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ABSTRACT. While hyperspectral data are very rich in information, their processing poses several challenges such as
computational requirements, noise removal and relevant information extraction. In this paper, the application of
advanced scale-space filtering to selected hyperspectral bands was investigated. In particular, a pre-processing tool,
consisting of anisotropic diffusion and morphological leveling filtering, has been developed, aiming to an edge-
preserving smoothing and simplification of hyperspectral data, procedures which are of fundamental importance during
feature extraction and object detection. Two scale space parameters define the extent of image smoothing (anisotropic
diffusion iterations) and image simplification (scale of morphological levelings). Experimental results demonstrated the
effectiveness of the developed scale space filtering for the enthancement and smoothing of hyperspectral remote sensing

data and their advantage against watershed over-segmentation problems and edge detection.
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1. INTRODUCTION

Multispectral ~ imaging  sensors and  imaging
spectrometers have been significantly improved during
the past decade. Hyperspectral imagery (HSI) is
composed of multispectral images in many, very narrow,
contiguous spectral bands throughout the visible, near IR,
and mid IR portions of the spectrum. Nowadays,
processing HSI leads to a wide variety of earth imagery
applications including:

i) solutions to support forest inventory (Kyoto
products) and forest chemistry, timber management
applications, wildfire modeling (Gensuo et al., 2006;
Peter and Lucas, 2006),

il) other environmental applications such as
agricultural, marine and natural resource exploration,
land-use analysis,  terrain categorization, material
classification, change detection and wetlands monitoring
(Debba et al., 2005; Ye et al., 2006; Enrica et al., 2006;
Nguyen and Lee, 2006),

iii) civil government applications for pervious-
impervious surface mapping, creation and maintenance of
GIS data layers for roads and structures, identification of
urban green space (Jouan and Allard, 2004; Vahtmie et
al., 2006),

iv) homeland security solutions for the creation and
maintenance of GIS data layers, identification and
mapping of high-value assets (pipelines, power plants,
etc), monitoring of borders, and development of 3D urban
models for preparing disaster and emergency services
(Segl et al., 2003; Shrestha et al., 2005),

v) medical imaging such as tumors detection (Levenson
and Mansfield, 2006; Martin et al., 2006),

vi) industrial applications in manufacturing processes
for product quality assurance and quality control (Tatzer
et al., 2005) and

vii) military applications such as automatic target
recognition and tracking, including those targets that may
employ camouflage, concealment, and deception (Zheng
et al. 2003; Briottet et al., 2006).

Unfortunately, atmospheric scattering, secondary
illumination, changing viewing angles, and sensor noise
degrade the quality of HSI impeding the above
application. It is normally found that the noise level in
HSI is high as their narrow bandwidth can only capture
very little energy that may be overcomed by the self-
generated noise inside the sensors (Chaichoke, 2006).
Additionally, physical disturbances such as the fluctuation
of light illumination and atmospheric states make the
situation worse as the disturbances decrease the precision
of spectral signals recorded by the sensor.

Spectral smoothing techniques including both linear
and non-linear methods are popularly used in a large
number of modern hyperspectral remote sensing studies
for removing noise from the spectral data (Andréfoust et
al., 2003; Thenkabail et al., 2004; Chaichoke, 2006).
However, most of these studies do not use any strict
optimizing criteria to select suitable smoothing filters and
in several cases in which linear filters are applied,
smoothing cause changes to the original spectral data that
could lead to incorrect results in subsequent analyses
(Chaichoke, 2006).

For improving HSI automated feature extraction and
data  exploitation = capabilities, advanced image
enhancement, smoothing and simplification filtering have
to be applied. Such applications are a vital pre-processing
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step in computer vision, remote sensing and
photogrammetry feature extraction procedures (Argialas
and Harlow 1990; Paragios et al., 2005; Karantzalos and
Argialas, 2006).

In this paper, two advanced nonlinear scale space
filtering methods Anisotropic Diffusion Filtering (ADF)
and Morphological Levelings (ML) have been employed
for the enhancement and smoothing of HSI. ADF and ML
are nonlinear filtering operators with many interesting
properties (Weickert 1999, Meyer and Maragos 2000).
They can highlight the distinction between the features in
an image so that on the one hand visual quality is
improved and on the other hand they facilitate edge
detection and segmentation techniques (Karantzalos and
Argialas, 2006). Especially with the use of ML filtering,
details vanish from one scale to the next but the contours
of the remaining objects are preserved sharp and perfectly
localized (Meyer and Maragos 2000). Hence, objects are
enhanced so that edge detection or segmentation
operators can detect accurately object boundaries.

2. METHODOLOGY
2.1 Anisotropic Diffusion Filtering
Morphological Levelling

and

To overcome the limitation of linear scale space
(Gaussian smoothing inevitably blurs edges and other
important features due to its isotropic and low-pass
nature), two representations of nonlinear scale spaces
have been proposed: one is based on anisotropic diffusion
filtering and the other on mathematical morphology.

Among ADF equations (Weickert, 1999), the
geometry-driven diffusion by Alvarez, Lions and Morel
(ALM) (Alvarez et al., 1992) was emplyed here since it
has already has been tested with promising results in
Karantzalos and Argialas (2006), for edge detection and
segmentation to panchromatic high resolution satellite
imagery. This anisotropic process reduces the diffusivity
at those locations that have a larger likelihood of being
edges based on their larger gradients. If the gradient
magnitude is small, then the diffusion is strong and if it is
large at a certain pixel (X, ), this pixel is considered as

an edge point, and the diffusion is weak.

-The theory and implementations behind the nonlinear
morphological scale-spaces considers the evolution of
curves and surfaces as a function of their geometry. The
basic ingredients of all standard multiscale morphological
operators were dilations and erosions of increasing size.
However, dilations and erosions by themselves cannot be
used to represent the successive scales because they
displace the image boundaries and this is a crucial matter
in all geo-science feature extraction applications. A recent
advancement to this displacement problem came from the
development of a more general powerful class of self-dual
morphological filters, the levelings. The levelings possess
many useful algebraic scale-space properties, as explored
in Meyer and Maragos (2000), which are best studied in a
lattice framework.

2.2 Developed scheme for the enhancement and
smoothing of HSI.

Enhancement and smoothing filtering was applied to a
subset (3 bands) of the original HSI bands, after standard
feature selection procedures. Feature selection, which is
an operation of major importance for HSI, was carried out
to identify band combinations with the highest spatial
autocorrelation. This increases not only the accuracy of
the spectral representation of the classes in the selected
features, but also their spatial representation (Thenkabail
et al., 2004; Chaichoke, 2006).

The developed processing scheme, which has been
introduced as an advanced nonlinear scale space
representation towards a superior image simplification
and smoothing (Karantzajos and Argialas, 2006), was
applied to each of the selected hyperspectral bands. The
goal was to obtain the major advantages of each filtering,
try to synthesize them and investigate the possibility for a
much better filtering result. The developed scheme used
as a reference image for ML the output image of the ADF.
In this framework the ML was dominated by an already
nicely enhanced and smoothed image in which edges and
abrupt intensity changes have been respected. In all cases
ADF was performed with a small number of iterations,
since the goal was just to obtain a slightly smoothed
version of the original image. With such a reference
image the multiscale markers obtained from sampling its
Gaussian scale-space, did not start blurring the original
image but they started from blurring the ADF output. This
theoretically was expected to yield a more edge
preserving geometric driven image simplification.

3. RESULTS AND DISCUSSION

The developed scheme has been applied to a number of
hyperspectral images which are available from the
MINEO EU project (Data Set of hyperspectral airbone
surveys, http://www2.brgm.fr/mineo/) and to ASTER
Level 1 data. In figures 1 and 2 the application of the
developed scheme to an image crop from the MINEO
dataset in Finland, Boreal environment test site, is
presented. The available image had been already reduced
to three bands through a band selection procedure.

The aim was to evaluate the developed scheme as a
pre-processing filtering tool for edge detection and image
segmentation (more specifically for solving over-
segmentation problems of the watershed transformation).
Watershed segmentation is very sensitive to small
variations of the image magnitude and consequently the
number of generated regions is undesirably large. As it is
demonstrated in figures 1 and 2 the developed filtering
tool managed to decrease the original image’s
heterogeneity (in spectral and spatial domain) so that
in the resulting segmentation adjacent pixels appeared
more aggregated. This resulted to an over 40% decrease
in the number of output segments. In figure 3, the
developed filtering tool was applied to an ASTER Level 1
satellite image from the Death Valley region, USA.

-737 -



N e -
- N ST

Figure 1. Applying the developed filtering té)ol to HSL. First row: é.)

o '

original image (setected three bands), b)color edge detection to

(a), c) watershed segmentation to (a) and d) watershed result superimposed to (a). Second row: ¢) smoothed image after the
application of the ADF (40 iterations) and the ML (scale 3), f) color edge detection to (e), g) watershed segmentation to (¢) and h)
watershed result superimposed to ().

Figure 2. Zoom to an image crop of figure 1. All images follow
the figure 1 order.

The developed filtering tool was applied to the three
bands of ASTER data with a ground resolution of 15
meters. Again, the developed scheme by simplifying the
image and removing irrelevant image structures deal with
watershed over-segmentation problems, since not only
enlarged but also created new flat (smooth) image zones.
Segmentation quality was compared quantitatively in
terms of the number of regions obtained after using the
developed algorithm. Over a 10% decrease in the number
of output segments was achieved.

Finally, after a close look in all figures, one can
observe that the applied edge-preserving, geometric-
driven filtering i) resulted into the preservation of the
more prominent/ meaningful edges (second column) after
the application of a color edge detection (Zenzo, 1986)
and ii) forced the merging of pixels which belong to the
same and not to irrelevant categories/objects (last
column).

4, CONCLUSIONS & FUTURE PERSPECTIVES

Experimental results showed that the nonlinear scale
space filtering can be applied to HSI with promising
results for edge detection and segmentation tasks. These
tasks are important during middle and high level

computer vision feature extraction procedures. Finally,
the developed scheme is currently under evaluation for its
contribution to HSI band selection process.
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