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ABSTRACT: Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little
Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image
acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using
two different classification algorithms: “Image Object Segmentation” for level-1 and “Spectral Angle Mapper” for
level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features
and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic,
forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final
phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With
respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at
4m resolution. The dataset is available for public research, and applications of this product will represent an
improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).
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1. INTRODUCTION
1.2 Project Site

1.1 Background

The Little Miami River in southwestern Ohio, USA has
a drainage area of 1756 square miles (1.15 million acres)
and stretches in a southwesterly direction for 105.5 miles
from its origin near South Charleston, Ohio to its
confluence with the Ohio River east of Cincinnati, Ohio
(Figure 1). It is one of the oldest river groups in the state,
having become Ohio’s first State and National Scenic
River (Sanders, 2002).

In 2001, an interdisciplinary group of scientists based
at the U.S. Environmental Protection Agency (EPA) in
Cincinnati, Ohio formed a collaborative effort to study
the Little Miami River (LMR) and its watershed in
southwestern Ohio, USA. The objective of the study was
to improve the understanding of relationships between
non-point sources of nutrients in watersheds, nutrient
enrichment in rivers and streams, and the ecological
responses to these stressors and was aimed at providing
useful assessment approaches, information, and models to
address the risks of excess nutrients in agricultural and
urbanizing watersheds. Changes in water quality can
indicate a change in some aspect of a terrestrial, riparian,

2. METHOD
2.1 Pre-Processing

In addition to the need for geometric correction of

or in-channel ecosystem. In spite of the advancement of
environmental modeling, the applicability of the grid-
based environmental models is limited due to insufficient
information and data-intensive requirements. The ultimate
goal of developing a LULC dataset of high spatial
resolution is to help enhance the use of geographic and
spatial analytic tools in risk assessments and to improve
the scientific basis for environmental risk management
decisions. From a technological point of view, an
innovative hierarchical classification approach was
devised, incorporating both object-based pattern
recognition and spectral image processing techniques.

remote sensing data in general, the acquisition of airborne
optical image data is susceptible to a number of effects
due to sun angle, target characteristics, atmospheric
conditions, and others.  Of these effects, acquisition
geometry and total-scene radiance generally most directly
affect the ability to produce high-quality mosaics and also
to perform accurate multispectral or hyperspectral
classifications. The following are those preprocessing
issues that have to be considered before classification.
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Figurel. Project Site Map of Little Miami River
Watershed in Southwestern Ohio, USA

2.2 Main Part of Method

2.2.1 Cross-Track Hlumination

The general method to correct cross-track illumination is
to calculate the means for each sample of along-track
pixels, to use a polynomial function to fit the average
curves, and to obtain the correction factors by
normalizing the fitted curves (Kemnedy et al 1997;
Research Systems Inc. 2003).

2.2.2 Flightline Radiance Variations

Flightline radiance variations are another issue occurring
as a result of decreasing/increasing illumination over the
elapsed time of the data acquisition period.

2.2.3 Tmage Classification

The proposed classification method employed a
hierarchical approach using two different classification
algorithms: “Image Object Segmentation” for level-1 and
“Spectral Angle Mapper” for level-2. This classification
scheme was developed to overcome the spectral
inseparability of urban and rural features and to deal with
radiometric distortions due to cross-track illumination.

In order to combine the effectiveness of both approaches,
object image segmentation in eCognition (Definiens
Imaging GmbH., 2003) was applied as a “Level 17
classification of water, urban, and rural features, which
classification required consideration of large scale-factors
as well as area-based parameters such as adjacency,
texture and shape. Next, SAM in ENVI (Research
Systems Inc., 2003) was applied as a “Level-2” classifier
to distinguish the urban and rural areas into more specific
classes (barren, built, grass, corn, soypbeans, wheat, etc.).
Wire diagrams of the methodology used are shown in
Figures 2 and 3. Throughout the process, image object
segmentation created a spatially exclusive mask of urban
and rural regions, and then each region was filled with the
classification result from SAM. As a consequence, the
final classification result remained a uni-scale product
with a spatial resolution of 4m throughout the entire
watershed.

Training samples were chosen along all flight lines and
selected in order to capture intra-class variation. The

same classification rules were applied to each flightline.
After the first round of classification, the results were
fine-tuned by adding training sets to accurately define
inter-class boundaries.

The classification results for each individual flight line
were assessed for accuracy and accepted if they did not
show any overall discrepancies with respect to the aerial
images.
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Figure 3. Schematic of Hierarchical Classification
and Derived Classes (shadowed)

The classification results were also re-examined after
joining the classified flight lines together in a mosaic of
the watershed.

2.3 Post-Processing

Image post-processing and QA/QC following the Level
1 and 2 classifications included manual editing and map
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generalization to create a second LULC product. Manual
editing was employed as a final QA/QC step for (1)
differentiation of water bodies into lotic and lentic; (2)
assignment of clouds, shadows, and haze to “unclassified”
class. After the manual editing, a “clump-sieve-and-fill”
technique was used to eliminate single pixels or groupings
of pixels that were smaller than the minimum target
mapping unit (e.g., random pixels of “Forest” denoting
scattered trees in an otherwise homogeneous 40-acre plot
of “Corn™). As a result, a second LULC mosaic product
was produced, which eliminated the “salt and pepper”
effect common in classifications of smaller pixel or
“finer” spatial resolution imagery. For the smoothed
product, the minimum mapping unit of the classification
result was about 0.04 of an acre as represented by 10
pixel clusters (at 4m x 4m spatial resolution), or linear
chains of (minimally) four contiguous pixels in any
direction. The original, unsmoothed product remained at
a 4m x 4m spatial resolution.

3. ACCURACY ASSESSMENT

The accuracy assessment was based on whether the
majority of classed pixels in a 3x3 pixel window, centered
on a ground truth site, agreed or not. Thus, if five or
more pixels were classified as corn, and ground truth
indicated corn, then the majority criterion was satisfied
and “corn class” would be considered correct for that site.
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Table 1. Classification Error Matrix
Clasz Raztarence Classified Number Producer’s
Names Total Total LCorrset Agcuracy
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Table 2. A Statistics Summary of the Accuracy
Assessment

A standard error matrix was used in reporting the
classification accuracies (Table 1). A total of 902
independent ground truth sites were used for the accuracy
assessment, including primary data (i.e., data collected by
EPA scientists in the field at the time of the overflights),
and secondary data from 2002 and 2003 aerial images of
the watershed. Table 2 presents a statistical summary of
the accuracy assessment for the classification results using
902 reference points with respect to all eleven landcover
classess. The overall accuracy of the product was 83.9%.

4. RESULT AND ANALYSIS

The overall classification accuracy was 83.9%, which
is above the project’s target of 80% accuracy. However,
the producer’s and user’s accuracy of some classes fell
short of the target of 80%. Nevertheless, the strength of
this classification relative to other existing LULC datasets
of this watershed, such as the National Land Cover
Dataset or NLCD (Vogelmann et al., 2001), and the State
of Ohio Land Cover (Ohio DNR, 1994), is the higher
spatial resolution (e.g., 4m x 4m rather than the 30m x
30m pixel resolution of previous existing classifications
of this watershed) for such a large area—4495 square
kilometers, one of the world’s largest hyperspectral image
acquisitions. Figure 5 visualizes the difference between
the classification results for 4m and 30m resolution,
respectively. Development of the dataset was customized
for water quality modeling with special care for linear
strips of riparian vegetations.

Figure 4. Overview of classification of entire
watershed at 4m resolution

A basic understanding of the physical (i.e., geological
and anthropogenic) processes at work in the Little Miami
River Watershed will help the user of this LULC dataset
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interpret some of the resulting land use patterns shown in
Figure 4. These soils normally have better natural
drainage and fertility than those of the southern half of the
watershed (or “Drift Plain”). The southern half of the
watershed has more deeply-leached, acidic, pre-
Wisconsinan till and thin loess as well as very poorly-
drained soils with fragipans (clays). ‘The southern half of
the watershed also exhibits relatively modest relief, but
with dissected arecas and somewhat more complex
topography than the northern half (Omernik, 1987;
Woods et al., 1998).

As such, the northern and southern parts of the
watershed can be expected to have different types and
proportions of certain land uses or land covers based on
the differing soils and micro-climates found in these two
distinct “ecoregions”.

Figure 5. Comparison of 4m and 30m
resolution classifications

Spatial patterns separating western and eastern portions
of the watershed exist as well. Perhaps most notable is
the western urban/exurban corridor stretching from
Cincinnati (in the south) to Dayton and Xenia (in the
north) and beyond, encompassing portions of Hamilton,
Warren, and Montgomery Counties. These growing
urban ‘landscapes run parallel to and already straddle
much of the main stem of the Little Miami River, which
can be observed as a nearly contiguous linear band of
riparian forest running upwards along the western part of
the image. The eastern half of the watershed tends to be
more -agricultural in character, particularly in the north.
But this characteristic appears to wane in the east-central
part -of the image near the city of Wilmington (a
crossroads or pole for the primary economic sector in this
region as well as a major air transportation hub), and in
the south as well, particularly along the East Fork of the
Little Miami River in Clermont County, where urban
development and human population continues to rapidly
grow.

5. CONCLUSION AND FUTURE RESEARCH

High-resolution, hyperspectral images were acquired
and processed. to produce a 4m x 4m land cover
classification for the Little Miami River Watershed. A
hierarchical combination of innovative approaches was
used; subsequently, image object segmentation and
spectral angle mapper (SAM) were applied, and the
classification was successfully completed with the overall
accuracy of 83.9%. The resulting classification product

is an important dataset for a variety of environmental and
geographic studies within the Little Miami River
Watershed. Even given the predominance of the “dry
herbaceous” class, the classification product remains
meaningful for studying several urban and agricultural
patterns or gradients as well as anthropogenic and natural
processes within the watershed.
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