SEA was studied using CORONA panoramic satellite photo and 1:5000 Korean National Topographic Map. The project site near Kangneung city was 3 Km shoreline on the Kangmoon Beach and the SongJeong Beach, which have suffered from severe erosion. The first and the most important step was to rectify a CORONA image over the project site. A rigid mathematical model and a heuristic polynomial transformation were used for the purpose. The rectified image was overlaid with 1:5000 Korean National Topographic Map produced by aerial mapping. Among numerous methods for shoreline erosion measurement, area-based approach was chosen and used for the computation for annual shoreline recession. The final result of the analysis was that the average recession in the period of 1963-1998 was 33.6m and the annual rate was 0.96m.
-
It can be important framework data to monitor the change of land-use pattern of river boundary in design and management of river. This study analyzed the change of land-use pattern of Gab- and Yudeung River using time-series aerial images. To do this, we carried out radiation and geometric correction of image, and estimated land-use changes in inland and floodplain. As the analysis of inland, the ratio of residential, commercial, industrial, educational and public area, that is urbanized element, increases, but that of agricultural area shows a decline on the basis of 1990. Also, Minimum Distance Method, which is a kind of supervised classification method, is applied to extract water-body and sand bar layer in floodplain. As the analysis of land-use, the ratio of level-upped riverside land and water-body increases, but that of sand bar decreases. These time-series land use information can be important decision making data to evaluate the urbanization of river boundary, and especially it gives us goodness in river development project such as the composition of ecological habitat.
-
In WSN(Wireless Sensor Network) environment, a large amount of sensors, which are small and heterogeneous, generates data stream successively in physical space. These sensors are composed of measured data and metadata. Metadata includes various features such as location, sampling time, measurement unit, and their types. Until now, wireless sensors have been managed with individual specification, not the explicit standardization of metadata, so it is difficult to collect and communicate between heterogeneous sensors. To solve this problem, OGC(Open Geospatial Consortium) has proposed a SensorML(Sensor Model Language) which can manage metadata of heterogeneous sensors with unique format. In this paper, we introduce a metadata model using SensorML specification to manage various sensors, which are distributed in a wide scope. In addition, we implement the metadata management module applied to the sensor data stream management system. We provide many functions, namely generating metadata file, registering and storing them according to definition of SensorML.
-
A METHOD FOR ADJUSTING ADAPTIVELY THE WEIGHT OF FEATURE IN MULTI-DIMENSIONAL FEATURE VECTOR MATCHINGMuilti-dimensional feature vector matching algorithm uses multiple features such as intensity, gradient, variance, first or second derivative of a pixel to find correspondence pixels in stereo images. In this paper, we proposed a new method for adjusting automatically the weight of feature in multi-dimensional feature vector matching considering sharpeness of a pixel in feature vector distance curve. The sharpeness consists of minimum and maximum vector distances of a small window mask. In the experiment we used IKONOS satellite stereo imagery and obtained accurate matching results comparable to the manual weight-adjusting method.
-
KOMPSAT-5 that will be launched at the end of 2008 has a SAR (Synthetic Aperture Radar) payload. Since the Calibration and Validation of a satellite SAR is different from a passive optical camera as KOMPSAT-2 MSC and KOMPSAT-3 payload, we have started from the basis of SAR system. Firstly, the general SAR Cal/Val parameters have been gathered and defined. Secondly, we have been choosing the Cal/Val parameters suitable to KOMPSAT-5. Thirdly, the methods of SAR Cal/Val with the parameters have been studied. Fourthly, the requirement of Cal/Val devices and Cal/Val site has been studied.
-
The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.
-
Dual-polarized transmission is one of the effective methods to transmit such a high speed data thanks to two independent channel leads to the orthogonal feature between RHCP (Right-Hand Circular Polarization) and LHCP (Left-Hand Circular Polarization). However, in practical case, the transmitted signal by RHCP polarized antenna in satellite can be occurred at the output port of LHCP polarized antenna in ground station, vice versa. XPD (Cross-Polarization Discrimination) is the ratio of the signal level at the output of a receiving antenna that is nominally co-polarized to the transmitting antenna to the output of a receiving antenna of the same gain but nominally orthogonally polarized to the transmitting antenna. In this paper, the detailed estimation of XPD within the interface between satellite and ground station is written and the influence of XPD to link performance is also described.
-
The algorithm of calculating NUC table, based on Image data collection, is based on two basic assumptions. These basic assumptions are as follow: one is the NUC is of a linear nature. The other is all pixel see the same statistical distribution for large number of lines. We generated NUC tables for a radiometric calibration & validation of KOMPSAT-2 using a dark cal. Data.
-
In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper
-
This study investigated the Brightness Temperature Difference threshold as criterion between aerosols and clouds in conjunction with radiative transfer model. Surface temperature is caused by a significant error over 50% in the BTD threshold. In addition, The BTD threshold contains the uncertainties about 20% due to the surface emissivity and 8% due to the satellite zenith angle. Therefore, we have composed the Look-up table for BTD between 11㎛and 12㎛ according to satellite zenith angle, surface temperature, and surface emissivity. The modified BTD show the enhanced signal, especially over bright surface such as desert in China. However, a weak aerosol signal over Ocean remains in the modified BTD.
-
The Electro-optical camera subsystem as a payload of a satellite system consists of OM (optical module) and CEU(camera electronics unit), and most performances of the camera subsystem depend a lot on the CEU in which TDI CCDs(Time Delayed Integration Charge Coupled Device) take the main role of imaging by converting the light intensity into measurable voltage signal. Therefore it is required to specify and design the CEU very carefully at the early stage of development with overall specifications, design considerations, calibration definition, test methods for key performance parameters. This paper describes the overview of CEU development. It lists key requirement characteristics of CEU hardware and design considerations. It also describes what kinds of calibration are required for the CEU and defines the test and evaluation conditions in verifying requirement specifications of the CEU, which are used during acceptance test, considering the fact that CEU performance results change a lot depending on test and evaluation conditions such as operational line rate, TDI level, and light intensity level, so on.
-
The Space-borne electro-optical camera system, like KOMPSAT has panchromatic redundant image channel as well as primary channel in order to increase reliability of satellite system. In most case redundant channel never been used during the whole mission period. Staggered array configuration using redundant image channel and new operation mode proposed which operates primary and redundant channel simultaneously. Without new hardware design, fast electronics and system complexity, we can get 1.414 times more fine GSD image of original system and aliasing effect which corrupt high frequency information of image can be minimized. To get the more efficiency from staggered array configuration, we introduce masked pixel CCD.
-
The SRI(Super Resolution Imager) with 800mm aperture primary mirror is the ground development model of the high resolution satellite camera. The SRI focal plane electronics including detector array generates the data for high-resolution images by converting incoming light into digital stream of pixel data. Since the focal plane including a detector is the basic building block of the camera system, the main system performances is directly determined by its performance. This paper measures the SRI focal plane electronics’ performance such as the dark signal, the dark signal noise, the linearity, the PRNU(Photo Response Non-Uniformity), the SNR(Signal to Noise Ratio) and the sensor saturation capability. In addition, this paper verifies the various functionalities of the SRI focal plane electronics. The electrical test equipment with the specialized software and the optical test equipments such as the integrating sphere, the rotation stage and the target are implemented and used to verify these functionalities and performances.
-
The KOMPSAT-2 was developed by KARI and it was successfully launched from Plesetsk, Russia on 28th July 2006. The Korean government decided the commercialization of the KOMPSAT-2 image data and direct reception services worldwide. SPOT Image, based in Toulouse (France) was selected by KARI through an international open bidding as a foreign company for the KOMPSAT-2 image promotion over the entire world except the territory of Republic of Korea including the North Korea, the United States of America, UAE, Saudi Arabia, Kuwait, Qatar, Oman, Yemen, Egypt, Iran, Iraq, Jordan, Lebanon, and Syria. KAI (Korea Aerospace Industry Ltd.) is an engaged Korean company for this area. KARI has responsibility to operate the satellite, data acquisition, archiving for the worldwide commercialization. For the processing and delivery of the KOMPSAT-2 image data to the users of KAI and SPOT Image, KAI has the binding contract with KARI. So KAI has the responsibility for the commercial ground station operation such as user support, data processing, and the data delivery. The KOMPSAT-2 ground station is hosted in KARI, so KARI has developed the concept of KOCUST (KOMPSAT-2 Commercial User Support Team) jointly with KAI to support the data processing and delivery as KOMPSAT-2 developer and satellite operator. The main purpose of the KOCUST is to support the operational activities to provide the data and service quality to satisfy customers. KOCUST will be organized by the members of KARI and KAI together. KARI members will mainly take the role of KOCUST coordination, data processing and user support in a public sector. KAI members are going to take user desk, data validation and delivery et cetera, which are related with users. This paper describes a summarized concepts of KOCUST like organization, dedicated tasks of each part and work flow of daily operation.
-
Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.
-
One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.
-
Nonlinear internal waves (NLIW) were studied as a unusual phenomena in the ocean decades ago. As the quality, quantity and variety of satellite images improve over decades, it is founded that NLIW is a ubiquitous phenomenon. Over the continental shelf of northern South China Sea (SCS), both optical and microwave images show that there are trains of NLIW packets near Dongsha Atoll (20.7N, 116.8E). Each packet contains several NLIW fronts. These NLIW packets are nearly parallel to each other and they are refracted, reflected or diffracted by the change of ocean bottom topography. Based on Korteweg de Vries (KdV) theory and the assumption that the bright/dark lines in the satellite images are centers of convergence/divergence of NLIW fronts, one may (1) sort NLIW packets in the same satellite image into groups of the same source, but generated at different tidal cycles, (2) relate NLIW packets in consecutive satellite images of one day apart, (3) locating faint signals of NLIW fronts in a satellite image. The NLIWs travel more than 100 km/day near Dongsha Atoll, with higher speed in deeper water. The bias and standard deviation of predicted location of NLIW front from its true location is about 1% and 5.1%, respectively.
-
The number of satellite under operation is being on the increase, however, because the number of operator is limited the reliable control system is necessary for stable mission operation. Especially it is necessary that error event indication such as colour or sound should be displayed with high reliability for intuitional monitoring. The limit range of KOBAS2 provides realistic value that is defined with in-orbit value and related document. It makes it possible for operator to monitor a number of telemetry data easily through single screen system instead of monitoring each mnemonics. The development and operation experience of KOBAS2 will contribute to the development of the evolved automatic telemetry monitoring system for future mission.
-
The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during
$31^{st}$ July to$4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code. -
NOAA/AVHRR data were used to analyze sea surface temperatures (SSTs) and thermal fronts (TFs) in the Korean seas. Temporal and spatial analyses were based on data from 1993 to 2000. Harmonic analysis revealed mean SST distributions of
$10{\sim}25^{\circ}C$ . Annual amplitudes and phases were$4{\sim}11^{\circ}C$ and$210{\sim}240^{\circ}$ , respectively. Inverse distributions of annual amplitudes and phases were found for the study seas, with the exception of the East China Sea, which is affected by the Kuroshio Current. Areas with high amplitudes (large variations in SSTs) showed 'low phases' (early maximum SST); areas with low amplitudes (small variations in SSTs) had 'high phases' (late maximum SST). Empirical orthogonal function (EOF) analyses of SSTs revealed a first-mode variance of 97.6%. Annually, greater SST variations occurred closer to the continent. Temporal components of the second mode showed higher values in 1993, 1994, and 1995. These phenomena seemed to the effect of El$Ni{\tilde{n}}o$ . The Sobel edge detection method (SEDM) delineated four fronts: the Subpolar Front (SPF) separating the northern and southern parts of the East Sea; the Kuroshio Front (KF) in the East China Sea, the South Sea Coastal Front (SSCF) in the South Sea, and a tidal front (TDF) in the West Sea. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas. EOF analysis of SST gradient values revealed the temporal and spatial variations in the TFs. The SPF and SSCF were most intense in March and October; the KF was most significant in March and May. -
Telematics, one of the so-called New Growth Engine of IT839, is a leading IT service where wireless internet service represented by information and mobility is extended to the area of transportation. To provide telematics service, Telematics service provider have to connect with various Contents Provider or Service Provide server - for example - LBSS(Location Based Service Server), ASPS(Application Service Provider Server), TELICS(TELematics Information Center Server), GMS(Geo-mobility Server), WTPS(World Telematics Protocol Server) and MAUS(Map Air Update Server). Presently, It is nearly impossible or very difficult for the company that are manufacturing and testing telematics device to develop and test telematics solution without connecting Telematics Service Provider, Service Provider, Contents Provider. And, it is very difficult to connect in TSP, CP, SP having the product to be developed. In this paper, we proposed virtual telematics service provider. The proposed Virtual Telematics Service Provider is to provide telematics services and functionalities by integrating telematics servers into TSP gateway virtually. In other words, VTSP is performs with the role of TSP, CP, SP. And the VTSP support integration of telematics servers, interfacing and monitoring between terminal and the integrated servers.
-
The aim of this study was to detect landslide using satellite image and apply the landslide to probabilistic landslide-susceptibility mapping at Gangneung area, Korea using a Geographic Information System (GIS). Landslide locations were identified by change detection technique of KOMSAT-1 (Korea Multipurpose Satellite) EOC (Electro Optical Camera) images and checked in field. For landslide-susceptibility mapping, maps of the topography, geology, soil, forest, lineaments, and land cover were constructed from the spatial data sets. Then, the sixteen factors that influence landslide occurrence were extracted from the database. Using the factors and detected landslide, the relationships were calculated using frequency ratio, one of the probabilistic model. Then, landslide-susceptibility map was drawn using the frequency ration and finally, the map was verified by comparing with existing landslide locations. As the verification result, the prediction accuracy showed 86.76%. The landslide-susceptibility map can be used to reduce hazards associated with landslides and to land cover planning.
-
In this work Topex/Poseidon altimeter data 1993 - 2002 were used. There are three altimetry tracks (one ascending and two descending) that cross Tatar Strait. The data were collected in the points of sub-satellite tracks with the step 0.25 degree. 10-years average values were calculated for each month. The seasonal sea level variations were compared with tide gauges data. The well expressed annual cycle (with maximum at July-August and the minimum at February-March) prevails in the Tartar Strait. However, the seasonal variations expressed much weakly in both the altimetry track points and Kholmsk - Nevelsk tide-gauges that locate close to La Perouse Strait because of Okhotsk Sea influence. The sea level slopes between the Sakhalin Island and the continent coasts were analyzed in different seasons. We found that sea level increases near Sakhalin coast in spring and summer that corresponds to the northward flow. In autumn, otherwise, the sea level decreases near Sakhalin Island that corresponds to southward current. This result is verified by the CTD data gathered on the standard sections. Well-expressed upwelling is observed near coastline of Sakhalin Island in fall season. This phenomenon is caused by the northerly and the northwesterly wind which are typical for cold season.
-
Green vegetation is one of the most critical factors for environment conditions thorough modulating evapotranspiration and absorption of solar radiation. Thus, fractional green vegetation cover (FVC) plays an important role in observing and managing environment. Remote sensing provides a seemingly obvious data source for quantifying FVC over large area. Therefore we compared a set of methods for estimating FVC using hyperspectral remote sensing data. For our study, we used Hyperion imagery acquired in April, 2002. In order to achieve our efforts, we analyzed simple NDVI-based method and spectral mixture analysis (SMA) models that were applied a variety of combinations of possible endmembers.
-
There is an increasing need to use data from different sensors in order to maximize the chances of obtaining a cloud-free image and to meet timely requirements for information. However, the use of data from multiple sensor systems is depending on comprehensive relationships between sensors of different types. Indeed, a study of inter-sensor relationships is well advanced in the effective use of remotely sensed data from multiple sensors. This paper was concerned with relationships between sensors of different types for vegetation indices (VI). The study was conducted using IKONOS and Landsat-7 ETM+ images. IKONOS and Landsat-7 ETM+ image of the same or about the same dates were acquired. The Landsat-7 ETM+ images were resampled in order to make them coincide with the pixel sizes of IKONOS. Inter-relationships of vegetation indices between images were performed using at-satellite reflectance obtained by converting image digital number (DN). All images were applied to topographic normalization method in order to reduce topographic effect in digital imagery. Also, Inter-sensor model equations between two sensors were developed and applied to other study region. In the result, the relational equations can be used to compute or interpret VI of one sensor using the VI of another sensor.
-
In river with bar, the characteristics of its physical conditions have a close relationship with bar morphology. In this paper, a monitoring approach of bar transformation in the Han River Estuary is presented using RADARSAT/SAR Images. The estuary is divided into North and South Korea and its area is blocked by CCL(Civil Control Line). Satellite remote sensing, therefore, is uniquely suited to monitoring bar transformation. Based on SAR signatures for bars, bar transformation is investigated from 2000 to 2005, and monitoring of suspended-silt transportations from terrestrial runoff is tried to understand the morphology during the events of severe rain storm. SAR data did not reveal clearly the bar locations because of most of data acquisitions during high tides from 6.8 m to 9.0 m. Even though the problem, it could be said that in the estuary vegetated area and natural levees are developed well, but bars and shifted after an event like a flood. It is also showed that suspended solids such as silt transported through the estuary could contribute highly to a sedimentation environment around Incheon.
-
Epipolar images have to be generated to stereo display aerial images or satellite images. Pushbroom sensor is used to acquire high resolution satellite images. These satellite images have curvilinear epipolar lines unlike the epipolar lines of frame images, which are straight lines. The aforementioned fact makes it difficult to generate epipolar images for pushbroom satellite images. If we assume a linear transition of the sensor having constant speed and attitude during image acquisition, we can generate epipolar images based on parallel projection model (2D Affine model). Recent high resolution images are provided with RPC values so that we can exploit these values to generate epipolar images without using ground control points and tie point. This paper provides a procedure based on the parallel projection model for generating epipolar images directly from a stereo IKONOS images, and experimental results.
-
Thermal infrared images of Landsat-5 TM and Landsat-7 ETM+ sensors have been unrivalled sources of high resolution thermal remote sensing (60m for ETM+, 120m for TM) for more than two decades. Atmospheric effect that degrades the accuracy of Sea Surface Temperature (SST) measurement significantly, however, can not be corrected as the sensors have only one thermal channel. Recently, MODIS sensor onboard Terra satellite is equipped with dual-thermal channels (31 and 32) of which the difference of at-satellite brightness temperature can provide atmospheric correction with 1km resolution. In this study we corrected the atmospheric effect of Landsat SST by using MODIS data obtained almost simultaneously. As a case study, we produced the Landsat SST near the eastern and western coast of Korea. Then we have obtained Terra/MODIS image of the same area taken approximately 30 minutes later. Atmospheric correction term was calculated by the difference between the MODIS SST (Level 2) and the SST calculated from a single channel (31 of Level 1B). This term with 1km resolution was used for Landsat SST atmospheric correction. Comparison of in situ SST measurements and the corrected Landsat SSTs has shown a significant improvement in
$R^2$ from 0.6229 to 0.7779. It is shown that the combination of the high resolution Landsat SST and the Terra/MODIS atmospheric correction can be a routine data production scheme for the thermal remote sensing of ocean. -
Mortality of domestic people from cardiovascular disease ranked second, which followed that of from cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.
-
This paper introduces the result of a 3D climbing navigation system development which is based on PDA. In the visual viewpoint, this system is better than conventional systems that were developed 2D based. In addition, the proposed system was developed so that it could become compatible with these systems. In this paper, we will illustrate as the functional viewpoint than technical description about the system development.
-
This study was performed for developing the National Environmental Assessment Map (NEAM) in Korea and presenting the application method of NEAM. This NEAM adopted the least indicator method and uses a Geographic Information System (GIS). This map is made through evaluation of 67 items, including greenbelt status and biodiversity. As a result, the construction of NEAM was defined as a process of identifying land use to scientifically assess the physical and environmental value of land and classify conservation value into several grades for the sustainable management of environmental resources. After applying NEAM criteria of five degrees to the whole of Korea, Grade I, showing the highest conservation value, accounted for 45.6% by land area of NEAM. Grades II, III, IV, and Ⅴlikewise accounted for, respectively, 23.6%, 17.9%, 6.3%, and the lowest conservation value of 6.6%. This map can be widely used in, for example, urban and regional planning, development planning, and environment impact assessment.
-
Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.
-
This paper focuses on minimizing flood damage in the Yeongdeok basin of South Korea by establishing a flood prediction model based on a geographic information system (GIS), remote sensing, and geomorphoclimatic instantaneous unit hydrograph (GcIUH) techniques. The GIS database for flash flood prediction was created using data from digital elevation models (DEMs), soil maps, and Landsat satellite imagery. Flood prediction was based on the peak discharge calculated at the sub-basin scale using hydrogeomorphologic techniques and the threshold runoff value. Using the developed flash flood prediction model, rainfall conditions with the potential to cause flooding were determined based on the cumulative rainfall for 20 minutes, considering rainfall duration, peak discharge, and flooding in the Yeongdeok basin.
-
SAR image is not dependent on the weather condition and Sun's electromagnetic energy. But geometric distortions exist in almost all radar image, it need to be correction. The Radarsat-1 SAR images are used to monitoring of moisture acquired in May 1/1998 and May 25/1998. Radarsat-1 C band data is sensitive on moisture condition. Study area is located in Non-san site. It is made up almost agricultural area and a little of forest area. In May, Rice-planting is started in the midland of Korea. So moisture condition is undergoing many changes. Forest area need to be terrain effect removal for accurately results because it is included in layover, shadow, and so on. Results of land-cover moisture condition map are useful tool for fields of agriculture, forestry industry, and disaster.
-
The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water and water vapor and surface wind on surface emissivity on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor’s field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric and surface effects tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. In particular, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations over marginal ice zones.
-
Geological symbols are used for describing geological information. But it's not ease to represent them in commercial GIS s/w, because of their complexity and diversity. This study aims at developing the geological symbol mapping tool for representing geological symbol on user's geological information. Geological symbol mapping too is a web application which can handle SHP format and map geological symbols based on user's requests. It manages geological symbols and mapping codes and symbols are mapped within the geological boundary according to the corresponding non-spatial field that is a mapping code. The system has functions to upload a user's GIS file, and download the converted image file which is mapped geological patterns. The system displays converted images to be check mapping results. Because the symbols are simple bitmap files, user(system manager) can design and apply them rapidly without considering specific commercial S/W. Thus, it is expected that this system plays an important role to disseminate geological standards such as geological symbols. And the results of this study can be used for developing global geological symbols and applying them easily
-
For a quick and accurate 3D modelling of a building, laser scanning data, digital maps, aerial photographs and satellite images should be fusioned. Moreover, library establishment according to a standard structure of a building and effective texturing method are required in order to determine the structure of a building. In this study, we made a standard library by categorizing Korean village forms and presented a model that can predict a structure of a building from a shape of the roof on an aerial photo image. We made an ortho image using the high-definition digital image and considerable amount of ground scanning point cloud and mapped this image. These methods enabled a more quick and accurate building modelling.
-
The diffuse attenuation coefficient for downwelling irradiance
$(K_d({\lambda}))$ is an important parameter for ocean studies. Based on the optical profile data measured during three cruises in the northern South China Sea in autumn from 2003 to 2005, variations in the$K_d({\lambda})spectra$ were analyzed. The variability of$K_d({\lambda})$ shows much distinct features both in magnitude and spectra shape. The$K_d({\lambda})value$ are much higher in costal waters than that of open oceanic waters and the blue-to-green(443/555) ratios of$K_d({\lambda})$ tends to increases with the chlorophyll a concentration ([Chl a]) from open ocean to coastal waters. These characteristics can be explained primarily by the increasing of$a_{w+p}(433)/a_{w+p}(555)$ with [Chl a]. In the short waveband, the relation between$K_d({\lambda})-K_w({\lambda})$ and [Chl a] can be well described by a power law function, suggesting the large contribution of phytoplankton to the variations in$K_d({\lambda})$ . As for the spectral model of the diffuse attenuation coefficient, there are good linear relationships between$K_d(490)$ and$K_d({\lambda})$ at other wavelengths, with the slope parameter and the intercept following linear functions within the spectral range$412{\sim}555$ nm. These variabilities of$K_d({\lambda})$ provided much useful information for us to study the bio-optical properties in the northern South China Sea. -
In this paper a method for remotely-sensed assessment of eutrophication was experimented. The water samples were collected for analysis of COD (chemical oxygen demand) and nutrients concentration, and the remote sensing reflectance data at the sampling points were synchronously measured using above-water method in two cruises, which were conducted in the Pearl River Estuary in January 2003 and January 2004 respectively. Based on the in-situ data the local algorithms for estimation of concentration of nutrients (P and N) and COD were developed by Partial Least Squares (PLS) regression. The algorithms were then applied to atmospheric-corrected SeaWiFS data and the COD and nutrients concentration in Pearl River Estuary were estimated. And then the assessment of eutrophication was carried out by comparison of the estimated nutrients and COD value with the water quality standard. The results show that the whole estuary is seriously in eutrophication.
-
Spatial distribution, seasonal and interannual variability of chlorophyll a concentration in Okhotsk Sea from SeaWiFS data between 2001 and 2004 were describe. An Empirical Orthogonal Function method was applied for analysis data. The ten modes described about 85% of total variance. Two maxima were defined - more intensive in spring and weaker in autumn. The first mode showed zones with chlorophyll a concentration during maximum bloom. The second mode specified timing of spring bloom in various regions in Okhotsk Sea. Analysis of SeaWiFS data indicated connection between highest chlorophyll a concentration and sea surface temperature limits during spring bloom. Similar relation was not found during fall bloom.
-
The short-term variation of sea surface temperature before and after typhoons and increase of chlorophyll a concentration that accompany with the typhoons during summer in the East/Japan Sea were explored by satellite. Four typhoons (NAMTHEUN, MEGI, CHABA and SONGDA) and a typhoon (NABI) passed over the East/Japan Sea in 2004 and 2005, respectively. Decreasing of SST was observed in the every five typhoons, however the magnitude of SST decreasing were various from 1 to
$5^{\circ}C$ . Chlorophyll a increases were found after the typhoons (0.1-3${\mu}g$ $l^{-1})$ except NAMTHEUN, and the area was approximately included in SST decreasing area by the typhoons. It suggests that chlorophyll a increase was caused by nutrient input from subsurface layer by strong mixing. On the other hand, rarely chlorophyll a increase was observed in northern area of polar frontal zone, which is located in$38-41^{\circ}N$ , than northern area, and chlorophyll a increase in coastal area was higher (more than 3 times) than offshore area. It might suggest that chlorophyll a increase in the East/Japan Sea is also related with the depth or nitracline depth that affects the amount of nutrients supply to the upper layer by typhoon mixing. -
Thadathil, Pankajakshan;Muraleedharan, P.M.;Rao, R.R.;Somayajulu, Y.K.;Reddy, G.V.;Revichandran, C. 922
The objective of this study is first to resolve the spatial and seasonal variability of BL in the bay using 'the most comprehensive' data set available for the bay and then to understand the formation mechanisms and variability in the light of the known dynamical and thermodynamical processes. The most recent study [Masson et al., 2002] on the BL variability in the bay was based on the World Ocean Atlas (WOA98) of Levitus [1998]. The temperature and salinity profiles in the bay have increased considerably after the release of WOA98. The WOA98, itself has been updated to WOA01 in 2001. Further, the deployment of ARGO profiling floats in the bay since 2002 has generated many additional profiles. In addition to the ARGO data and the updated WOA01, the hydrographic data collected from the bay under several Indian national programs and archived in the Indian Oceanographic Data Centre (IODC) was also considered in the present study. The WOA98 and WOA01 consist of only limited data from the IODC archive, especially from the Exclusive Economic Zone of India. Therefore, the combination of these data from the three different sources (WOA01, ARGO and IODC) provides ‘the most comprehensive data set’ for the bay to resolve the BLT structure and its variability in a much better scale than in the past. -
Some features of vertical structure of the frontal interaction zone of the warm Kuroshio Current and cold Oyashio Current are known from 1930 from analysis of ship data. Ship data however do not allow carrying out the area detailed survey opposite to satellite infrared (IR) observations which possess by high spatial and temporal resolution. Analysis of NOAA AVHRR IR images demonstrated that process of formation and development of the Kuroshio warm core rings is highly complex. They are formed as a result of development of anticyclonic meanders of the warm Kuroshio waters and spin off them from the current. Joint analysis of thermal infrared images and altimetry data has also indicated that interaction of eddies to the frontal zone plays a crucial role in formation of large eddies moving to the Southern Kuril region.
-
A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.
-
In the northeastern South China Sea (SCS), fast westward moving (about 2.9 m/s) non-linear internal waves (NLIWs) are emanated nearly daily from the Luzon Strait. Their propagation speed is faster than NLIWs previously observed in the deep water of world oceans, their amplitude of 140 m or more is the largest free propagating NLIWs so far observed in the deep ocean. These NLIWs energized the top 1500 m of the water column, heaving it up and down in 20 min. Their associated energy density and energy flux are the largest observed to date. During 2005 and 2006 experiment, they were found west of the HengChun Ridge (HCR) that links Luzon and Taiwan Islands. This coincides with founding in satellite images, no NLIW front was found east of HCR. But, the turbulent environment east of HCR may prohibit surface signature of NLIWs that were emanated from sills between Batan Islands. The relative contribution of the two ridges on NLIW in Luzon Strait is still under study.
-
Satellite synthetic aperture radar (SAR) images from 1995 to 2001 and field measurements of sea surface wind, sea state, and vertical stratification are used for statistical analyses of internal wave (IW) occurrence and SAR imaging conditions in the northern South China Sea (NSCS). Latitudinal distribution of IW packets shows that 22% of IW packets distributed in the east of
$118^{\circ}E$ and 78% of IW packets in the west of$118^{\circ}E$ . The yearly distribution of IW occurrence frequencies reveals an interannual variability. The monthly SAR-observed IW occurrence frequencies show that the high frequencies are distributed from April to July and reach a peak in June. The low occurrence frequencies are distributed in winter from December to February of next year. These statistical features are explained by solitary wave dynamics. -
-
The experiment on study of ambient nose generated by large-amplitude internal waves in Luzon Strait is analyzed. Simultaneous observations of internal waves and characteristics of ambient noise generated by them were carried out. Fast 50-m solitary internal wave propagated to the northwest direction with speed more than 3 m/s was observed. It was revealed an enhancing of ambient noise level (at frequency range 1-2 kHz) at a time of passing the face side of the solitary wave.
-
With repeated coverage, spaceborne SAR (Synthetic Aperture Radar) instruments provide the most efficient means to monitor and study the changes in important elements of the marine environment. Due to highresolution of SAR data, the coverage of SAR sensor is always limited, especially for a repeat cycle. With more SAR sensors from various satellites, new data products such as ocean surface drift can be derived when two SARs' tracks overlap in a short time over coastal areas. Currently, there are two SAR sensors on different satellites with almost the exactly same path. That is, ERS-2 is following ENVISAT with a 30-minutes delay, which will be a good timing for ocean mesosclae feature tracking. For another application, a mystery ship near a big eddy with strong ship wake has been tracked between ERS-2 and ENVISAT SAR images to estimate its ship speed.
-
Mitnik, Leonid M.;Gade, Martin;Ermakov, Stanislav A.;Lavrova, Olga Yu.;Silva, Jose B.C. da;Woolf, David K. 950
SIMP is an international project funded by INTAS aimed at improving the information content, which can be inferred from multi-sensor satellite imagery of marine coastal areas. Scientific teams from Germany, UK, Portugal, and Russia focus on the development of novel tools for marine remote sensing of the coastal zone. In particular, the project teams' benefit from the fact that surface films may enhance the signatures of hydrodynamic processes such as plumes, internal waves, eddies, etc., on microwave, optical, and infrared imagery. The project's objectives are to develop a robust methodology for identifying slick-related phenomena/processes through their surface signatures and thereby, to improve the discrimination capabilities between slicks and other oceanic and atmospheric phenomena by taking into account information gained from satellite imagery quasi-simultaneously recorded at microwave, visible and IR wavelengths. The results of the two project years are summarized. Examples are given for the project’s web presentation, laboratory and field experiments, and of the analyses of various satellite data. -
Satellite data (thermal and color imagery) show that offshore flowing filaments off the west coasts of North America, North and South Africa can influence significantly the cross-frontal mixing in the coastal upwelling zones. To evaluate this role, we investigated structure, dynamics and behavior of surface filaments in the Canary and Benguela upwelling regions on the base of daily satellite IR and VIS imagery (AVHRR NOAA, MODIS-Aqua). It was found that seasonal variability of the filaments location depends on intra-annual shift of general upwelling intensity along the coast. The main statistical characteristics of filaments - length, width, temperature anomaly and estimates of velocity were obtained. Estimates of cross-frontal water exchange due to filamentation based on the statistical data show that these coherent structures play a major role in the water and particle exchange between coastal zone and the open ocean in both upwelling regions.
-
-
Public education is undoubtedly a very important aspect for a country to develop space program. People have the rights to understand how the tax they paid is being used. This paper addresses the effectiveness of FORMOSAT-2 on public education in Taiwan. As the first remote sensing satellite of the National Space Organization (NSPO) of Taiwan, FORMOSAT-2 is a small satellite of 746 kg mass for two remote sensing missions: Earth and upward lightning observations. The mission orbit is sun-synchronous of 888 km altitude for exactly 14 revolutions per day. For earth observation, the payload is an advanced high resolution remote sensing instrument (RSI) with ground sampling distance (GSD) 2 m in panchromatic (PAN) band and 8 m in four multi-spectral (MS) bands. For upward lightning observation, the payload is an imager of sprites and upper atmospheric lightning (ISUAL). After more than two years of Earth observation started in June 2004, the effectiveness of FORMOSAT-2 images on public education in Taiwan is very promised. Five domestic universities and one private company in Taiwan have signed contracts respectively with NSPO to take the roles of satellite image investigator and distributor. A private company has signed contract with NSPO to generate and provide URMAP (= your map) in its website for general public applications by using FORMOSAT-2 images. The Newtonkids Book Company used FORMOSAT-2 images to publish a kind of calendar for children education purpose. Besides, a science team in National Cheng Kung University (NCKU) is doing the research work on the 3820 (up to 30 June 2006) transient luminous events (TLEs) observed by FORMOSAT-2.
-
-
Bora events over the Adriatic Sea and Black Sea are investigated by using synthetic aperture radar (SAR) images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the European Envisat satellite. These images show pronounced elongated patterns of increased sea surface roughness caused by bora winds. The comparison of the SAR images with wind fields derived from Quikscat data confirms that in all cases a strong northeasterly wind was blowing from the mountains onto the sea. It is shown that the SAR images reveal details of the spatial extent of the bora wind fields over the sea which cannot be obtained by other instruments. Furtheremore, also quantitative information on the wind field is extracted from the SAR images by using a wind scatterometer model.
-
The long-range High-Frequency (HF) ocean radar system has observed surface velocity field in the upstream of the Kuroshio north of Ishigaki Island and east of Taiwan since 2001. Applying a new method to extract geostrophic velocity component from the HF surface velocity data with the aid of satellite-born wind data, time series of daily surface geostrophic velocity field has been determined. Despite limited width of the study area of the HF radar, analysis of the sea surface height anomaly determined from the satellite altimetry data in a wider area can provide estimated dates of arrival of mesoscale eddies in the study area of the HF radar. Variations of the Kuroshio position and strength are studied in detail for these cases of interaction with mesoscale eddy, although number of occurrence of direct interaction with the Kuroshio in the study area is not statistically enough. For example, when an anticyclonic eddy approaches to the Kuroshio, the Kuroshio axis is found tend to move northward, keeping away from the approaching eddy from the east.
-
The oscillations of the Caspian Sea level represent a result of mutually related hydrometeorological processes. The change in the tendency of the mean sea level variations that occurred in the middle 1970s, when the long-term level fall was replaced by its rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of the sea level changes represent an extremely important task. The aim of this presentation is to show the experience of application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height, water dynamics, as well as of uplift of the Earth’s crust in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay. Special attention is given to estimates of the Volga River runoff derived from satellite altimetry data. The work is based on the 1992-2005 TOPEX/Poseidon (T/P) and Jason-1 (J-1) data sets.
-
Ships and industries damage the delicate coastal ecosystem in many parts of the world by releasing oil or pollutants into rivers, coastal and offshore waters. After a tanker accident the biggest problem is to get a clear idea of the extent of the oil slick and predict the way it will move. For natural and man-made oil spills it is necessary to operate a regular and operational monitoring. In the Mediterranean, North and Baltic seas aircrafts or ships normally carry it out. This is expensive and is constrained by the limited availability of these resources, borders between countries, daylight hours, good weather conditions, etc. Satellite imagery can help greatly identifying probable spills over large areas and then guiding aerial surveys for precise observation of specific locations. The Synthetic Aperture Radar (SAR) instrument, which can collect data almost independently of weather and light conditions, is an excellent tool to monitor and detect oil on water surfaces. SAR is currently on board the ENVISAT, ERS-2 and RADARSAT satellites. The application of this technology to the investigation of oil pollution in the Caspian, Black, Mediterranean, North and Baltic seas is shown.
-
Oil pollution of the ocean is a major environmental problem, especially in its coastal zones. Synthetic aperture radar (SAR) flown on satellites, such as ERS-2 and Envisat, has been proved to be a useful tool in oil spill monitoring due to its wide coverage, day and night, and all-weather capability. The total 120 SAR images containing oil spill over the East China Sea were collected and analyzed, ranging in date from July 23, 2002 to November 11, 2005. After preprocessed, SAR images were segmented by adaptive threshold method. The oil spill images were incorporated into GIS after distinguished from look-like phenomena, finally we presented the oil spills distribution map for the East China Sea. The wide-swath and quick-looks SAR imagery for mapping of oil spill distribution over large marine areas were proved to be useful when full resolution data are not available. After the temporal and spatial distribution of the oil spills were analyzed, we found that most of oil spills were distributed along the main ship routes, which means the illegal discharge by ships, and the occurrence of oil spill detected on SAR images acquired during morning and summer is much higher than during evening and winter.
-
Oil spills cause huge material damage. Oil and oil products spills may occur at any stage of the offshore oil production and transportation cycle. Therefore taking into account the current trends of oil production, the task of creating a system for shelf and tank fleet monitoring becomes very crucial today. This document describes the technology being implemented to improve oil spill monitoring and surveillance, to ensure SAR data fast acquisition and processing and to develop geographic information systems in support of spill response decision making. The results of technology implementation are also presented below.
-
Shcherbak, Svetlana;Lavrova, Olga;Mytyagina, Marina;Bocharova, Tatiana;Krovotyntsev, Vladimir;Ostrovskiy, Alexander 989
The new approach to the problem of oil spill detection consisting in combined use of all available quasiconcurrent satellite information (AVHRR NOAA, TOPEX/Poseidon, Jason-1, MODIS Terra/Aqua, QuikSCAT) is suggested. We present the results of the application of the proposed approach to the operational monitoring of seawater condition and pollution in the coastal zone of northeastern Black Sea conducted in 2006. This monitoring is based on daily receiving, processing and analysis of data different in nature (microwave radar images, optical and infrared data), resolution and surface coverage. These data allow us to retrieve information on seawater pollution, sea surface and air-sea boundary layer conditions, seawater temperature and suspended matter distributions, chlorophyll a concentration, mesoscale water dynamics, near-surface wind and surface wave fields. The focus is on coastal seawater circulation mechanisms and their impact on the evolution of pollutants. -
NOAA operational bulk SST product (Reynolds et al, 2002) is very popular global SST data sets and is extensively used for various studies. However, the original time resolution is weekly and relatively large. On the other hand, there exist many new global SST data sets at present. In this study, we compare many global SST data sets including NOAA operational bulk SST product, CAOS OI SST product, Microwave Optimum Interpolation (MWOI) SST, Real Time Global (RTG) SST and JMA merged satellite and in situ Global Daily (MGD) SST.
-
Katsaros, Kristina B.;Pinker, Rachel T.;Bentamy, Abderrahim;Carton, James A.;Drennan, William M.;Mestas-Nunez, Alberto M. 997
We estimate the net heat flux in the tropical and subtropical Atlantic Ocean using satellite data. These fluxes are related to changes in sea surface temperature (SST). This variable influences atmospheric circulations and is indicative of surface and subsurface oceanic circulations. We employ data from the geostationary METEOSAT-7 and 8 satellites and from the Special Sensor Microwave/Imager (SSM/I) for the shortwave and long-wave radiative fluxes, and for estimates of SST. For turbulent flux calculations, we use the bulk aerodynamic method with satellite estimates for wind speed and atmospheric humidity and temperature. -
Grankov, Alexander Georgievich;Mil'shin, Alexander Alexeevich;Krapivin, Vladimir Fedorovich;Golovachev, Sergey Petrovich 1001
Special problem emphasized by specialists in the field of analyzing the heat interchanges in the system ocean-atmosphere (SOA) is a necessity of determination of the near-surface atmospheric temperature, which can be only indirectly connected with characteristics of the SOA natural microwave radiation measured from satellites. That is why, the following dilemma is not obvious, but interesting and promised: what is better - to use the satellite methods for retrieving the partial parameters of the SOA or for analysis its state as a whole. To our opinion, this task is similar to the idea recognized by specialists engaged in the heat infrared region (8-12 mcm) of electromagnetic spectrum and its applications, where an intensity of natural infrared radiation (effective radiation) is used as the inherent property (the attribute) of the SOA heat balance. Here we studied important aspects of this problem: a) what medium initiates a heat transfer in the SOA and disturbs its heat balance - the ocean or the atmosphere b) what SOA parameters directly influence on its natural microwave radiation intensity (brightness temperature) measured from satellites? We relate these processes mainly to the synoptic range of time scales enriched by various events in the SOA interface such as the mid-latitude and tropical cyclones. -
Frontal regions in midlatitude storms exhibit a wide range of behavior, which can be observed by remote sensors. These include decay, strengthening, rotating, and sometimes spawning of new cyclones. Here we refine and apply recent theories of front and frontal wave development to a case of a front clearly observed and analyzed in remote sensing data. By applying innovative analysis techniques to the data we assess the respective roles of ageostrophy, background deformation, and Boundary Layer processes in determining the evolution of the surface front. Our analysis comprises of diagnosis of the terms appearing in the vorticity and divergence equations using remotely sensed observations.
-
This study investigates the spatial structure of the total cloud liquid water content Q fields over the Northwest Pacific Ocean during winter monsoon. The distributions of Q have been estimated from the brightness temperatures of the ocean - atmosphere system
$T_B(f)$ , where f is frequency, measured by AQUA AMSR-E in January -March 2003. Marine strati (St) and stratocumuli (Sc) are typical for winter monsoon season. They were analysed using mainly high-frequency channel at f = 36.5 GHz, vertical polarisation.$T_B$ data were accompanied by the data on near surface wind speed, air temperature and humidity from the nearest meteorological stations. Tow one-dimensional spectra were computed for downwind and crosswind sections of Q fields. The AMSR-E antenna field of view (14-8 km) and the cloud field sizes (100-1000 km) restricted the spatial scales. The results of case study Jan 31 2003 are presented. Scale-invariant spectrum is typical. In the cases of extended St levels a spectral slope equals about -1.7, conforming to classical -5/3 of turbulence theory. For Sc cases the absolute magnitude of spectral slope is rather higher, as a rule. The value is about -2. In the case when cloud streets are presented, a strait line form of spectrum is less reliable with a slope being rather lower (about -1.4). -
Hu, Chuanmin;Muller-Karger, Frank;Murch, Brock;Myhre, Douglas;Taylor, Judd;Luerssen, Remy;Moses, Christopher;Zhang, Caiyun 1011
Coarse resolution (9 - 50 km pixels) Sea Surface Temperature satellite data are frequently considered adequate for open ocean research. However, coastal regions, including coral reef, estuarine and mesoscale upwelling regions require high-resolution (1-km pixel) SST data. The AVHRR SST data often suffer from navigation errors of several kilometres and still require manual navigation adjustments. The second serious problem is faulty and ineffective cloud-detection algorithms used operationally; many of these are based on radiance thresholds and moving window tests. With these methods, increasing sensitivity leads to masking of valid pixels. These errors lead to significant cold pixel biases and hamper image compositing, anomaly detection, and time-series analysis. Here, after manual navigation of over 40,000 AVHRR images, we implemented a new cloud filter that differs from other published methods. The filter first compares a pixel value with a climatological value built from the historical database, and then tests it against a time-based median value derived for that pixel from all satellite passes collected within${\pm}3$ days. If the difference is larger than a predefined threshold, the pixel is flagged as cloud. We tested the method and compared to in situ SST from several shallow water buoys in the Florida Keys. Cloud statistics from all satellite sensors (AVHRR, MODIS) shows that a climatology filter with a$4^{\circ}C$ threshold and a median filter threshold of$2^{\circ}C$ are effective and accurate to filter clouds without masking good data. RMS difference between concurrent in situ and satellite SST data for the shallow waters (< 10 m bottom depth) is <$1^{\circ}C$ , with only a small bias. The filter has been applied to the entire series of high-resolution SST data since1993 (including MODIS SST data since 2003), and a climatology is constructed to serve as the baseline to detect anomaly events. -
The use of passive microwave data for estimating sea-ice thickness is limited by strong dependence of emissivity on near-surface brine. However, this particular characteristic becomes a basis for an algorithm to estimate thickness of thin sea-ice if a thickness-salinity-emissivity relationship is established. This study aims at developing an algorithm to estimate sea ice thickness on the basis of this relationship. In order to establish a thickness-salinity-emissivity relationship, we have conducted multi-platform synchronous observations in the Sea of Okhotsk. We note a positive relationship between thickness and brightness temperature. From observations, we also establish an empirical relationship between salinity and emissivity, thus between thickness and brightness temperature. The derived relationship is qualitatively similar to the one based on Hoekstra and Cappillino's formulation. Our results suggest that for thin sea-ice in the winter period there is potential to develop an algorithm to estimate sea-ice thickness.
-
Satellite sea ice data from 1978 to the present reveal that the perennial ice (or ice that survives the summer) has been rapidly declining at almost 10% per decade. Warming due to increases in greenhouse gases in the atmosphere is now also being reflected in winter with drastic reductions in the maximum extent observed in 2005 and 2006. The retreat of the perennial ice also exposes more open water and has revealed an asymmetric distribution of chlorophyll a pigment concentration in the Arctic basin. Phytoplankton blooms are most dominant at high latitudes, partly on account of sea ice, but in the Arctic basin, it appears that pigment concentrations in the Eastern (Laptev Sea) Region are on the average three times higher than those in the Western (Beaufort Sea) Region. Such asymmetry suggests that despite favorable conditions provided by the melt of sea ice, there are other factors that affects the productivity of the region. The asymmetry is likely associated with much wider shelf areas in the East than in the West, with sea ice processes that inhibits the availability of nutrients near the surface in deep water regions, and river run-off that affects nutrient availability. The primary productivity in the pan-Arctic region have been estimated using the pigment concentrations and PAR derived from SeaWiFS data and the results show large seasonal as well as interannual variability during the 1998 to 2005 period. The data points towards increasing productivity for later years but with only 9 years of data it is too early to tell the overall effect of the sea ice retreat.
-
As it was shown recently, climate changes in Antarctica resulted in interannual trends of some climatic parameters like sea level pressure, surface air temperature, ice thickness and others. These tendencies have effect on the Southern Ocean meteorological and hydrological regime. The following remote sensing data: AVHRR MCSST data, satellite altimetry data (merged data of mission ERS-2, TOPEX/Poseidon, Jason-1, ENVISAT, GFO-1) are used to analyse the interannual and/or climatic tendency of sea surface temperature (SST) and sea level anomaly (SLA). According to the obtained results, SST has negative trend
$-0.02{\pm}0.003^{\circ}C/yr$ for 24-yr record (1982-2005) and SLA has positive trend$0.01{\pm}0.005$ cm/yr for 24-yr record (1982-2005) and$0.24{\pm}0.026$ cm/yr for 12-yr record (1993-2005). However in some areas (for example, Pacific-Antarctic Ridge) SST and SLA tendencies are stronger$-0.065{\pm}0.007^{\circ}C/yr$ and$-0.21{\pm}0.05$ cm/yr, respectively. -
Development of diurnal warming in the open Okhotsk Sea during the daytime and calm conditions was studied using sea surface temperature (SST) fields retrieved from NOAA AVHRR, Terra and Aqua MODIS, Aqua AMSR-E and ADEOS-II AMSR data. Sea surface wind fields were estimated from AMSR-E/AMSR measurements as well as were obtained from QuikSCAT scatterometer. Weak winds and cloudless conditions were observed in the central area of anticyclone, which moved slowly on 28-30 June 2003 east off Sakhalin. The area where the amplitude of the diurnal SST signal
${\Delta}T$ was significant also shifted slowly and had or circular or elongated shape. The${\Delta}T$ was estimated relative to the SST values in the areas surrounding the centre of anticyclone where wind speed W exceeded 5- 6 m/s. The diurnal variations of SST, day-night differences were computed using NOAA-12 and NOAA-16 AVHRRderived data. Analysis of simultaneous SST and W fields showed that the increase of W from 0 to 5-6 m/s causes the decrease of${\Delta}T$ to zero. Maximum warming exceeded$8^{\circ}C$ and was observed in the centre of anticyclone where W = 0 m/s. So strong heating was likely due to the increased chlorophyll a concentration in the area under study that follows from analysis of satellite ocean colour data.