DIAGNOSING CARDIOVASCULAR DISEASE FROM HRV DATA
USING FP-BASED BAYESIAN CLASSIFIER
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ABSTRACT.. Mortality of domestic people from cardiovascular disease ranked second, which followed that of from
cancer last year. Therefore, it is very important and urgent to enhance the reliability of medical examination and
treatment for cardiovascular disease. Heart Rate Variability (HRV) is the most commonly used noninvasive methods to
evaluate autonomic regulation of heart rate and conditions of a human heart. In this paper, our aim is to extract a
quantitative measure for HRV to enhance the reliability of medical examination for cardiovascular disease, and then
develop a prediction method for extracting multi-parametric features by analyzing HRV from ECG. In this study, we
propose a hybrid Bayesian classifier called FP-based Bayesian. The proposed classifier use frequent patterns for
building Bayesian model. Since the volume of patterns produced can be large, we offer a rule cohesion measure that
allows a strong push of pruning patterns in the pattern-generating process. We conduct an experiment for the FP-based
Bayesian classifier, which utilizes multiple rules and pruning, and biased confidence (or cohesion measure) and dataset
consisting of 670 participants distributed into two groups, namely normal and patients with coronary artery disease.
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1. INTRODUCTION

The last three decades have witnessed the recognition
of significant relationship between the autonomic nervous
system and cardiovascular mortality including sudden
cardiac death. In cardiology, Heart Rate Variability
(HRV) is the most commonly used noninvasive methods
to evaluate autonomic regulation of heart rate and
conditions of a human heart. Reduced cardiac vagal
activity has been reported in patients with Coronary
Artery Disease (CAD) [1]. This reduction in cardiac vagal
activity, evaluated by spectral HRV analysis (linear
properties), was found to correlate with the angiographic
severity, independent of any previous myocardial
infarction, the location of the diseased coronary arteries,
and/or left ventricular function [2]. Recently, in studies of
the effect of the right lateral decubitus position on vagal
moduation, it has been found to increase parasympathetic
activity and decrease sympathetic modulation, but most of
these researches were limited to the linear analyses
method for time and frequency domains [1]. But it has
been known for some time that the physiological data has
various nonlinear characteristics. In particular, the heart
rate signal has complexity characteristics which reflect
the healthy condition in a living body. Since nonlinear
properties are involved in the genesis of human heart rate
fluctuation [3], the nonlinear measures of complexity
have been used to probe features in heart rate behavior.
The complexity of the human physiological system, which
is reduced in bad health but increased in good health, can
be analyzed quantitatively by various nonlinear methods.
Therefore, we consider it worth-while investigating the

linear and nonlinear properties of HRV in patients with
CAD, and we evaluate each measured properties.

In this paper, our aim is to propose a quantitative
measure for HRV and a suitable prediction model to
enhance the reliability of medical examination for
cardiovascular disease. To achieve this aim, the proposed
method works in two steps as follows. It first analyzes the
HRYV (RR intervals) by means of time domain, frequency
domain and nonlinear methods, and then applies
classification algorithms to predict the patients with
cardiovascular disease. The proposed classification
method is a hybrid approach that attempts to utilize the
advantages of both frequent pattern mining and Bayesian
classification called FP-based Bayesian Classifier. This
classifier is also further extended from CMAR [4] by
using a cohesion measure for pruning redundant rules.
Our classification method uses multiple rules to predict
the highest probability classes for each record, and can
also relax the independence assumption of some
classifiers, such as NB (Naive Bayesian) [5] and DT
(Decision Tree) [6]. For example, the NB makes the
assumption of conditional independence, that is, given the
class label of a sample, the values of the attributes are
conditionally independent of one another. When the
assumption holds true, then the NB is the most accurate in
comparison with all other classifiers. In practice, however,
dependences can exist between variables of the real data.
Our classifier can consider the dependences of linear
characteristics of HRV and clinical information.
Experiments also show that with proper classification
methods, the results of diagnosis can be improved.
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2. LINEAR & NONLINEAR FREATURES

The ECG signals are recorded by electrocardiography,
and are transmitted immediately to a PC for recording for
5 minutes. The sampling frequency for ECG signals is
500Hz. In this electrocardiograph, the measured analog
signal is converted to a digital signal with a sampling
frequency of 500 Hz. We extract the R-peaks from the
ECG recordings based on Thomkin’s algorithm [7], [8].
RR interval data is analyzed during a 5-min baseline
period and all RR intervals are edited in order to exclude
all ectopic beats or artifacts. RR intervals time series are
re-sampled at a rate of 4 Hz to obtain power spectral
density. Linear features of HRV can be divided into
frequency domain and time domain. In the following
these features are defined and discussed briefly.

Frequency domain: After calculating the mean heart
rate (beat/min) from the ECG signal, we used Fast Fourier
Transformation (FFT) to obtain the power spectrum of
the RR intervals. We then define the various areas of
spectral peaks as follows:

The Total Power (TP), 0 Hz to 0.4 Hz; Very Low
Frequency (VLF) power, 0 Hz~0.04 Hz; Low Frequency
(LF) power, 0.04 Hz to 0.15 Hz; and High Frequency
(HF) power, 0.15 Hz to 0.4 Hz.

The TP, which is a useful index for detecting abnormal
autonomic activity, is larger in normal subjects than in
patients [9]. Moreover, the LF power mainly provides a
measure of sympathetic activity with some influence from
the parasympathetic nervous system, whereas the HF
power is responsible solely to the parasympathetic
nervous system. We use the normalized LF (nLF) as an
index of sympathetic modulation, the normalized HF
(nHF) as an index of vagal modulation and the LF to HF
ratio (LF/HF) as an index of sympathovagal balance.
Above spectral values (nLF and nHF) are defined as
follows and presented in normalized units (au).

nLF = IP=VEE) 100 )
LF
ntF = SE=VEED 100 @

Time domain: the time domain features are the most
simple ones calculated directly from the raw RR interval
time series. The simplest time domain features are the
mean and standard deviation of the RR intervals. The
standard deviation of RR intervals (SDNN) describes the
overall variation in the RR interval signal whilst the
standard deviation of the differences between consecutive
RR intervals (SDSD) describes short-term variation.

We also analyze the HRV (RR intervals) by means of
nonlinear methods; Proincare plot.

Poincare Plot: the Poincare Plot (PP) is a scattergram,
which is constructed by plotting each RR interval against
the previous one. The PP may be analyzed quantitatively
by fitting an ellipse to the plotted shape [10] (Figure 1).
The center of the ellipse is determined by average RR
interval. SD1 means the standard deviation of the
distances of points from y = x axis, SD2 means the

standard deviation of the distances of points from

y =—x+RR axis, where RR is the average RR interval.
SD1 (instantaneous beat-to-beat variability of the data)
determines the width of the ellipse, SD2 (continuous beat-
to-beat variability) determines the length of the ellipse.
The ratio SD1/SD2 is the measure of heart activity.

Figure 1. Poincare Plot

The example of feature extraction process from ECG
signal is shown in Figure 2,

e
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Table 1 shows the results of extraction of HRV features
from ECG signal.

Table 1. Linear and Nonlinear Features of HRV

Features
. Frequency domain TP, VLF, LF, HF, LF, nHF,
Linear LF/HF
Time domain SDNN, SDSD
Nonlinear SD1, SD2 SD2/SD1

3. FP-BASED BAYESIAN CLASSIFITION

This section describes the training phase which consists
of discovering the set of all FPs with their class support.
For applying the high efficiency of FP-growth we use
frequent pattern growth that extends FP-growth by using
PC measure. Also, we describe the Bayesian model using
the frequent patterns discovered.

3.1 Frequent Pattern Discovery using FP-growth

For applying the high efficiency of FP-growth we use
frequent pattern growth that extends FP-growth by using
PC measure. The popular FP-growth Association Rule
Mining (ARM) algorithm [11] is applied to a particular
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kind of set enumeration tree, the FP-tree, also developed
by Han et al. Both the FP-tree and the FP-growth
algorithm are used to discover all frequent patterns in this
study.

The algorithm, FP-growth, for mining the FP-tree
structure is a recursive procedure during which many sub
FP-trees and header tables are created. The process
commences by examining each item in the header table,
starting with the least frequent. For each entry the support
value for the item is produced by following the links
comnecting all occurrences of the current item in the FP-
tree. If the item is adequately supported, then for each leaf
node a set of ancestor labels is produced (stored in a
prefix tree), each of which has a support equivalent to the
sum of the leaf node items from which it is generated. If
the set of ancestor labels is not null, a new tree is
generated with the set of ancestor labels as the dataset,
and the process repeated.

PC(Pattern Cohesion) measure is used for pattern
ranking and redundant pattern pruning. The proposed PC
measure is adapted after the cohesion measure in [12]
and defined below.

Definition 1. PC (Pattern Cohesion): For a pattern
(p,--s p,) Of length n, PC is a ranking measure defined as

Cnt(p seees P, )
| n 3
nant(pl)-...-Cnt(Pn) ©

where is a number of transaction where pattern occur
together, and , is a number of transaction containing.
Measure PC is high when individual components of a
pattern occur frequently together and infrequently
separately. Pattern ranking guarantees that only the
highest rank pattern will be selected into the classifier. All
patterns are ranked according to the following criteria.

Definition 2. Pattern Ranking, given two patterns P;
and Pj, Pj>})j N l_f

1. CO(P)>CO(P) or

2. CO(P)=CO(P)) but sup(P)>sup(P;) or

3. COP)=CO(P)) and sup(P)=sup(P;) but length(P)

< length(P)

PC(Pp-n,Pn) =

3.2 FP-based Bayesian Algorithm for Classification

When a new case A’={a;, a, ..., a,} arrives to be
classified, the classifier combines the evidence provided
by the subsets of A4’ that are presented in FPs to
approximate P(4’, Cj),and P(4’, C;) determines the
conditional probability P(C;|4°). The evidence which is
selected from FPs is denoted as B.

Definition 3. A set B with respect to case 4

B={feFPs|fcA'}.
The B consists of the longest possible patterns of FPs that
are subsets of 4°. Our classifier uses the FPs of B to
derive product approximations of P(4’,C;) for all classes.
The product approximation of the probability of an n-
itemset 4’ contains a sequence of at most n subsets of 4’
such that each pattern contains at least one item not
covered in the previous patterns. The general chain rule is
P(a;, a,, ..., a,) = P(a;)) Plasla)) ... P(a,ay,....a,;). To

obtain the product approximation of P(4’, C,), the
patterns are combined using the chain rule of probability
while assuming that all necessary attribute independence
assumptions are true. For example, suppose a test case
A’={a;, a, ..., as} arrives. After consulting FPs, we find
its corresponding B={(a,, as), (as, ay), (a;, ay as), (a;, a4
as)}. To make several different product approximations of
P, Cy), we can use FPs of B as follows:

1(a, a, a,),(a a, a) = P(C)P(a a, a |C)P(a, a,|aC)

172 17273
2.(aa,4,),(a,0,), (a,a) = P(C)P(aa,a, | C)P(a,| a,C)P(a, | a,C)

17478

3(a,4,), (a,a,), (a,,a,,a,) = P(C)P(a,a, | C,)P(a,a, | C)P(a, | a,aC)

1> %4>

4.(aa,a,),(a,a,),(a,a) = P(C)P(aa,a,|C)P(a,|a,C)P(a,|aC)

Note that (a;a,a3), (a;a,as) and (ajas) are not a product
approximation since all items of (aa;) are already
covered by first two patterns. The above product
approximations describe that although (2) and (3) use the
patterns (aas), (asa,) and (a;0,a5), the final product
approximation is different because these patterns are used
in different order. Different combinations of patterns of B
lead to different product approximation, and the product
approximations are different even when the same patterns
are used in different order. The product approximation of
P(4°, C) is generated incrementally adding one pattern at
a time till no more patterns can be added, either all the
items of the remaining patterns from B are already
covered or no more patterns are available in B. For
constructing product approximation, patterns of B are first
sorted in pattern ranking criteria of definition 2, and the
final list is R. Essential patterns are selected from the list
R from the beginning to incrementally construct the
product approximation. The set of covered items is
denoted as item,,,. A pattern p inserted in the product
approximation satisfies the following definition.

Definition 4. Pattern Inserting Rules: Given two
patterns p, g and the set of covered items item,,,, also
PC(p) indicates patterns cohesion of pattern p.
Rulel:| p—item | 21; Rule2:PC(p)>PC(q)

Rule 3 : length(p) < length(q) » Rule 4:| p—item  |<|q—item

Input: the set of patterns FPs, a new test instance 4’
Output: the classification ¢; of 4’
B={fe€EFPs| f c A'}; Cov=¢; Nom=¢; Den=4g;
for (i=1;Cov < 4";i++) do {
B, = selectNext(Cov, B); Num = Num v B,;
Den= Den\(B,nCov); Cov=CovUB,; }
for each class C; do

P(4,¢)=P(C) []P@C)/ [[PG.C;

aeNum beDen
The class C; with maximal P(4',C,);
Procedure selectNext(Cov, B) {
S={peBa|p-Cov|21};
return a pattern B; &S5, such that for all patterns B; &S
PC(By>PC(B)); PC(B)=PC(B;) and length(B))<length(B));
PC(B)=PC(By) and length(B;)=length(B;) and |B;-Cov|<|B;-Covi;
}

Figure 3. Algorithm of FP-based Bayesian classifier
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The algorithm for Bayesian classification using FPs is
below and procedure selectNext is uniquely determined
by the rulel-4 of definition 4. The algorithm
incrementally builds the product approximation of P(4’,
C;) by adding one pattern at a time. It first finds the
evidence B provided by the subsets of 4’ that are present
in FPs. Cov is the subset of A’ already covered, Num and
Den are the sets of patterns in numerator and denominator,
respectively. Procedure selectNext( ) extracts from B the
next pattern to be used in the product approximation. The
algorithm stops once all items in 4’ have been covered.

4. EXPERIMENTAL RESULTS

Coronary arteriography is performed in patients with
angina pectoris, unstable angina, previous myocardial
infarction, or other evidence of myocardial ischemia.
Patients with stenosis of the luminal narrowing greater
then 50% were recruited as the CAD group, the others
were classified as the control group (normal). By using
angiography, 390 patients with CAD and 280 patients
with normal coronary arteries (Control) were studied. The
accuracy was obtained by using the methodology of
stratified 10-fold cross-validation. We compare our
classifier with NB and state-of-art classifiers; the widely
known decision tree induction C4.5; an association-based
classifier CBA [13]; and CMAR, a recently proposed
classifier extending NB using long itemsets.

Table 2. Description of summary results.

Classifier | Precision | Recall | Class RMSE

Naive 0.814 0.576 CAD

Bayes 0.659 0.862 | Control 0.4825
0.88 0.889 CAD

C4.5 0.882 0.872 | Control 0.334
0.921 0.939 CAD

CBA 0.935 0.915 Control 0.2532
0.945 0.896 CAD

CMAR 0.889 0.941 Control 0.2788

FP-based 0.959 0.939 CAD 0.2276

Bayesian 0.938 0.957 | Control )

We used precision, recal, and root mean square error
to evaluate the performance. The result is shown Table 2.
As can be seen from the table, our classifier outperforms
NB, C4.5, CBA and CMAR. We also satisfied these
experiments because our model showed more accurate
than Bayesian classifier and decision tree that make the
assumption of conditional independence.

5. CONCULSTION

Most of the parameters employed in diagnosing diseases
have both strong and weak points existing simultaneously.
Therefore, it is important to provide multi-parametric
indices diagnosing these diseases in order to enhance the
reliability of the diagnosis. The purpose of this paper is to
develop an accurate and efficient classification algorithm
to automatically diagnose cardiovascular disease. To

achieve this purpose, we have introduced an Bayesian
classifier that is further extended from CMAR by using a
cohesion measure to prune redundant rules. With this
technique, we can extract new multi-parametric features
that are then used together with clinical information to
diagnose cardiovascular disease. The accuracy and
efficiency of the experimental results obtained by our
classifier are rather high. In conclusion, our proposed
classifier outperforms other classifiers, such as NB, C4.5,
CBA and CMAR in regard to accuracy.
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