Neuronal connectivity determines brain function. Therefore, understanding the full map of brain connectivity with functional annotations is one of the most desirable but challenging tasks in science. Current methods to achieve this goal are limited by the resolution of imaging tools and the field of view. Macroscale imaging tools (e.g., magnetic resonance imaging, diffusion tensor images, and positron emission tomography) are suitable for large-volume analysis, and the resolution of these methodologies is being improved by developing hardware and software systems. Microscale tools (e.g., serial electron microscopy and array tomography), on the other hand, are evolving to efficiently stack small volumes to expand the dimension of analysis. The advent of mesoscale tools (e.g., tissue clearing and single plane ilumination microscopy super-resolution imaging) has greatly contributed to filling in the gaps between macroscale and microscale data. To achieve anatomical maps with gene expression and neural connection tags as multimodal information hubs, much work on information analysis and processing is yet required. Once images are obtained, digitized, and cumulated, these large amounts of information should be analyzed with information processing tools. With this in mind, post-imaging processing with the aid of many advanced information processing tools (e.g., artificial intelligence-based image processing) is set to explode in the near future, and with that, anatomic problems will be transformed into informatics problems.